
Snakemake as a workflow engine for

reciprocal BLAST analyses

Lukas Becker

A thesis presented for the degree of

Bachelor of Science

Supervisor: Prof. Dr. Gunnar Klau

Second Assessor: Dr. Nicolas Schmelling

Algorithmic Bioinformatics

Heinrich Heine University Düsseldorf

Germany

25th February, 2021

Acknowledgments

I would like to express my gratitude for Prof. Gunnar Klau whose encouragement and guidance

throughout this study has been a great support. Furthermore, I owe special thanks to Dr.

Nicolas Schmelling for his invaluable support, constructive feedback and continued assistance

in my various questions. Thanks for the opportunity to work on this thesis and the experience

to work on this cooperative topic. In addition, I would like to thank Philipp Spohr for his

patience with my many questions and his advice and valuable guidance.

Thanks.

ii

Abstract

In modern genomic analysis, homology describes the evolutionary relationship between two

sequences. In addition to a diverse classification of homology, the key concept for evolutionary

and comparative genomics is the dichotomous differentiation of homology into orthologous

and paralogous sequences. Sets of orthologous genes are used to obtain information regarding

gene functions and phylogenetic relationships because orthologs tend to retain their biolog-

ical function. Various methods have been developed in order to identify orthologous genes.

Typically, orthologous and paralogous gene relationships are disentangled by measuring and

comparing sequence similarities within sequences of interest. More precisely, when search-

ing orthologous sequences in different genomes, those sequences will most likely match each

other as best hits when performing sequence similarity searches. The resulting sequences are

called reciprocal best hits (RBHs). The identification of RBHs is the most common method

to infer putative orthologs in comparative genomic studies. In order to use this method for

finding orthologous sequences, various work steps have to be carried out, some of which can

be solved straightforwardly by program code, without requiring considerable additional effort.

In this thesis we used the Basic Local Alignment Search Tool (BLAST) command-line program

in combination with the workflow engine Snakemake and the web framework Django to de-

velop an application that can be used for the inference of RBHs. Snakemake was used to

develop a pipeline for the execution of the workflow steps, providing the core functionality

of the application. Due to web based data deployment, pipeline execution and monitoring,

the application enables an easy and user friendly customization of reciprocal BLAST analy-

ses. The application and all necessary software and packages can get installed with Docker,

which enables a utilization of the application on every system. As a local database option the

non-redundant protein database from NCBI was utilized, however, additional databases can

easily be integrated. In order to test the application, a reciprocal BLAST analysis of the circa-

dian clock protein kaiA from Synechococcus elongatus PCC 7942 was conducted. The pipeline

successfully identified 606 RBHs as putative orthologous sequences in a reliable time frame

on a custom notebook computer. The intuitive usability of the developed application enables

an easy-to-use execution of reciprocal BLAST analyses for scientists who are not familiar with

programming.

iii

Contents

1 Scientific background 1

1.1 Classification of homologous sequences . 1

1.2 The dichotomy of homology - paralogs and orthologs 1

1.3 Identification of orthologs and paralogs . 3

1.4 Methods for identifying sequence similarity . 5

1.4.1 BLAST is a fast and accurate heuristic algorithm for sequence similarity

searches . 5

1.5 Reciprocal BLAST for inferring orthologous sequences 6

1.6 Practical challenges in performing reciprocal BLAST analyses 8

1.7 Snakemake as a workflow engine for reciprocal BLAST analyses 9

1.8 Research goals . 10

2 Material and methods 11

2.1 Programming language and packages . 11

2.2 BLAST C++ command-line tool and NCBI data . 11

2.3 Snakemake as the core utility for pipeline execution 12

2.4 Django as web framework for application development 12

2.5 Docker for application deployment . 14

2.6 Guidelines . 15

2.6.1 Installation instructions . 15

2.6.2 Developer Guidelines . 15

2.6.3 User Guidelines . 15

3 Web tool for reciprocal BLAST analyses 16

3.1 Project and source code directory structure . 16

3.2 Front end overview . 17

3.3 The blast project view as main page . 18

3.4 Project creation interface for a structural project setup 18

3.5 Project details for informations and results . 20

3.6 Pipeline dashboard for Snakemake execution and monitoring 20

3.7 Pipeline execution via Snakemake . 21

3.8 Comparison to previously used reciprocal BLAST methods 23

3.9 Inference of orthologous sequences of the circadian clock gene kaiA from Syne-

chococcus elongatus PCC 7942 . 23

4 Discussion 24

4.1 Snakemake enhances reciprocal BLAST analyses . 24

4.2 Snakemake allows further enhancements . 24

4.3 The web application eases data deployment and pipeline execution 25

iv

4.4 Outlook . 27

A Abbreviations 33

B Appendix 34

v

1 Scientific background

1.1 Classification of homologous sequences

Modern genomics highly depends on comparative analyses, which are typically based on se-

quence similarity. Sequence similarity can give first clues about relation and function of newly

sequenced genes (Pearson 2013). While investigating sequence similarities is already a techni-

cally difficult task, the precise delimitation and definition of this similarity represents an addi-

tional complex problem (Reeck et al. 1987; Koonin 2005). Biological sequences are described

as homologous if they share more similarity than it would be expected by chance. As a result,

the sequences are considered to share a common origin, an evolutionary ancestor, and did

not arise independently. This excess of similarity is proven by statistical estimates, which are

calculated differently depending on the algorithms used for evaluating the alignment scores

(Pearson 1998). However, the absence of statistical significance within an alignment does not

automatically imply that those sequences are not homologous (Fokkens et al. 2010). In those

cases, profile based realignments as well as evolutionary intermediate sequences can help to

elucidate homology.

1.2 The dichotomy of homology - paralogs and orthologs

Homologous genes share sequence similarities in their core domains. Functions for an un-

known gene are usually first implied based on the highest similarity to known genes (Gerlt

and Babbitt 2000). However, this inference is, while being the fastest method for assigning

function to unknown genes, problematic as it is often based on a partial homology of one or

more conserved domains, while neglecting e.g. other shorter domains of the unknown gene

(Facchin et al. 2003).

This inaccuracy of the term homology requires more restrictive and exact definitions of se-

quence similarity in order to get a robust evolutionary classification. In general, the main

events that drive gene evolution are vertical inheritance of gene sequences followed by spe-

ciation, gene duplication and gene loss, horizontal gene transfer (HGT), gene fusion, fission

and rearrangements (Koonin 2005). While vertical inheritance describes the transmission of

particular genes from parents to their offspring, HGT relates to the transfer of genetic material

between two organisms that is not conducted via reproduction and vertical transmission of

DNA. Thus, HGT allows arbitrary ancestors rather than a distinct last common ancestor of two

genes. All these events build a complex web of relationships between genes and could explain

similarities or dissimilarities. The most important relationships are described with the terms of

paralogous and orthologous sequences (Koonin 2005; Tekaia 2016). Paralogs are genes related

via gene duplication, while orthologous genes originated via a speciation event (Fitch 1970).

This means that orthologous sequences arise from a single ancestral gene in the last common

ancestor of the compared organisms, that undergoes some sort of speciation. This definition

1

can be problematic and restrictive when it comes to orthologous sequences within prokaryotes

due to the occurrence of HGT. Nevertheless, the definition provides the most notable expla-

nation for orthology, which will be used in this work. Most often orthologous sequences have

similar functions, while paralogous sequences frequently exhibit a functional differentiation

in the respective organisms (Zhang 2003; Altenhoff et al. 2012). Nevertheless, the simple

dichotomy of homology into orthology and paralogy does not cover all logical implications of

evolutionary scenarios that can lead to divergence or convergence of gene sequences. The clas-

sification of homology demands more precise terms and definitions (Sonnhammer and Koonin

2002).

In the following section I will outline the most important terms explaining gene relationships

considering different evolutionary scenarios. Figure 1 shows a hypothetical phylogenetic tree

of three species (A, B and C) with two ancestral genes (X and Y) and their descendants.

Figure 1: Hypothetical phylogenetic gene-tree of species A. B and C and genes X and Y. The tree describes the

most common evolutionary events that lead to different gene relationships (modified after Koonin 2005).

