
Department of Computer
Science

Algorithmic Bioinformatics

Universitätsstr. 1 D–40225 Düsseldorf

Developing a Snakemake Workflow for
Gene Set Enrichment Analysis

Lars Meinke

Bachelor’s Thesis

Beginn der Arbeit: 17. February 2020
Abgabe der Arbeit: 17. April 2020
Gutachter: Univ.-Prof. Dr. G. Klau

Dr. phil. A. Dilthey

Abstract

Our thesis aims to create an easy to setup and efficient workflow that performs all neces-
sary steps required to make a Gene Set Enrichment Analysis from RNA sequence reads.
All steps to prepare high-throughput RNA reads can be automated to save time. Using
Snakemake as the workflow manager we also save computational resources by re-using
already calculated results. Other workflows only perform differential expression analy-
sis, which means that the last step has to be performed manually and therefore making
it not useful to be done in bulk. Our solution uses parts of an existing workflow and
makes the necessary changes to add the Gene Set Enrichment Analysis to the end of the
pipeline. We evaluated our workflow with built in benchmarking options to show that
it scales with available computational resources and also works efficiently on repeated
runs.

CONTENTS i

Contents

1 Introduction 1

2 Snakemake Workflow 2

2.1 Preliminaries . 2

2.1.1 Conda . 2

2.1.2 Snakemake . 2

2.2 RNA Trimming and Aligning . 3

2.3 Feature Counting and Differential Expression 5

2.4 Gene Set Enrichment Analysis . 6

2.5 Workflow Output . 7

3 Evaluation 8

3.1 Benchmark . 8

3.2 Result Comparison . 9

4 Outlook 10

5 Acknowledgments 11

A Appendix 12

A.1 Workflow Output . 12

A.2 Benchmark . 16

A.3 Outlook . 18

References 20

List of Figures 22

List of Tables 22

1 INTRODUCTION 1

1 Introduction

Workflows are a commonly used methodology for processing vast amounts of data from
biological experiments. A Workflow should be easy to setup, reproducible by others and
ideally scale with growing input size. In this work, we are going to develop a workflow
to analyze RNA sequencing data with Gene Set Enrichment Analysis (GSEA). We will
be using Snakemake as the workflow management system together with the package
manager anaconda and the GSEA Software provided by the Broad Institute [13] to create
a workflow that is easy to install, replicate and scale.

GSEA is a pathway analysis of a ranked gene list. It is a threshold-free method that
analyzes genes based on differential expression rank or other scores. GSEA searches for
pathways that are over or under expressed (top or bottom of the ranked list), more so than
by chance alone. To do so, GSEA calculates enrichment scores (ES) for every pathway,
by scanning through the gene list from top to bottom. The running ES is increased for
every pathway if the gene is part of the pathway and decreases otherwise. The ES is
then weighted such that enriched genes in the top and bottom are amplified. It is then
normalized relative to the pathway size, resulting in the normalized enrichment score
(NES). Lastly, a permutation-based P value is computed based on a seed which is used
to produce a permutation-based false-discovery rate (FDR) Q value that ranges from 0
(highly significant) to 1 (not significant).

The workflow can be downloaded from GitHub. In this thesis we will be referencing
version https://doi.org/10.5281/zenodo.3754598.

To evaluate the workflow we used the data gathered in the study "RNA-Seq transcrip-
tome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates
cytokine function in airway smooth muscle cells" [5].

https://github.com/LittleFool/snakemake-workflow-gsea
https://doi.org/10.5281/zenodo.3754598

2 SNAKEMAKE WORKFLOW 2

2 Snakemake Workflow

2.1 Preliminaries

2.1.1 Conda

Conda [12] is a package and environment manager that makes it possible to install dif-
ferent sets of software and switch between them. Those sets are named environments.
All of those are separate from each other, meaning, every one of them could have the
same software installed in either the same or a different version. In our workflow, we
define configuration files which will automatically create a new environment and install
the given programs in the specified version. Conda can also install libraries - for exam-
ple, R modules that would otherwise need to be installed with an R script. This makes
the whole workflow easy to setup as many required programs get installed automatically
and, by using the correct versions, it guarantees compatibility and produces consistent
results.

2.1.2 Snakemake

For our thesis, we use the Python-based workflow manager Snakemake [7] which works
comparably to GNU Makefiles. Snakemake allows us to split the workflow into smaller
parts called rules. Each rule creates one or more output files from zero or more input files.
The intermediate steps are fully transparent and can be listed by executing a dry-run,
even showing the commands used. All files written by all rules do not get deleted at the
end of the workflow, so intermediate files can be examined or used for other purposes.
Rules can be chained together, taking the output file of one rule as the input of another.
This creates a directed acyclic graph (see Figure 1 and 2) which is calculated on startup
and determines the order in which the rules are executed. If required, a rule can be
started on multiple input files which can also be done in parallel if the resources needed
are available. They will only be executed if the output files are not already present or the
input files are newer than the output files. This makes the workflow more efficient as
only required files are generated and already present files are being reused.

When creating workflows one big aspect is the reproducibility. Snakemake lets us define
Conda environments and load them on a per rule basis with the conda directive. This can
be used to specify the programs required to execute the rule including a specific version.
It is also possible to load environment modules e.g. for cluster systems that often offer
a better performance than standard packages. Those two features handle the used soft-
ware, the singularity directive gives control about the used operating system by loading
a docker container. This can be done globally, making the whole workflow run inside of
docker, or rule based. Defining singularities and Conda environments not only makes the
workflow reproducible but also quick to set up which has been the main decision point
to use Snakemake in our thesis. Another useful feature is wildcards. They allow rules to
dynamically name output files and accept a filename pattern for input files, rather than
a fixed name. For example, the input of a rule can be samples/sample.fastq.gz and the
output can be mapped/sample.Aligned.out.bam. In this case, if the requested output is

2 SNAKEMAKE WORKFLOW 3

Figure 1: example Snakemake directed acyclic graph

mapped/A.Aligned.out.bam, Snakemake will replace the wildcard sample with the value
A and therefore look for the input file samples/A.fast1.gz.

2.2 RNA Trimming and Aligning

RNA sequence reads are stored in the FASTQ file format. It stores a quality score along
with the nucleotide sequence and normally uses four lines per read. The first line always
starts with a ’@’ character and is followed by a sequence identifier. Line two consists of
only the raw sequence letters such as A, C, G, T. The 3rd line begins with a ’+’ character
and is followed by the same sequence identifier used in line one. The fourth line en-
codes the quality score for the sequence in line two and must contain the same number
of symbols as letters in the nucleotide sequence.

In next generation sequencing machines adapters are added to the sample RNA.
Adapters are nucleotide sequences with varying length, depending on their function,
used in high-throughput sequencing such as the Illumina, IonTorrent or SOLiD platform.
They are required for the clonal amplification of the construct and used to initiate the se-
quencing reaction. Further they can be used as a barcode/index to identify samples that
were sequenced in bulk with others, so not all samples belong to the same experiment.

2 SNAKEMAKE WORKFLOW 4

Adapters often get added by polymerase chain reactions (PCR) but some platforms also
use a ligation process to attach the adapter sequence to the insert [1]. It is important
to remove any adapter or adapter fragments before other analyzing steps as that would
introduce non-genome reads into the process and therefore the read alignment changes.

The first step in our workflow is to trim any adapters from the FASTQ files if present and
then align the reads to a reference genome. Trimming can be turned off in the configu-
ration file config.yaml by setting the skip boolean to true if trimming is not skipped the
used adapter sequence needs to be set.