The relationship of those genes outlines the potential differences within orthology and par-

alogy, which are mostly observed within scientific studies. The tree consists of two branches

dedicated to the hypothetical genes X and Y. Each branch corresponds to a special case of

2

orthologous-paralogous relationship. Prior to the first speciation of the genes and the exis-

tence of the last common ancestor (LCA) a duplication event occured. This ancient duplica-

tion is the reason for the paralogous relationship of the two genes. Further speciation followed

resulting in a radiation of the respective genes, thus, their gene relationship can get consoli-

dated with the term outparalogs (Remm et al. 2001). Driven by vertical inheritance followed

by speciation events the gene X diverged into three genes (XA, XB and XC), which are con-

sidered orthologous. This is the simplest case for inferring orthologs because there will be

only one sequence in each species (A,B and C) that share a high level of sequence similarity

between those genomes. In the branch of gene Y one can observe a speciation event followed

by a lineage specific duplication in species A. The YA genes are co-orthologous to the genes

of species B and C, while they are in-paralogous to each other. In addition, in cases of a gene

duplication followed by a gene loss of one of the genes a reciprocal search can lead to a miss-

classification of a paralog as an ortholog. By examining the entire gene family of the given

sequences it is possible to infer the correct relationship between the respective genes (Koonin

2005). The phenomenon of gene fission and fusion should also be considered when it comes

to evaluating possible orthologs. Consequently it is possible that just specific parts or domains

of a gene in one species are orthologous to different genes in other species (Song et al. 2008).

Last but not least HGT can have an immense impact on inferring orthologs, especially when

comparing prokaryotic genes due to its common occurrence in those organisms. If a species

acquires a gene that displaces a gene, which has an orthologous relationship to another gene,

the new gene could mimic an orthologous relationship to the other gene, because they do not

fit into the definition of orthology as they do not share a last common ancestor. Those genes

are referred to as xenologs (Koonin et al. 2001). This diverse classification of the term ho-

mology allows the correct assignment of the evolutionary relationship between two compared

and analysed gene sequences.

1.3 Identification of orthologs and paralogs

The distinction between orthologs and paralogs allows a reliable functional annotation of

newly sequenced genomes or sequences. It is a key aspect of comparative genomics, recon-

struction of phylogenetic trees and in general, sequence analysis. Various methods have been

developed in order to identify orthologous genes (Kristensen et al. 2011). The classical ap-

proach for identification of orthologs between different species is a phylogenetic analysis based

on the comparison of gene trees and species trees. Once the two trees have been inferred

they get reconciled or mapped on the basis of the parsimony principle, which results into a

new parsimonious tree that should reflect gene relationships, hence orthologs and paralogs

can be assigned by examining their relative position in the tree (Mirkin et al. 1995, Page

and Charleston 1997a). Orthologs group more closely together with members from different

species, while paralogs tend to group with members from the same species. In principle tree-

based approaches of inferring orthologs are relatively robust and utilizable for disentangling

3

paralogs and orthologs. Furthermore, this phylogenetic method can take advantage of infor-

mation stored in previously conducted multiple sequence alignments, which enables the infer-

ence of orthologs of an entire gene family. Two currently available applications for phylogeny

based inference of orthologs are TreeFam (Li et al. 2006) and PhylomeDB (Huerta-Cepas et

al. 2011). Both applications use slightly different phylogenetic approaches. TreeFam uses a

curated database of phylogenetic trees for comparisons and statistical measurements. Phy-

lomeDB takes advantage of a phylogenetic pipeline that involves statistical tests for choosing

the optimal model for tree inference. In turn to those advantages there are also disadvan-

tages that come with this technique (Page and Charleston 1997b). A major drawback is the

occurrence of HGT, because gene tree topologies could differ dramatically from species tree

topologies, this can directly lead to an evolutionary erroneous tree reconciliation and misinter-

pretation of gene relationships (Doolittle 1999). However, HGT is not determined as a major

factor in eukaryotic evolution, besides there are more practical drawbacks of this phylogenetic

approach. Applying this technique on whole genomes is computationally expensive and chal-

lenging due to the creation of trees for all genes and the execution of reliable statistical tests

on those trees.

Given the drawbacks faced by those approaches, another method has been developed that is

based on the simple assumption that orthologous genes are more similar to each other than

to other genes. More precisely, when searching orthologous sequences in different genomes,

those gene sequences will most likely match each other as best hits when performing sequence

similarity searches (Tatusov et al. 1997; Remm et al. 2001). The resulting sequences are often

called bidirectional, symmetrical or reciprocal best hits (RBH). The identification of RBHs is

the most common method to infer putative orthologs in comparative genomic studies (Koonin

2005). RBHs can be determined by performing pairwise sequence similarity searches and

evaluating the outputs by examining the ranking of homologous sequence sets. Fast, accurate

and statistically confirmed algorithms for sequence similarity searches are needed to infer

RBHs in comparative genomic studies.

4

1.4 Methods for identifying sequence similarity

There are different approaches for inferring sequence similarity, such as dynamic programming

algorithms (DPAs), which assign scores to mismatches, matches, insertions and deletions in

order to compute the least costly alignment between two sequences (Needleman and Wun-

sch 1970; Waterman 1984). The exhaustive use of DPAs are practical for comparing a small

set of sequences but are impractical for similarity searching in large sequence databases for

comparative genomic studies, given that aligning two sequences with those algorithms may be

computed in time proportional to the product of their length (O(2)) (Pearson and Miller 1992).

Based on these first algorithmic approaches, rapid heuristic algorithms have been developed

for determining sequence similarity between genes. Such methods have enabled the possibil-

ity of sensitive similarity searches against larger sequence databases even on microcomputers

due to the accomplished algorithmic (computational) efficiency (Waterman 1984).

1.4.1 BLAST is a fast and accurate heuristic algorithm for sequence similarity searches

Nowadays, the heuristic Basic Local Alignment Search Tool (BLAST) algorithm is a core appli-

cation for inferring DNA and protein sequence similarity (Altschul et al. 1990). The algorithm

can be used to identify homologous sequences between taxonomically distant species. It takes

advantage of local sequence alignments to identify isolated regions of similarity in distantly re-

lated proteins. The algorithm has been developed in order to infer sequence similarity between

newly sequenced genes and sequence databases. It computes similarity scores for two aligned

segments of the same length, which are called “High Scoring Pairs” (HSP). The measurement

of HSP scores involves statistical methods that use appropriate random sequence models that

deliver a p-value. It predicts the possibility that two sequences randomly share similarities sim-

ply by chance (Karlin and Altschul 1990). The statistical measurement conducted by BLAST

examines the distribution of alignment similarity scores within the underlying database. Thus,

having more sequences in a database will increase the accuracy of the probability values. Ex-

plicitly, after a certain amount of comparisons, BLAST reports sequence alignments for the

best scores. Those scores are assessed by a statistical value, the E-Value, which describes the

expected number of times a similarity score would occur by chance. The BLAST algorithm

incorporates a Mealy machine, a deterministic finite state model or finite state machine, while

scanning the sequences of interests for high scoring pairs (HSP) (Altschul et al. 1990). The

machine defines output values, e.g. scores of potential hits (HSP), based on the current state

and input rather than solely on the current state. It is used to signal HSP acceptance on transi-

tions, saving disc space and computation time nearly proportional to the size of the underlying

alphabet (e.g. the protein or nucleotide alphabet). Once all HSP above or equal to a certain

threshold are found BLAST tries to extend those hits into both directions. Each new extension

is impacting the score by either increasing or decreasing it until the extension phase is reaching

the end of the underlying sequences or if the score is below the determined threshold. If the

alignment is above or equal to the predefined threshold it will be included into the alignment

5

table for the query sequence. Those technical, statistical and programmatic approaches make

BLAST to a fast and reliable heuristic method to identify homologous sequences between tax-

onomically distant species (Altschul et al. 1990; Altschul et al. 1997).

Currently, BLAST is available on a web server (https://blast.ncbi.nlm.nih.gov/Blast.cgi) hosted

by the National Center for Biotechnology Information (NCBI) or as a standalone command-

line tool. Both versions come with numerous variations of the BLAST algorithm (s. Table 1)

that provide adjusted strategies for all sets of biological sequences and search scenarios e.g.

blastn and blastp, which are adapted for DNA and protein sequences. The current command-

line BLAST applications are available to the public since 1997 (Altschul et al. 1997) and have

been developed further in order to enhance computing time and functionality (Camacho et al.

2009). BLAST is one of the most heavily used sequence analysis tools and many different

research teams are using the algorithm for inferring homologous sequences.