To do the trimming we will use the program Cutadapt [11] which can remove fully or
partly present 3’-end and 5’-end adapter sequences in an error tolerant way. To correctly
start Cutadapt we have to distinguish between single-end and paired-end reads. The
differentiation has to be made, because the forward reads might have a different adapter
than the reverse reads. More importantly, Cutadapt will check that the paired-end reads
are properly paired and throw an error if one of the files has more or less reads than the
other. It also makes sure both files are synchronized, when a read has to be deleted in one
file it will also get removed in the other. In some situations, Cutadapt can be run in single-
end mode twice for both input files but this will disable any consistency checks Cutadapt
would do otherwise. For single-end reads, it takes the adapter sequence with the −a
parameter. For paired-end reads, we additionally have to give the adapter sequence for
the reverse read with the −A parameter. To speed up the process, multi-core support can
be turned on with the −j parameter, where a value of 0 will use all available cores and any
number greater than 0 will use the given count of cores. If one intends to use multi-core
support and gzip compression, it is advised to have pigz (parallel gzip) installed as the
compression task will otherwise throttle the other processes down. The trimmed FASTQ
files are written to the filename given with the −o parameter for single-end reads. The
paired counterpart is written to the file from the −p parameter. In Snakemake, we use a
Python function to return the filename from the fq1 column and if present the fq2 column
of the units.tsv file where the sample and unit column match the current wildcard values.
The wildcards sample and unit get set by the count rule. Depending on whether just fq1
is set or both fq1 and fq2 we start Cutadapt either in single-end or paired-end mode with
two different Snakemake rules.

After the reads have been trimmed, they need to be aligned to a reference genome. Since
we are working on human samples, we are going to use the genomic FASTA and GTF an-
notation files from the homo sapiens reference genome GRCh38.p13 [4]. For aligning the
reads, we will be using the STAR (Spliced Transcripts Alignment to a Reference) [3] RNA-
seq aligner. STAR requires the reference genome to be indexed before it can be used in the
alignment process. This workflow assumes that this step has already been done with the
project specific parameters, for our example, we will just specify the downloaded FASTA
and GTF file along with the − − sjdbOverhang option. According to the manual, the
sjdbOverhang parameter should ideally be set to ReadLength − 1 or for variable length
reads max(ReadLength)−1. In most cases, the default value of 100 will give good results.
However, since we know the read length in our study is 63, we can set the parameter to
62. In contrast to Cutadapt, we do not have to distinguish as much between single-end
and paired-end reads with STAR. However, input of the align rule still depends on if
trimming was done or not and if the reads are single-end or paired-end. Therefore we

2 SNAKEMAKE WORKFLOW 5

use another python function, that returns the file paths depending on those conditions.
In any case, the STAR command remains the same which makes it possible to cover all
combinations with one Snakemake rule. The align rules output are the aligned reads,
always in a single, unsorted BAM file. We have chosen the BAM over the SAM format,
because it is the lossless, compressed binary version of the SAM format and therefore
saves space without any disadvantages. As the align process is the most time consuming
and the align rule the most repeated rule of the workflow, we also skip sorting of the
BAM file. Due to the repeated execution, skipping the sorting saves a not insignificant
amount of time.

2.3 Feature Counting and Differential Expression

The aligned reads can now be further processed and firstly the exons need to be counted.
To do so, we will be using the featureCounts function in the Rsubread [8] R package.
featureCounts is a efficient read summarization function that can count RNA-seq and
DNA-seq reads. It needs an annotation file which can be provided in GTF or SAF format
and one or more input files with aligned reads. The output is a table with each feature as
a row and the corresponding count for each file in the columns (see table 1). To perform
a differential expression analysis with DESeq2 [9], we need to further summarize the
featureCounts table. There are potentially multiple rows with the same GeneID in the
count table, those need to be combined into one row for DESeq2 because they are later
used as indices. To do so we use a small Python script that calculates the sum of all rows
with the same GeneID, making them unique.