1.5 Reciprocal BLAST for inferring orthologous sequences

BLAST is an ideal algorithm for inferring RBHs and for detecting orthologs. RBHs can be

assigned by performing a reciprocal BLAST. In a reciprocal BLAST sequence(s) of interest (SOI)

from specific species for which orthologs should be found are used as input queries for the first

sequence similarity search, the forward BLAST.

Figure 2: Example inference of RBHs during a reciprocal BLAST analysis. The example shows an inference of

three putative orthologous sequences (A1, A2 and B1) and an homologous but not orthologous sequence (C1).

The generated output is analyzed and all sequence hits of the forward BLAST are extracted

from the underlying database. Those extracted sequences serve as queries for the second se-

quence similarity search, the backward BLAST. This BLAST is limited by searching explicitly

against all sequences from the species from which the forward BLAST queries come from. In

addition, the output is limited to just report the best hit, or particularly the best alignment.

Putative orthologous sequences are found if query and subject sequences from the forward

6

https://blast.ncbi.nlm.nih.gov/Blast.cgi

BLAST match against each other in the backward BLAST. For example, one would like to iden-

tify orthologous sequences from gene X of species S in genome A, B and C (Figure 2). In

the forward BLAST a sequence similarity search is performed with gene X against all genes

present in genome A, B, and C. The output of this forward BLAST may be the homologous

sequences A1, A2, B1, and C1 that exhibit statistically significant similarities to gene X. Those

sequences will now serve as input queries for the backward BLAST in which the genes A1 to

C1 are compared to the genes present in the genome of species S. The output of this second

BLAST is limited to just reporting the best matches. After the backward BLAST, a RBH can be

assigned if, for example, gene A1 hits gene X as best hit. Contrary, if the gene C1 does not

match with gene X (as best hit) but with another gene of species S such as gene Y there would

be no reciprocal best hit for gene C1.

However, it has been revealed that the genes identified by BLAST best hits are not always each

other’s closest relatives in a phylogenetic point of view (Koski and Golding 2001). This finding

led to the assumption that the BLAST score is not a good indicator to assign genes as orthologs

in a simple one-way BLAST analysis. On the contrary, the reciprocal BLAST technique and the

assignment of RBHs allows reliable identifications of orthologs. Furthermore, the utilization of

local sequence alignments such as in BLAST can cope with the problem of gene fusion or fission

(Karamichali et al. 2014; Henry et al. 2016). Genes that underwent such scenarios can share

parts or domains that are orthologous, which are identified as HSP. In addition, it has been

shown that even in comparing genomes from evolutionary distant species numerous genes

form RBHs (Tatusov et al. 1996). Besides these advantages the RBH approach inherits also

some disadvantages. Lineage specific duplication events are producing paralogous sequences.

Those sequences can disturb the assignment of orthologs during a reciprocal BLAST, thus,

putative orthologs can form best hits with the paralogous counterpart during the backward

BLAST and the orthologous sequence will not be detected. This results in a false negative

error because a pair of orthologous sequences is missed (Koonin 2005). The definition of

orthologous sequences declares two sequences as orthologs if they share a common ancestor

and RBHs can likely occur between two genes that share an excess of sequence similarity due

to HGT events. Nevertheless, HGT does not influence the whole reciprocal BLAST analysis

but only the false positive assignment of xenologs as orthologs. Most often xenologos are

replacing former orthologs, furthermore, they adapt the functionality of the replaced ortholog

and accordingly, xenology is most often a good predictor for functional equivalency, albeit

xenologous genes do not fit into the definition of orthology.

7

1.6 Practical challenges in performing reciprocal BLAST analyses

For just a few sequences and quick analyses the currently most used method to infer homologs

is the web hosted version of the NCBI BLAST tool (McGinnis and Madden 2004). This is most

commonly used by wet-lab biologists without special training in bioinformatics or program-

ming. For more sequences NCBI provides a command-line based tool that can run on local

machines (Camacho et al. 2009). Besides remote search possibilities this tool provides the

possibility to quickly search previously downloaded and study-specific databases for matches

to query sequences. This command-line BLAST tool provides a variety of options that can be

overwhelming and hard to use for researchers not familiar with programming and command-

line software. However, for a reciprocal BLAST a second BLAST (the backward BLAST) and

several other workflow steps are needed. This is an ideal situation for developing a pipeline

that can execute different programs in a pre-designed sequence of tasks in order to avoid the

error-prone manual execution of programs. Particularly, a reciprocal BLAST pipeline needs

following workflow steps:

1. Process user defined input and configure settings for the reciprocal BLAST.

2. Execute the forward BLAST.

3. Examine output files and prepare input files for the backward BLAST based on all ho-

mologous sequences found by the forward BLAST.

4. Execute the backward BLAST.

5. Compare forward and backward BLAST and filter for reciprocal best hits.

These five steps are the core tasks for a reciprocal BLAST pipeline. The first step highly de-

pends on the software that is used for executing the BLAST algorithm. Correct deployment of

necessary input data such as the sequences for which orthologs should be assigned and their

corresponding genomes is crucial for an accurate execution of the pipeline. The second and

fourth step involve database preparation. This can be done through the command-line tool

or without an appropriate database formatting tool, via a remote execution of BLAST on the

NCBI BLAST web interface, that uses preformatted databases on NCBI servers. In addition,

the third and fourth steps involve programming techniques in order to extract sequences out

of genomes and to compare large data tables for the inference of RBHs. Once RBHs are as-

signed the results can get further processed in order to produce statistical reports and other

project-specific information, e.g. the number of species for which orthologous sequences have

been found or the amount of reciprocal best hits for each query sequence. Within the first

step, data uploads are required for providing underlying genome databases for the BLAST

searches. The remote procedure does not have this requirement as databases are stored on

NCBI servers. For just a few query sequences executing remote BLAST searches on NCBI servers

is an option but most of the time the pipeline should operate with numerous sequences and

8

whole genomes. On September 8, 2020, NCBI introduced new limits to web based BLAST

analyses, the maximum number of target sequences cannot exceed more than 5.000 and the

maximum allowed query length for nucleotide sequences is 1.000.000 and 100.000 for pro-

tein sequences (https://ncbiinsights.ncbi.nlm.nih.gov/2020/06/18/new-blast-settings/). In

addition, servers of the NCBI BLAST web tool have a CPU usage limit for submitted searches.

If the search exceeds more than one hour of combined CPU time the backend machines will

stop the process. Hence, there is demand for providing biological databases on the machine

on which the pipeline should be executed. There are a lot of sequence databases available

with different levels of completeness. In order to allow an accurate reproduction of previous

conducted pipeline executions, databases should only change on the explicit request of the

user. These findings support a dynamic database resourcing, one that is conducted via the

pipeline, at least for small databases, and another that involves a database resourcing before

pipeline execution.

1.7 Snakemake as a workflow engine for reciprocal BLAST analyses

With currently available techniques the scientist would have to execute a set of different pro-

grams and specify numerous options for running the BLAST analyses, which is a time consum-

ing, error-prone barrier especially for wet-lab biologists who are not familiar with command-

line applications and programming. This situation is ideal for the integration of Snakemake.

Snakemake is a workflow engine similar to the build-management tool GNU make, that can

automate the execution of workflow operations (Köster and Rahmann 2012). It uses a Python

based workflow definition language, which is close to pseudocode and easy to read and al-

ter. Steps of the pipeline can be conducted via rules that are defined in a special text file, the

snakefile. Due to the pseudocode-like syntax of those rules they can be easily altered. Fur-

thermore, Snakemake provides the possibility to use configuration files that can get integrated

into the execution of different snakefiles. This eases the transition of user input into the spec-

ified workflow executed by Snakemake. With default settings, Snakemake tries to execute the

first rule in the snakefile. Further workflow execution is based on the access of input files,

thus, a rule will not be executed if an input file is an output file of another rule. The rule

execution will wait until all necessary input files are generated and finishes if all output files

are generated. Thus, it is possible to define rules as build-targets, which serve as mounting

points for rule execution. Snakemake looks for rules that produce the necessary input files

and most often those rules depend on other input files that are produced by other rules, which

will then get addressed by Snakemake. This procedure goes on until Snakemake finds a rule

that can get executed. Owing to Snakemakes command-line options it is possible to create

specific project directories such that for each project specific Snakemake configurations can

be created. Once a project has been executed it would be easy to reproduce the generated

data by re-executing the Snakemake workflow together with the specified project configura-

tion. This enables the comparison of reciprocal BLAST analyses with different databases or