GeneID GSM1275862 GSM1275863 GSM1275866 GSM1275867

DUSP1 664 5021 1213 4542
FKBP5 260 4651 380 3874
KLF15 71 1326 52 703
TSC22D3 376 4301 522 3088
PER1 179 1528 142 844
KCTD12 4750 831 4807 414

Table 1: featureCounts output shortened

DESeq2 [9] is an R package that normalizes the counts and performance, a differential
expression analysis based on the model of a negative binomial distribution. Aside from
other statistical values, it calculates the log2 fold change (LFC), which we can use for
GSEA. DESeq2 takes the count matrix where each row represents a gene and each column
a sample, the matrix entries indicate the number of reads that have been mapped. The
table we created in the counting step represents exactly that. Additionally, we need the
samples.tsv file, so DESeq2 can map a treatment condition to each sample. After the
function has processed the counts, we get a table with a row for each gene and a column
for every statistical function. GSEA does normalization and shrinking of the ranked list,
so we need a not normalized value, that is why we use the LFC. We therefore delete all
columns except for log2FoldChange which is the LFC, then sort for the LFC value and

2 SNAKEMAKE WORKFLOW 6

save the table (see Table 2) to a file.

Gene_Name log2FoldChange

DUSP1 -2.96
FKBP5 -3.95
KLF15 -4.57
TSC22D3 -3.34
PER1 -3.21
KCTD12 2.49

Table 2: DESeq2 output shortened

2.4 Gene Set Enrichment Analysis

Our last step in the workflow is to perform the Gene Set Enrichment Analysis (GSEA).
The GSEA Software [13] is Java-based and comes in a GUI and a CLI version. In this
workflow we will be using the CLI program, because it allows us to start the analysis
with a simple, pre-defined script. It comes with different analysis modes and tools, that
are also available with the CLI script, we will be using the GSEAPreranked mode. In this
operation mode, the program needs a pre-ranked gene list, which we created in section
2.3 as well as a gene set database and a chip platform.

Gene sets are a collection of genes, that together, create a biological pathway. They rep-
resent a chain of genes that need to be active, or that influence each other, to for example
regulate metabolism in cells. Some gene sets are also responsible for diseases such as
cancer. A chip file contains annotations for a microarray and maps features (e.g. probe
sets) to gene symbols. While this is not directly used in the GSEA algorithm, it can be
used to annotate the output and to collapse each probe set to a single gene vector. GSEA
needs exactly one CHIP file and one or more gene sets, however duplicate gene sets will
not be filtered out and may cause wrong statistical values in the report.

Running the software in a Snakemake workflow presents one challenge, the output folder
name includes a timestamp that is determined upon start of GSEA and can not be known
by Snakemake beforehand. Since the rule starting GSEA is expecting a certain directory
to be created after the shell script has been executed, the rule will always fail because the
folder name will not match. To solve this problem, we will be using a Snakemake featured
called "Data-dependent conditional execution". This allows us to define checkpoint rules,
which can only have a directory as the output and does not evaluate its contents. At such
rules, the DAG is re-evaluated and a Python object is created which gives us access to all
newly written file and folder names in the target directory. With this object we are able
to rename the sub-folder containing the timestamp to produce a consistent output folder
for possibly following rules or scripts.

2 SNAKEMAKE WORKFLOW 7

2.5 Workflow Output

The main output of the workflow is a html report generated by GSEA which can be found
in the folder report/workflow.GseaPreranked. The website can be opened locally with
any browser without needing a server to do so. It consists of different html pages, tables
and graphs that show the up and down regulated gene sets. The main page shows global
statistics like information about the used gene and data set together with global ES and
p-values vs. NES plots. There are also two phenotype sections, one for positive and one
for negative enrichment scores.

The enrichment results pages show a table of all negative or positive enriched gene sets
with their corresponding ES, NES, p-value and FDR q-value. For the top 20 gene sets
there is an extra page available showing detailed information about the gene set. This
includes a enrichment plot which shows the running ES score and positions of gene set
member hits (see appendix A.1). Every list from the report is also available in a tab
delimited text file and each graph is generated as a png and a svg image. This makes it
easy to further process the tables or use the graphs in custom reports.

Apart from the html report, all intermediate files can also be used after the workflow
is done. In particular, the generated count tables and ranked list can be used in other
workflows or analysis. Furthermore, we use the benchmark directive in all suitable rules
to record the system usage of a rule’s execution. Benchmarks get saved as a tab sepa-
rated list, including run-time, memory used in Mib, harddisk I/O and mean CPU load.
Memory usage is shown in four columns always referring to the maximum usage during
execution. The four memory columns are RSS (Resident Set Size), VMS (Virtual Memory
Size), USS (Unique Set Size) and PSS (Proportional Set Size). Harddisk I/O is split into
bytes read (io_in) and bytes written (io_out). Lastly, the workflow also saves log files for
each step. This helps in finding errors or checking program output.

3 EVALUATION 8

3 Evaluation

Our workflow is similar to the rna-seq-star-deseq2 workflow in the Snakemake git reposi-
tory. We used parts of that, namely trimming, aligning and DESeq2, to have a well known
base for our workflow. Instead of using Snakemake wrappers, we build everything with
Conda to keep the simple setup but allow for more flexibility in the commands. We
changed the DESeq2 script to output a ranked list instead of the binary object and re-
moved the step to export the complete list. From there we added our GSEA rules to
create the html report. We are also using featureCounts to count exons instead of STAR
to have a more programmatic approach for this step. Using a programming language
such as R gives us more control over the output.

3.1 Benchmark

All benchmarks and runs were performed using:

CPU Intel Core i9-7900X @ 3.3GHz

RAM 64GB DDR4-2133

Storage 2x SanDisk Ultra II SSD 960GB

Using Snakemake as the workflow manager grands a high amount of efficiency. It makes
sure that only necessary files are being generated. While this is not useful on the first run,
any consecutive executions of the workflow are much faster.

In our workflow the most time consuming steps are trimming and aligning (Figure 8).
With our setup, these two rules took over 3 hours to complete. Since they can be run in
parallel (see Figure 2) a second server, or a more powerful setup, would allow two rules
to be run at the same time and therefore cut the time in half to 1.5 hours. Once a sample
has been trimmed and aligned, Snakemake will re-use the aligned BAM file for future
executions of the workflow so these two steps only have to be done once per sample.
Since aligning uses the most RAM (33.45GB on average per execution, see Figure 9) only
performing that once means re-runs of the same data e.g. to compare different conditions
can be done on less powerful computers.

All rules after aligning can not be run in parallel, hence why only one server is needed.
These remaining rules (counting, DESeq2, GSEA) took 30 minutes to finish with our ex-
ample data (see Figure 10). Depending on which GSEA gene set one is using and how
many samples need to be counted these steps might take longer, e.g. using gene set C7
instead of C2 takes 4 minutes longer. The whole workflow finished in 3.5 hours with
our test setup, having the potential to save 1.5 hours when using a second server. After
the workflow has finished at least once it can complete in 30 minutes or even less, if the
counting tables can be re-used.

https://github.com/snakemake-workflows/rna-seq-star-deseq2/tree/a83f3013b44e92208ab88a8f1bce5080b3a42422

3 EVALUATION 9

3.2 Result Comparison

To evaluate our results, we compare them as closely as possible with the paper [5] using
the comparison untreated vs. dexamethasone. Starting with the read aligning we get
an average of 90.07% uniquely mapped reads (range 88.54%-91.04%). That is a 6.71%
increase, potentially because of the newer reference genome we used in our thesis. The
increase in mapped reads and also the potential difference in annotated genes will make
our count table differ from the paper and thus the ranked list. Table 3 compares our
DESeq2 output with the values the paper computed with Cufflinks. As can be seen,
the LFC values are close to the originals with a lower FDR. The biggest difference being
C7 with a 0.13 higher LFC and a significantly higher FDR. This could be explained by
the different reference genome as the FDR is calculated with the Benjamini-Hochberg
approach in both DESeq2 and Cufflinks.