9

https://ncbiinsights.ncbi.nlm.nih.gov/2020/06/18/new-blast-settings/

query sequences. In general, rules can easily be added and with that project specifications and

requirements can get addressed. In the long term included rules can extend possible result

processing procedures, e.g. construction of phylogenetic trees or annotation and functional

classification of newly sequenced genes. In general, the most important rule definitions are

rule names, input and output file specifications and a shell or run command. With Snakemakes

shell parameter it is possible to use all local and global variables, thus, system variables can be

used and external programs can get executed. Furthermore, it is possible to integrate external

Python scripts into rules, which enables the full utility of this programming language. Python

code must not reside in external scripts. By using the run parameter Snakemake allows the

direct code execution within rules. Inside Python based rules it is also possible to invoke shell

commands. This is done via the shell() function that takes a command string as argument. In

combination with Python based rules this allows the chained execution of shell commands and

Python functions. Snakemake offers additional rule parameters that can greatly enhance or

enable more specific tasks. For example, the notebook parameter allows integration of Jupyter

Notebook scripts, the thread parameter defines the number of threads usable by the rule, the

priority parameter can be used to define rule specific scheduler priorities. Those parameters

are just a few examples of options that can be used.

1.8 Research goals

The current available methods for inferring reciprocal BLAST analyses are based on remote

execution possibilities via the NCBI web interface or on the command-line application. For

both possibilities additional custom coding procedures need to be established in order for

processing output files and generating input files. This procedure is error prone and complex

due to the manual execution of functions or utilization of the web based BLAST interface from

NCBI. Most wet-lab biologists are not familiar with coding and are not able to perform such

analyses on their own. Furthermore, on September 8, 2020, NCBI introduced limits to their

web based BLAST searches which complicate reciprocal BLAST analyses on whole genomes (s.

Section 1.6). Thus, there is the need of an application that eases the execution of reciprocal

BLAST analyses and enables whole genome comparisons. The aim of this project is to develop

such a software. The application has to tie all necessary workflow steps together. Furthermore,

it should enable an easy data deployment, monitoring options, reproducibility and in general

a good user experience. Last but not least the software should be available for every operating

system.

10

2 Material and methods

2.1 Programming language and packages

The project associated application is written in Python (version 3.9.0) (Van Rossum and Drake

2009). It uses different Python packages to handle the tasks that come with evaluating the

input received from the user, storing this data into databases, executing the pipeline and pre-

senting the results. These Python packages have been installed with the distribution platform

anaconda (Anaconda Software Distribution 2020). Especially, BioPython (Cock et al. 2009)

is used for evaluating the presence of scientific clades in the non-redundant (nr) database

and converting scientific names into taxonomic nodes that can be used in combination with

the get_species_taxid.sh script to limit BLAST sequence similarity searches by taxonomy. An

overview of the used Python packages and versions can be found in the biosnakedjango-

{system}.yml files, available on the git-repository of this project.

2.2 BLAST C++ command-line tool and NCBI data

The analysis for sequence similarity search for inferring homologous sequences is conducted

with the BLAST command-line application (Camacho et al. 2009). The current available

command-line tool offers diverse programs that can be used to maintain and update databases

and to conduct different types of BLAST analyses. Following programs have been used within

the developed pipeline: blastp and blastn for BLAST sequence similarity searches with pos-

sible changes to default settings, makeblastdb for BLAST database creation and blastdbcmd

for retrieving sequences out of BLAST databases. Following settings of blastp or blastn can

get altered by the user: -evalue, -taxidlist, -word_size, -num_alignments, -num_descriptions, -

num_threads and -max_hsps. More information concerning the BLAST C++ application can be

found on the BLAST user manual (Camacho et al. 2019). The executables used in this project

can be downloaded from “ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.11.0/”. Follow

the installation instructions from the user manual. Additionally, the get_species_taxids.sh script

from the BLAST command-line tool suite is used for limiting BLAST searches with high-level

taxonomic nodes. BLAST only accepts taxonomic nodes that are below or at species level. The

script translates higher level taxonomic nodes into a list of nodes that are at the appropriate

level for the BLAST programs. The script depends on the Entrez Direct (E-Direct) toolset, which

only works on Linux or Mac operating systems (Kans 2020). In addition to format databases

during pipeline execution, the pipeline can get executed on preformatted databases. As a first

option, the pre-formatted, compressed nr database was downloaded from the NCBI FTP server

and decompressed on a local hard drive (ftp://ftp.ncbi.nlm.nih.gov/blast/db/). It is a protein

sequence database for BLAST searches curated by NCBI. The database contains non-identical

sequences from various other databases.

11

ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.11.0/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/

2.3 Snakemake as the core utility for pipeline execution

Snakemake is a workflow engine that can be used for enabling a chained execution of dif-

ferent command-line applications or programs (Köster and Rahmann 2012). This chained

execution is controlled by rules that are defined in the snakefile. Before rule execution, rules

are grouped into different jobs that depend on input and output files. Job grouping allows the

establishment of an internal execution order by building a directed acyclic graph (DAG) and

the possibility of a simultaneous execution of rules that do not depend on each other. Thus,

jobs are created by Snakemake after evaluating the rule execution sequence. In this project

Snakemake was used to execute a reciprocal BLAST pipeline, providing the core functionality

of the developed application. The reciprocal BLAST analyses can be conducted against up-

loaded genome databases or against the preformatted nr protein database. A project-specific

static snakefile was developed for each of the two project types. With the script parameter,

some rules are executing external Python files that do reside in the same static directory. Both

snakefiles use configuration files that are stored in the project-specific directories, which are

established during project creation as requested by the user. Furthermore, these project di-

rectories serve as execution environments for Snakemake, hence all output files generated by

Snakemake are written into that directory. Snakemake log files are used in the application for

monitoring the pipeline process.

2.4 Django as web framework for application development

Django is an open source web framework written in Python that follows a model-view-template

(MVT framework) scheme, which allows a rapid and robust implementation of web applica-

tions (Django 2019). It was used for the development of an user interface for project creation,

data deployment, pipeline execution and monitoring.

Django models allow an easy class-based modeling of database tables. Models are written in

the models.py file. Generally each model class maps to one appropriate database table. The

underlying database is managed by Django. For this project a SQLite3 (Hipp 2020) database

for the local development and a PostgreSQL (PostgreSQL 2021) database for the development

with docker containers is used. SQLite3 and PostgreSQL are relational database management

systems that follow SQL (Structured-Query-Language) database engine specifications. The

Django models are directly linked to the data that is needed to execute the pipeline. In this

work, the core model is the BlastProject class. Instances of this class are used as foreign keys

for all other necessary models, e.g. ForwardBlastSettings, BackwardBlastSettings or Genomes,

that are linked to the project. With an instance of the BlastProject class it is possible to get all

relevant information for conducting the reciprocal BLAST analysis.

12

Views manage the HTTP methods received by the server from user requests. Views are written

in the views.py file, each view function has its own distinct responsibility such as the project

details view, which receives an user request and project_id and returns the current project-

specific detail template. In turn, this detail template displays all of the project-specific data,

such as the query sequence file and database names and the blast settings. Furthermore, if

the pipeline execution finishes this view will present the resulting output data. Django will

choose and execute a view function based on examining the URL that is requested, particu-

larly on examining the part of the URL that comes after the domain name. Active URLs are

stored within the urls.py files of your current project, hence all of the URLs can be found in

the blast_project/urls.py file. Views can get rendered with instances of form classes. Fields

inside those form classes can get validated and validation errors can get displayed to the user

by views.

Django allows the utilization of templates, which provide a designer-friendly syntax for ren-

dering the information that is presented to the user. They can generate any text-based formats

such as HTML, XML or CSV. In this project the Django template language is integrated into

HTML files. Templates can contain variables, tags and filters. Variables are replaced with

corresponding values that are passed to the template inside the view functions. Similarly to

common programming constructs, tags can control the logic of templates. For example, an “if”

tag is used for boolean tests and a “for” tag for iterating over variables. Additionally, filters

can be applied to variables which modify variables for display. For example, the “lowercase”

filter converts text to lowercase.

13

2.5 Docker for application deployment

Different software packages and applications are necessary in order to perform the pipeline

and to start the Django application. Parameters and functions that are executed can change

depending on the software version. As a consequence, it is possible that an application will

no longer work if different versions of required packages or software are used. Docker is an

ideal solution for deploying software because it can containerize applications and manage the

installation processes needed to deliver the desired functionality (Merkel 2014). Docker uses

images for storing information utilized by containers, such that a container is an active in-

stance of an image. Images can be built automatically by reading instructions from a text file

called Dockerfile. Software and package versions inside an image cannot change once it is

assembled. This enables the commitment on suitable software or package versions that can

reside in an image.

Two images are used in this project, a PostgreSQL (PostgreSQL 2021) image for the database-

server and an ubuntu:focal image for installing all fundamental software packages. Docker-

compose is then used to tie both images together and to create a container-network. Uploaded

data files are stored in volumes that are shared between the host machine and the web con-

tainer. In the volume section of the docker-compose.yml file the relevant directories are listed.

With default settings the application and project directories, the database directory, as well

as an temporary directory for saving temporary files during upload processes of large genome

files are listed as shared volumes. It is possible to add more directories if additional volumes

should be shared between host and container, for example other database directories. In order

to use the BLAST databases from the command-line it is important to specify the BLASTDB path

variable within the container. This variable should point to one of the added volumes. With

default settings the variable points to the “/blast/nr_database” directory within the container.

14

2.6 Guidelines

The source code for the reciprocal BLAST pipeline web application described in this thesis is ac-

cessible at: https://git.hhu.de/synmibi/reciprocal_blast_pipeline. This link was last checked

on February 25, 2021. In this thesis we will be referencing version https://doi.org/10.5281/

zenodo.4561364. The application is under development and the latest version can be found

at: https://github.com/CyanoWorld/reciprocal_blast_pipeline.

2.6.1 Installation instructions

In order to start developing and using this application you need to download the application

from the git-repository. There are two possibilities for installing the application either you

install the package distribution platform anaconda or the container virtualization platform

docker. The recommended installation procedure is the Docker setup. Especially windows

users should install the application with docker, thus, automated deletion of project files will

not work correctly on windows platforms and installation of the NCBI E-Direct tool is only

possible on Mac or Linux operating systems. In order to enable the use of the pre-formatted

nr database you have to download and decompress the database files from the NCBI FTP

server (ftp.ncbi.nlm.nih.gov/blast/db/). A detailed installation routine is present at the git-

repository of this project.

2.6.2 Developer Guidelines

Docker volume sharing between the host and container application directory enables devel-

opment of this application inside the container. During container start the application gets

started in development mode. In development mode Django uses a state reloader, which au-

tomatically reloads the development server whenever application files are changed. You do

not need to stop the server and start it again if you make any code changes. In addition to

Django’s template syntax, HTML files are rendered with Bootstrap 4, which is an HTML, CSS

and JavaScript framework primarily for designing websites. A good overview of all design

elements and options Bootstrap offers can be found on the project page (Bootstrap 4 2020). A

more detailed developer guide is present at the git-repository of this project.

2.6.3 User Guidelines

The user can access the application from the browser by typing the ip-address of the host server

in combination with the port on which the application was started and the name of the URL.

With default settings the port number is 8080, thus, the user can access the login page by

typing ip-address:8080/blast_project into the search bar of any browser. The user needs to be

registered in order to enable the login. After successful login the user is able to reach all sites

of the application.

15

https://git.hhu.de/synmibi/reciprocal_blast_pipeline
https://doi.org/10.5281/zenodo.4561364
https://doi.org/10.5281/zenodo.4561364
https://github.com/CyanoWorld/reciprocal_blast_pipeline
ftp.ncbi.nlm.nih.gov/blast/db/

3 Web tool for reciprocal BLAST analyses

3.1 Project and source code directory structure

Due to the utilization of Django as a web framework the project design is clean and pragmatic.

Thus, necessary settings such as the database and other core utilities are separated from ap-

plication specific files such as the files for Snakemake execution or front end management.

Furthermore, files that are generated by the application reside in their own distinct project

directories within the media directory. The static directory contains two sub-directories for

the snakefiles and the corresponding Python scripts that are executed by snakemake.

Figure 3: Overview of source code and project directories. The media directory contains all data that is generated

by the application. Python files for application settings, as well as Snakemake specific files are separated as

higher-level directories.

Python files for view, form, model and service code, which provide the core functionality of the

application reside inside the blast_project directory. Some of the code files are service files for

functions, that are imported and utilized in the views.py and forms.py Python files. For example,

all database transactions and file uploads are processed in the Python services.py file. Thus, if a

view triggers a file upload, the corresponding function can be found in services.py. In general,

code blocks with database transactions have been set to atomic. If the whole code block is

successfully completed, changes are committed to the database. If an exception is raised, the

database transactions are rolled back and no changes are applied. Each Python file has its

own distinct responsibility, which enables modularization and eases extension, debugging or

modification.

16

3.2 Front end overview

If the user tries to access any of the URLs, the current login status is checked. If the user is not

logged in, the user gets redirected to the login view. Prior to login the user needs to be regis-

tered, the registration view can be reached by pressing a “sign up” button on the login page.

In general, if buttons or links are pressed by the user, requests are sent to the server. Requests

are processed by view functions and depending on the request, the user gets forwarded to

other views or redirected to the same view. After successful login, the user is forwarded to the

blast_project view, the main page of the application. Based on this view all other views can be

reached. Projects can be created by visiting the project creation view. After creation, project

details (blast_project/project_id) can be displayed by pressing a “Project Details” button on the

main page. By pressing the “Delete Project” button, the user will be forwarded to the project

deletion view (blast_project/project_id/delete). The pipeline can get executed and monitored

on the pipeline dashboard view (blast_project/project_id/pipeline_dashboard). Additional

databases can be uploaded (genome_upload) and the user can check whether a species is con-

tained in the nr database or not, by visiting the species taxonomic node view (species_taxid).

Figure 4: Front end overview. Available URLs are placed in rectangles. Database transactions are marked with a

database symbol. Grey shaded rectangles and orange shaded rectangles are success and failure sites. The dots in

front of the first backslash refer to the ip-address and port number of the host machine on which the application

is running. The number one inside some of the URLs is a reference for a project_id.

Any requests that are processed by the server can end in a success or failure. A success is

displayed via the success page, which redirects the user after three seconds to the main page,

if an exception is raised a failure page with information regarding the exception is displayed.

17

3.3 The blast project view as main page

The main page was developed as an anchor point and dashboard for created projects. Based

on this page, which is directly displayed after a successful login, the user is able to reach all

relevant subsites, e.g. the project creation or project detail views.

Figure 5: Main page and project dashboard. After a successful login, the user is forwarded to this view. Created

projects are listed with buttons that can direct the user to other project relevant subsites.

Projects created by the currently logged in user are displayed on this page. The main page

separates the two project types into two containers. Each container lists the corresponding

projects with some additional information. For each project links to the project detail, project

deletion and pipeline dashboard pages are displayed as blue buttons. By pressing those buttons

the user is forwarded to the relevant view. In addition, the main page contains a navigation

bar for accessing links to the species name checkup, the upload genome and project creation

views.

3.4 Project creation interface for a structural project setup

The pipeline has to handle different workflow steps. The first step involves the input of query

sequences and additional data such as the underlying genomes, taxonomic nodes, or BLAST

settings. Deploying necessary data is crucial for executing the pipeline. For this reason a web

18

interface was developed that eases the correct data deployment. An automated project build

process was implemented that prepares pipeline specific files after successful data validation.

All necessary data for executing the pipeline is collected within the project creation page. Two

different possibilities for project creation have been developed and can be accessed on the

project creation view. The user can choose between those possibilities by pressing a radio

button that is labelled with the relevant project type. The first option for creating a project

is to select the project build and execution process based on a preformatted nr database (s.

Fig. 8). For this project type the user has to specify scientific names for species in order to

define the organisms for the forward and backward BLAST. If the user wants to analyse the

query sequences against the whole nr database, no forward genome has to be specified. After

submitting, the application tries to convert the scientific names into taxonomic nodes. If a

scientific name is not present in the taxonomic database an error is thrown that is passed to

the view. In addition to scientific names the user has to provide a query sequence file with

protein sequences of the query species. The second option for creating a project is to upload

genome files for the forward and backward BLAST (s. Fig. 9). Additionally this option allows

the user to choose from previously uploaded files.