Gene Name LFC FDR study LFC study FDR

C7 -3.22 1.0e-05 -3.35 0
CCDC69 -2.90 4.0e-29 -2.92 0
DUSP1 -2.96 4.7e-46 -2.99 0
FKBP5 -3.95 8.4e-37 -3.95 0
TSC22D3 -3.34 2.6e-18 -3.27 2.5e-13
CRISPLD2 -2.71 1.1e-22 -2.70 6.9e-13
KCTD12 2.49 9.9e-41 2.52 1.1e-11

Table 3: LFC and FDR comparison

Looking at the results for a Gene Set Enrichment Analysis with the sample data we see,
that the smooth muscle contraction pathway [10] is under expressed (Figure 6), as we
would expect when treating asthma. Furthermore we see the asthma pathway [6] over
expressed (see Figure 5). Checking the Q-Value, 424 gene sets are significantly under
expressed with an FDR < 25% including the smooth muscle contraction pathway with
6.5%. Only 34 gene sets are significantly over expressed with an FDR < 25% with the
asthma pathway at 42.7%. Given the high FDR value, the asthma pathway is probably
not relevant or not fully expressed due to the medication given.

A significant gene set that is over expressed however is the "NFKB Targets Repressed
by Glucocorticoids" pathway [2] (see Figure 7). This describes the use of glucocorticoids
to treat autoimmune and inflammatory diseases such as asthma. Since dexamethasone,
which is used in our example experiment, is an artificial glucocorticoids this article can
be applied on our report. The pathway also includes, among other interleukins, IL6
which was mentioned in the example study to be elevated. Further interpretation from a
biologist would be needed to evaluate the other pathways.

4 OUTLOOK 10

4 Outlook

A limitation in the workflow could be removed by reconsidering the featureCounts
function to count exons. The limitation here is, that when starting the featureCounts
function a parameter has to be set whether to count single-end or paired-end reads. Be-
cause we count all aligned RNA reads at the same time, it does not allow us to use a
mixture of single-end and paired-end reads in one workflow run. We currently also do
not have a way to automatically detect that for the counting step, so there is a configu-
ration parameter that changes featureCounts from single-end to paired-end mode. This
could be fixed by starting featureCounts for every sample instead of once per run or
alternatively change to a different counting method.

The configuration could also be improved by offering more user friendly options for
GSEA. This would be achievable by moving frequently used GSEA parameters to config-
uration variables and out of the params variable. For example options such as plottopx,
setmin and setmax are likely to be changed often, depending on the experiment that
needs analyzing. Other options that should not be changed like rptlabel could be hard
coded in the rule definition.

To further make the workflow easier to setup the "Between workflow caching" method
from Snakemake could be implemented. This feature could be used to download anno-
tation files and reference genomes. It can also create the STAR index required for the
aligning process so that this step does not need to be done by hand before starting the
workflow. However, this requires the maximum RNA read length to be known which
the workflow should ideally compute on its own. In the future, caching might even save
disk space because all annotations, reference genomes and indices are stored in a central
location and being used by all workflows.

There are a couple of options to expand onto the workflow and further process the data.
One could be, adding Cytoscape to the end of the workflow and generate aa enrichment
map with the EnrichmentMap plugin (see Figure 11). Adding this step would show
linked gene sets and leading edge genes. With DESeq2 we can create further statistical
plots such as MA-plots (Figure 12) showing the LFC over the mean of normalized counts.
This means, that genes with similar expression values in treated and untreated samples
will be close to the y = 0 line, genes that are differently expressed will be further away.
Genes with a adjusted p-value below a threshold (default 0.1) are shown in red.

5 ACKNOWLEDGMENTS 11

5 Acknowledgments

I am grateful to Gunnar Klaur for making the thesis possible, even on a tight schedule.
Thanks to Philipp Spohr for his excellent guidance on structure and content of the thesis.

A APPENDIX 12

A Appendix

Figure 2: Snakemake directed acyclic graph from example data

A.1 Workflow Output

A APPENDIX 13

Figure 3: Normalized ES vs. FDR q-value - showing how many gene sets are relevant at
a glance

Figure 4: ES vs. number of gene sets - provides a quick, visual way to see the number of
enriched gene sets

A APPENDIX 14

Figure 5: Top part shows the running ES, middle shows where the gene set members
appear in the ranked list, bottom shows the value of the ranked metric

Figure 6: Top part shows the running ES, middle shows where the gene set members
appear in the ranked list, bottom shows the value of the ranked metric

A APPENDIX 15

Figure 7: Top part shows the running ES, middle shows where the gene set members
appear in the ranked list, bottom shows the value of the ranked metric

A APPENDIX 16

A.2 Benchmark

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
100

200

300

400

500

600

700

800

sample number

se
co

nd
s

Runtime of STAR and Cutadapt

STAR
Cutadapt

Figure 8: Runtime of STAR and Cutadapt for the example data

A APPENDIX 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
31.4

31.5

31.6

31.7

31.8

31.9

32

32.1

32.2

sample number

G
iB

STAR RAM usage

Figure 9: RAM used by STAR for the example data

featureCounts DESeq2 GSEA

0

200

400

600

800

1,000

1,081

21

566

se
co

nd
s

Figure 10: Runtime of featureCounts, DESeq2 and GSEA for the example data

A APPENDIX 18

A.3 Outlook

Figure 11: Enrichment Map showing linked gene sets

A APPENDIX 19

1 100 10000

−
3

−
2

−
1

0
1

2
3

mean of normalized counts

lo
g

fo
ld

 c
ha

ng
e

Figure 12: MA-plot showing LFC over the mean of normalized counts

REFERENCES 20

References

[1] Cresko Lab, University of Oregon. RNA-seqlopedia. 2011. URL: https://rnaseq.
uoregon . edu / #library - prep - sequencing - adapters (visited on
03/16/2020).

[2] K. De Bosscher, W. Vanden Berghe, and G. Haegeman. “Cross-talk between nuclear
receptors and nuclear factor kB”. In: Oncogene 25.51 (2006), pp. 6868–6886.

[3] Dobin, Alexander and Davis, Carrie A. and Schlesinger, Felix and Drenkow, Jorg
and Zaleski, Chris and Jha, Sonali and Batut, Philippe and Chaisson, Mark and
Gingeras, Thomas R. “STAR: ultrafast universal RNA-seq aligner”. In: Bioinfor-
matics 29.1 (Oct. 2012), pp. 15–21. eprint: https : / / academic . oup . com /
bioinformatics/article-pdf/29/1/15/17101697/bts635.pdf.

[4] Genome Reference Consortium. Genome Reference Consortium Human Build 38 patch
release 13. 2019. URL: https://www.ncbi.nlm.nih.gov/assembly/GCF_
000001405.39 (visited on 03/24/2020).

[5] Blanca E. Himes, Xiaofeng Jiang, Peter Wagner, Ruoxi Hu, Qiyu Wang, Bar-
bara Klanderman, Reid M. Whitaker, Qingling Duan, Jessica Lasky-Su, Christina
Nikolos, William Jester, Martin Johnson, Reynold A. Panettieri Jr, Kelan G. Tan-
tisira, Scott T. Weiss, and Quan Lu. “RNA-Seq Transcriptome Profiling Identifies
CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates Cytokine Func-
tion in Airway Smooth Muscle Cells”. In: PLOS ONE 9.6 (June 2014), pp. 1–13.
eprint: https://journals.plos.org/plosone/article/file?id=10.
1371/journal.pone.0099625&type=printable.

[6] KEGG. Asthma - Homo sapiens. July 2013. URL: https://www.genome.jp/kegg-
bin/show_pathway?hsa05310 (visited on 04/15/2020).

[7] Johannes Köster and Sven Rahmann. “Snakemake—a scalable bioinformatics
workflow engine”. In: Bioinformatics 28.19 (Aug. 2012), pp. 2520–2522. eprint:
https://academic.oup.com/bioinformatics/article-pdf/28/19/
2520/819790/bts480.pdf.