Figure 6: Section of the project creation page before data submitment (A) and after a failed submitment (B).

Figure 6.B. shows possible form validation notifications for the query sequence and backward genome file.

All uploaded genome and query files as well as the query sequence file have to be in the

FASTA format. For both project creation options, the forward and backward BLAST settings

can get altered separately but default options are recommended. Albeit, depending on system

resources the –thread option can get updated in order to boost the BLAST processes.

19

Errors that are thrown during validation of input data are passed to the view via project type

specific form classes. Validation errors are stored in the form object and are accessed in the

respective template files. Form validation errors are displayed under the relevant input fields

with light-red rectangles and dark-red notes. If input data validation fails nothing will be

stored in the database and no files are uploaded. This is done by setting the database trans-

action in the triggered view function for project creation to atomic. Thus, all database trans-

actions are done at once and if any exception is raised nothing will be stored. In turn if input

validation succeeds the project build process is triggered. The build process consists of sev-

eral steps that are slightly different depending on the project type. In general, input data

is written into the appropriate database tables and a project directory is created into which

project-specific data is uploaded. A snakemake configuration file and, for nr based projects,

files that contain taxonomic nodes are written into that directory during the build process.

3.5 Project details for informations and results

The view was developed and integrated into the application for displaying project specific data

and relevant results. BLAST settings, genome and query file names as well as the project name

and for nr based projects scientific names for the forward and backward BLAST are listed at

the top of the page. The results of the pipeline are displayed in a table that can be viewed

by pressing the reciprocal results table button. Furthermore, interactive result graphs are

displayed on this page. These graphs differ depending on the project type and on the amount

of RBHs that have been found. In projects with uploaded genome files, the graphs show

statistical information based on reported e-values, bitscores, and the percentage of identity

between RBHs as well as the amount of RBHs that have been found for each query sequence.

For nr based projects taxonomic informations are available within the result tables and graphs.

Hence, there is an additional interactive graph, which shows the amount of organisms in which

RBHs have been inferred.

3.6 Pipeline dashboard for Snakemake execution and monitoring

Monitoring and execution of created projects is done with the pipeline dashboard views. The

pipeline can get executed by pressing the button “execute snakemake”. By pressing the button

the database field “executed” of the associated project is set to true and the user gets redirected

to the pipeline dashboard (s. Fig. 4). If the pipeline has been executed, different monitor-

ing possibilities are displayed. The user can decide whether to observe the current workflow

on the pipeline dashboard or with some more information on the panoptes front end. The

panoptes application allows monitoring of executed Snakemake workflows in real time. Af-

ter pipeline execution a progress bar is displayed at the pipeline dashboard. The amount of

displayed progress is managed by reading the latest Snakemake log file. In addition, the user

can examine the whole content of the latest Snakemake log file by pressing the appropriate

button.

20

3.7 Pipeline execution via Snakemake

Snakemake is used as the applications workflow management engine for executing and mon-

itoring the reciprocal BLAST pipeline. Snakemake is executed with parameter flags. The

–directory parameter is used to ensure that Snakemake uses the project directory as working

directory. Snakemakes output files such as the log files and result files are written into that

directory. The project specific configuration file is loaded into the snakefile via the –configfile

parameter. An additional monitoring option is enabled with panoptes. The panoptes server

is started with the use of Snakemakes –wms-monitor parameter. Snakemake is executed with

the –cores 2 flag. The non-file rule parameter “params” is used for the forward and backward

BLAST rules in order to deliver user defined or default BLAST settings to the invocation of

BLAST.

Figure 7: Snakemake directed acyclic graph for pipeline execution. The dashed rectangle symbolizes the

previously conducted process of nr database formatting. For nr based project types the first two rules are not

executed. Arrows symbolize output files that are used as input files for the respective rules.

Two snakefiles, one for each project type, have been developed that do serve as the cen-

tral pipeline execution points. Both snakefiles contain all relevant rules for pipeline execu-

tion. For projects that use uploaded genomes two rules have been created that execute the

makeblastdb formatting procedure for the uploaded genome FASTA files into BLAST databases

21

(rules: “Make forward database” and “Make backward database”). For projects based on the

nr database those two rules have been excluded. The workflow process for both snakefiles

is managed by a build-target rule. This rule takes the output files from the last two rules as

input files. Snakemake then attempts to access these files by building a DAG for rule execution

orders, which follows the build process of output files to the first rules of the pipeline that can

get executed. Those rules are the “Make forward database” and “Make backward database”

for none nr projects. For uploaded genome file projects the forward BLAST is executed after

database formatting. Projects with the nr database can directly start with the execution of

the forward BLAST. BLAST searches within the nr database are limited by taxonomy with the

-taxidlist option of the BLAST command-line tool. The forward BLAST outputs a csv file that

serves as input for the rule that executes the extraction of RBHs, for the last two result pro-

cessing rules, and for the next rule whose task is to extract query sequences for the backward

BLAST. This extraction is done via custom Python scripts that do collect all accession ids from

the subjects of the forward BLAST output, in combination with the blastdbcmd program that

can extract sequences out of BLAST databases on the basis of accession identifiers. The next

executed rule is the backward BLAST. The default settings of the backward BLAST are designed

to limit the output to the best alignment partner of the query sequences. This is done with

the -num_alignment flag of the BLAST command-line tool, which is set to one. The output of

the backward BLAST is another csv file. This file, together with the csv file from the forward

BLAST, is the input for the last necessary pipeline step for inferring orthologs. During this step

the csv files are processed and two dictionaries are created. The keys of these dictionaries are

the query identifier and the values are subject identifiers. With this definition the query keys

for the forward BLAST dictionary are the subject values of the backward BLAST dictionary

and query keys of the backward BLAST dictionary are subject values of the forward BLAST

dictionary. An orthologous sequence is found if there is a simultaneous match of key, value

pairs of the forward dictionary with value, key pairs of the backward dictionary. Particularly,

if one value of a key of the forward dictionary matches a key of the backward dictionary and

the corresponding value matches the key of the forward dictionary an RBH is identified. The

orthologous sequences are written into a text file that serves as input for the result processing

rules. In combination with the forward BLAST output, result processing with report and graph

creation is done as the last step of the reciprocal BLAST pipeline. The rule “BLAST tables to

HTML” is in both projects equivalent. The rule produces a HTML table that displays RBHs and

additional information of the BLAST run. The rule “Create result images” has been created in

order to produce graphs. Those graphs differ between the two project types and the amount

of query sequences.

22

3.8 Comparison to previously used reciprocal BLAST methods

There are two steps for executing a reciprocal BLAST with the developed application. First, the

user has to create a project on the project creation front end, either based on the nr database

or on custom genome databases, that are uploaded as FASTA files. Secondly, the user has

to press the execute button on the pipeline dashboard front end. Previously, a reciprocal

BLAST was conducted via remote searches on the NCBI BLAST web-interface with a subsequent

processing of result data. These steps involved the manual execution of functions, which is

error prone and time-consuming. Furthermore, since September 8, 2020, NCBI limits remote

BLAST searches, which complicated reciprocal BLAST analyses on whole genomes.

3.9 Inference of orthologous sequences of the circadian clock gene kaiA from

Synechococcus elongatus PCC 7942

In order to test the pipeline integrity it was executed with the circadian clock gene kaiA as in-

put query sequence. BLAST default settings were used during project creation. The reciprocal

BLAST analysis was conducted against the whole nr database. The workflow procedure was

executed inside a docker container on a custom notebook, an Acer Aspire E5-575G-527E. The

forward BLAST took three hours, 45 minutes and 43.13 seconds and resulted in 990 unique

homologous sequences. Those homologous sequences served as query sequences for the back-

ward BLAST against the Synechococcus elongatus PCC 7941 genome (of the nr database). The

backward BLAST took two minutes and 15.28 seconds to complete. 990 unique query se-

quences matched against three unique Synechococcus elongatus PCC 7941 sequences. The in-

ference of RBHs took 3.23 seconds and resulted in 606 RBHs. 902 unique species have RBHs

with the kaiA protein of Synechococcus elongatus PCC 7941.

This analysis was compared to a previously conducted reciprocal BLAST of kaiA against a

database, which contained all genomes from the genbank protein database labelled as “Com-

plete Genome” or “Chromosome” (Schmelling et al. 2017). In the previous reciprocal BLAST

analysis, 72 unique orthologous protein sequences have been identified. 35 of those 72 acces-

sion identifiers (accessions) are not inside the new identified set of RBHs. Of those 35 acces-

sions, 25 accessions are not part of the nr database because their identifiers have changed, thus

the underlying sequences of those accessions are in the database. The ten other sequences are

inside the forward BLAST output but they do not match against the kaiA query sequence in

the backward BLAST, moreover they match against the 4G86_A sequence, which is labelled as

“cofactor DBMIB bound to the full length circadian clock protein kaiA”. 4G86_A is a sequence

of the Protein Data Bank, which is a database for 3D structural forms of proteins. The 25 re-

named accession identifiers are inside the forward BLAST output, 15 of them do match against

the kaiA sequence, the other ten sequences do match against 4G86_A.

23

4 Discussion

4.1 Snakemake enhances reciprocal BLAST analyses

The integration of Snakemake as the core program for pipeline execution greatly enhances

and eases the reproducibility, code structure, and monitoring process of the reciprocal BLAST

pipeline. Due to clear structuring and parameter compositions the snakefiles allow a clear and

readable workflow setup. This is true, especially when compared to the previously existing

scripts for conducting a reciprocal BLAST. One rule is present for every workflow step, within

those rules all necessary parameters, commands, or executables are listed. This eases the un-

derstanding of the reciprocal BLAST pipeline process, which in turn allows an easy and fast

altering or editing of rules if necessary. Additional post-processing steps such as the direct

computation of phylogenetic trees, annotation procedures, or comparisons with orthologous

sequence databases are easy to realize. This simply involves additional rules with required

parameters and an altering of the build-target rule. Due to the utilization of project specific

configuration files, which are used by the snakefile it is possible to easily add parameters for

external programs. Furthermore, this enables reproducibility and the comparison with differ-

ent databases, thus, project settings can be reused by simply copying the project directories or

if the same settings should be used for other query sequences by copying the configuration file.

In addition, pipeline monitoring and execution time analyses are enabled due to Snakemakes

log files that are written into target project directories and the –wms-monitor flag, which ini-

tiates a communication between Snakemake and the panoptes application. Panoptes allows

the monitoring of executed workflows in real time and it lists time frames for each finished

job. In comparison with previous methods 3.8 for conducting reciprocal BLAST analyses, the

utilization of Snakemake greatly enhances the ease of performing such analyses.

4.2 Snakemake allows further enhancements

Nevertheless, there are still some enhancements available that Snakemake offers. The funda-

mental reciprocal BLAST pipeline consists of five steps (1.6). Currently, two snakefiles have

been developed and based on these five core steps, the snakefiles inherit some similar rules.

The decision to create two snakefiles has been made due to the process of post-processing and

database creation. Thus, projects executed with the preformatted nr database have access to

taxonomic information and there is no need to execute any database formatting procedure.

However, it would be possible to merge both snakefiles due to Snakemakes rule execution

process. Rules that are not needed by the current project are skipped. E.g. if a database is

already formatted, the target formatting rule wont be executed. Further enhancements can

get implemented with utilization of additional parameters. The pipeline execution via Snake-

make is done within the developed web application, this gives rise to utilization of Snakemakes

report parameter. The report parameter automatically creates HTML reports, which can be ac-

cessed and displayed in combination with the web tool. The –cores parameter of Snakemakes

24

command-line API allows the assignment of more than one core. It would be applicable to

change the number of cores depending on the available system.

4.3 The web application eases data deployment and pipeline execution

The integration of Snakemake in a web application further enhances and eases the execution

of reciprocal BLAST analyses. The developed views enable project creation, execution and

monitoring. Similar to the public available BLAST online tool the reciprocal BLAST analyses

begins with the creation of projects. This is a crucial step as the input data serves as basis for

conducting the analyses. Hence, it is important to offer a reliable and easy-to-use platform for

project setups. This is achieved by utilization of Django’s MVT framework. The project cre-

ation view has a clear structure that is self explaining and additional help is provided by form

validation. If the user forgets to submit necessary or enters erroneous data, form validation

will raise a validation error, which will be present in the form object. In this case, the user

gets redirected to the project creation view, that now displays the error message under the

respective field. Furthermore, no data is stored in the database or is uploaded on the server. If

the form is fulfilled correctly, the submitment will render a success view that redirects the user

to the main view, where the newly created project is listed. This browser based data input,

together with validation and error handling optimizes the procedure of data deployment.

The project dashboard is designed for displaying projects and relevant links to subpages.

Projects are only listed for the current user, which enables a clear overview and the parti-

tion to projects from other users. Albeit, the developed web application greatly enhances the

execution of reciprocal BLAST analyses, there are still possibilities to further optimize pro-

cesses. E.g. the user has to download query sequences manually, not all BLAST settings are

modifiable and the formatting procedure of BLAST databases is done without taxonomic in-

formation. Furthermore, if a workflow for a certain project gets executed and results in an

error, the user has to delete the project, hence altering and updating procedures are not yet

available. Nevertheless, it is possible to analyse the error in the front end due to attachment

of Snakemakes last log file in the pipeline dashboard and a lot of error handling is done pre-

viously, during input data validation.

In comparison to previously conducted reciprocal BLAST analyses, the developed application

greatly eases the execution and reproducibility. The forward and backward BLAST analyses do

not have to be executed manually on the NCBI web interface. This enables the possibility for

conducting whole genome reciprocal BLAST analyses. Even on custom notebooks reciprocal

BLAST analyses can easily be done (3.9). For the correct pipeline process existing functions

do not have to be altered. Once the user has uploaded and submitted all necessary data, the

setup is done. Furthermore, utilization of docker allows an application deployment on every

operating system. The installation process requires a bunch of different Python packages and

25

the BLAST executables. Thus, docker eases the installation as it automatically downloads and

installs packages and the required software. However, due to volume sharing the BLAST anal-

yses appear to be slower, but depending on the computational time of the pipeline this effect

might be negligible (Di Tommaso et al. 2015). In general, analyses with numerous query se-

quences are slower on systems with less computational power. Thus, it is necessary to deploy

the application on a system with greater computational power if whole genome reciprocal

BLAST analyses should be conducted.

There are a lot of gene databases available with different levels of completeness (Sayers et al.

2018). Scientific projects concerning sequence analyses highly depend on those databases.

For most projects it is important to have distinct and organism specific genome databases

available. This can shorten the computational time needed for sequence analyses and enhance

the accuracy for diverse approaches, such as the identification of orthologous sequences. Thus,

a broad spectrum of accessible genome databases is preferable. Since previous BLAST analyses

were carried out on NCBI servers, all available databases could be used, this is not true for the

developed application. Currently, the application is limited by the utilization of the nr database

and by uploading genomes via FASTA files. Nevertheless, databases can easily be added due

to the clear structure and modularization of the application.

26

4.4 Outlook

The current application can get further enhanced. Execution of Snakemake with the Popen

function of the subprocess module of Python opens a new process. It is possible to access

the current status of the process with the communicate function. It would be useful to inte-

grate such process monitoring and direct process communication as it is currently not possible

to terminate a pipeline without application shutdown. In addition, information obtainable

by communication with the spawned process can be used to optimize error handling. Cur-

rently, there is only one pre-formatted database available, which is not optimal, which was

observed when orthologues were inferred for the circadian clock gene kaiA from Synechococ-

cus elongatus. Some orthologous sequences, that have been identified in the previous analysis

(Schmelling et al. 2017), matched against a sequence which is part of the Protein Data Bank.

Without the 4G86_A sequence, all of the 72 sequences would have been found. In order to

improve accuracy of ortholog inference, other databases with a lower level of redundancy

must be integrated, such as the combined genbank genomes labelled as “Complete Genome

and “Chromosome, that have been used in the analysis conducted in Schmelling et al. 2017.

Other sequences have been renamed, thus they reside with their new accession identifier in

the nr database. This problem can be solved by searching for query sequences in the chosen

database with the blastdbcmd program of the BLAST command-line tool. If sequences are

not inside the database a warning with the respective accession identifier can be displayed.

Furthermore, database formatting rules can get extended by the taxid or taxid_map parame-

ter of the makeblastdb program. With these parameters it is possible to integrate taxonomic

information inside uploaded databases. Thus, the output format of genome upload projects

can get adjusted to the output format of nr projects.