[8] Yang Liao, Gordon K Smyth, and Wei Shi. “The R package Rsubread is easier, faster,
cheaper and better for alignment and quantification of RNA sequencing reads”. In:
Nucleic Acids Research 47.8 (Feb. 2019), e47–e47. eprint: https://academic.oup.
com/nar/article-pdf/47/8/e47/28534862/gkz114.pdf.

[9] Michael I. Love, Wolfgang Huber, and Simon Anders. “Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2”. In: Genome Biology
15.12 (2014), p. 550.

[10] Marc E Gillespie. Smooth Muscle Contraction. Mar. 2009. URL: https : / / www .
reactome.org/content/detail/R-HSA-445355 (visited on 04/14/2020).

[11] Marcel Martin. “Cutadapt removes adapter sequences from high-throughput se-
quencing reads”. In: EMBnet.journal 17.1 (2011), pp. 10–12.

[12] OS-agnostic, system-level binary package manager and ecosystem. URL: https : / /
conda.io/en/latest/ (visited on 03/27/2020).

https://rnaseq.uoregon.edu/#library-prep-sequencing-adapters
https://rnaseq.uoregon.edu/#library-prep-sequencing-adapters
https://academic.oup.com/bioinformatics/article-pdf/29/1/15/17101697/bts635.pdf
https://academic.oup.com/bioinformatics/article-pdf/29/1/15/17101697/bts635.pdf
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0099625&type=printable
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0099625&type=printable
https://www.genome.jp/kegg-bin/show_pathway?hsa05310
https://www.genome.jp/kegg-bin/show_pathway?hsa05310
https://academic.oup.com/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf
https://academic.oup.com/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf
https://academic.oup.com/nar/article-pdf/47/8/e47/28534862/gkz114.pdf
https://academic.oup.com/nar/article-pdf/47/8/e47/28534862/gkz114.pdf
https://www.reactome.org/content/detail/R-HSA-445355
https://www.reactome.org/content/detail/R-HSA-445355
https://conda.io/en/latest/
https://conda.io/en/latest/

REFERENCES 21

[13] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Ben-
jamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd
R. Golub, Eric S. Lander, and Jill P. Mesirov. “Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression profiles”. In:
Proceedings of the National Academy of Sciences 102.43 (2005), pp. 15545–15550. eprint:
https://www.pnas.org/content/102/43/15545.full.pdf.

https://www.pnas.org/content/102/43/15545.full.pdf

LIST OF FIGURES 22

List of Figures

1 example Snakemake directed acyclic graph 3

2 Snakemake directed acyclic graph from example data 12

3 Normalized ES vs. FDR q-value - showing how many gene sets are rele-
vant at a glance . 13

4 ES vs. number of gene sets - provides a quick, visual way to see the number
of enriched gene sets . 13

5 Top part shows the running ES, middle shows where the gene set members
appear in the ranked list, bottom shows the value of the ranked metric . . 14

6 Top part shows the running ES, middle shows where the gene set members
appear in the ranked list, bottom shows the value of the ranked metric . . 14

7 Top part shows the running ES, middle shows where the gene set members
appear in the ranked list, bottom shows the value of the ranked metric . . 15

8 Runtime of STAR and Cutadapt for the example data 16

9 RAM used by STAR for the example data 17

10 Runtime of featureCounts, DESeq2 and GSEA for the example data 17

11 Enrichment Map showing linked gene sets 18

12 MA-plot showing LFC over the mean of normalized counts 19

List of Tables

1 featureCounts output shortened . 5

2 DESeq2 output shortened . 6

3 LFC and FDR comparison . 9

	Introduction
	Snakemake Workflow
	Preliminaries
	Conda
	Snakemake

	RNA Trimming and Aligning
	Feature Counting and Differential Expression
	Gene Set Enrichment Analysis
	Workflow Output

	Evaluation
	Benchmark
	Result Comparison

	Outlook
	Acknowledgments
	Appendix
	Workflow Output
	Benchmark
	Outlook

	References
	List of Figures
	List of Tables