However, the reciprocal BLAST analysis is important for first insights of function and phylogeny

of newly sequenced genes. The web application in combination with Snakemake greatly en-

hances the utilization and applicability of reciprocal BLAST analyses. Furthermore, the in-

tuitive usability of the developed application enables an easy-to-use execution of reciprocal

BLAST analysis for scientists who are not familiar with programming. Further development

and integration of other databases, software tools and analysis options can optimize and ex-

tend the application.

27

References

[1] William R. Pearson. “An introduction to sequence similarity ("homology") searching”.

In: Current protocols in bioinformatics Chapter 3 (2013). URL: http://dx.doi.org/10.

1002/0471250953.bi0301s42.

[2] Gerald R. Reeck, Christoph de Haën, David C. Teller, Russell F. Doolittle, Walter M. Fitch,

Richard E. Dickerson, Pierre Chambon, Andrew D. McLachlan, Emanuel Margoliash,

Thomas H. Jukes, and Emile Zuckerkandl. “Homology in proteins and nucleic acids:

A terminology muddle and a way out of it”. In: Cell 50.5 (1987), p. 667. ISSN: 0092-

8674. DOI: https://doi.org/10.1016/0092-8674(87)90322-9. URL: https://www.

sciencedirect.com/science/article/pii/0092867487903229.

[3] Eugene Koonin. “Orthologs, paralogs, and evolutionary genomics”. In: Annual Review

of Genetics 39 (2005), pp. 309–338. ISSN: 00664197. DOI: 10.1146/annurev.genet.39.

073003.114725.

[4] William R. Pearson. “Empirical statistical estimates for sequence similarity searches”.

In: Journal of Molecular Biology 276.1 (1998), pp. 71–84. ISSN: 00222836. DOI: 10.

1006/jmbi.1997.1525.

[5] Like Fokkens, Sandra M.C. Botelho, Jos Boekhorst, and Berend Snel. “Enrichment of

homologs in insignificant BLAST hits by co-complex network alignment”. In: BMC Bioin-

formatics 11 (2010). ISSN: 14712105. DOI: 10.1186/1471-2105-11-86.

[6] John A. Gerlt and Patricia C. Babbitt. “Can sequence determine function?” In: Genome

Biology 1.5 (2000), pp. 1–10. ISSN: 14656906. DOI: 10.1186/gb-2000-1-5-reviews0005.

[7] Sonia Facchin, Raffaele Lopreiato, Maria Ruzzene, Oriano Marin, Geppo Sartori, Clau-

dia Götz, Mathias Montenarh, Giovanna Carignani, and Lorenzo A Pinna. “Functional

homology between yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and

PRPK partially complements piD261/Bud32 deficiency”. In: FEBS Letters 549.1 (2003),

pp. 63–66. ISSN: 0014-5793. DOI: https://doi.org/10.1016/S0014-5793(03)00770-1.

URL: https://www.sciencedirect.com/science/article/pii/S0014579303007701.

[8] Fredj Tekaia. “Inferring orthologs: Open questions and perspectives”. In: Genomics In-

sights 9 (2016), pp. 17–28. ISSN: 11786310. DOI: 10.4137/GEI.S37925.

[9] Walter M. Fitch. “Distinguishing homologous from analogous proteins”. In: Systematic

Zoology 19.2 (1970), pp. 99–113. ISSN: 00397989. DOI: 10.2307/2412448.

[10] Jianzhi Zhang. “Evolution by gene duplication: An update”. In: Trends in Ecology and

Evolution 18.6 (2003), pp. 292–298. ISSN: 01695347. DOI: 10.1016/S0169-5347(03)

00033-8.

28

http://dx.doi.org/10.1002/0471250953.bi0301s42
http://dx.doi.org/10.1002/0471250953.bi0301s42
https://doi.org/https://doi.org/10.1016/0092-8674(87)90322-9
https://www.sciencedirect.com/science/article/pii/0092867487903229
https://www.sciencedirect.com/science/article/pii/0092867487903229
https://doi.org/10.1146/annurev.genet.39.073003.114725
https://doi.org/10.1146/annurev.genet.39.073003.114725
https://doi.org/10.1006/jmbi.1997.1525
https://doi.org/10.1006/jmbi.1997.1525
https://doi.org/10.1186/1471-2105-11-86
https://doi.org/10.1186/gb-2000-1-5-reviews0005
https://doi.org/https://doi.org/10.1016/S0014-5793(03)00770-1
https://www.sciencedirect.com/science/article/pii/S0014579303007701
https://doi.org/10.4137/GEI.S37925
https://doi.org/10.2307/2412448
https://doi.org/10.1016/S0169-5347(03)00033-8
https://doi.org/10.1016/S0169-5347(03)00033-8

[11] Adrian M. Altenhoff, Romain A. Studer, Marc Robinson-Rechavi, and Christophe Dessi-

moz. “Resolving the Ortholog Conjecture: Orthologs Tend to Be Weakly, but Signifi-

cantly, More Similar in Function than Paralogs”. In: PLOS Computational Biology 8.5

(May 2012), pp. 1–10. DOI: 10.1371/journal.pcbi.1002514. URL: https://doi.org/10.

1371/journal.pcbi.1002514.

[12] Erik L.L. Sonnhammer and Eugene Koonin. “Orthology, paralogy and proposed classi-

fication for paralog subtypes”. In: Trends in Genetics 18.12 (2002), pp. 619–620. ISSN:

0168-9525. DOI: https://doi .org/10.1016/S0168- 9525(02)02793- 2. URL: https:

//www.sciencedirect.com/science/article/pii/S0168952502027932.

[13] Maido Remm, Christian E.V. Storm, and Erik L.L. Sonnhammer. “Automatic clustering of

orthologs and in-paralogs from pairwise species comparisons”. In: Journal of Molecular

Biology 314.5 (2001), pp. 1041–1052. ISSN: 00222836. DOI: 10.1006/jmbi.2000.5197.

[14] Nan Song, Jacob M. Joseph, George B. Davis, and Dannie Durand. “Sequence similarity

network reveals common ancestry of multidomain proteins”. In: PLoS Computational

Biology 4.5 (2008). ISSN: 1553734X. DOI: 10.1371/journal.pcbi.1000063.

[15] Eugene Koonin, Kira S. Makarova, and L. Aravind. “Horizontal Gene Transfer in Prokary-

otes: Quantification and Classification”. In: Annual Review of Microbiology 55.1 (2001).

PMID: 11544372, pp. 709–742. DOI: 10.1146/annurev.micro.55.1.709. eprint: https:

//doi.org/10.1146/annurev.micro.55.1.709. URL: https://doi.org/10.1146/annurev.

micro.55.1.709.

[16] David M. Kristensen, Yuri I. Wolf, Arcady R. Mushegian, and Eugene Koonin. “Com-

putational methods for Gene Orthology inference”. In: Briefings in Bioinformatics 12.5

(2011), pp. 379–391. ISSN: 14675463. DOI: 10.1093/bib/bbr030.

[17] Boris Mirkin, Ilya Muchnik, and Temple F. Smith. “A Biologically Consistent Model for

Comparing Molecular Phylogenies”. In: Journal of Computational Biology 2.4 (1995).

PMID: 8634901, pp. 493–507. DOI: 10.1089/cmb.1995.2.493. eprint: https://doi.org/

10.1089/cmb.1995.2.493. URL: https://doi.org/10.1089/cmb.1995.2.493.

[18] Roderic D.M. Page and Michael A. Charleston. “From Gene to Organismal Phylogeny:

Reconciled Trees and the Gene Tree/Species Tree Problem”. In: Molecular Phylogenetics

and Evolution 7.2 (1997), pp. 231–240. ISSN: 1055-7903. DOI: https://doi.org/10.

1006/mpev.1996.0390. URL: https://www.sciencedirect.com/science/article/pii/

S1055790396903905.

[19] Heng Li et al. “TreeFam: a curated database of phylogenetic trees of animal gene fam-

ilies.” In: Nucleic acids research 34.Database issue (2006), pp. 10–16. ISSN: 13624962.

DOI: 10.1093/nar/gkj118.

29

https://doi.org/10.1371/journal.pcbi.1002514
https://doi.org/10.1371/journal.pcbi.1002514
https://doi.org/10.1371/journal.pcbi.1002514
https://doi.org/https://doi.org/10.1016/S0168-9525(02)02793-2
https://www.sciencedirect.com/science/article/pii/S0168952502027932
https://www.sciencedirect.com/science/article/pii/S0168952502027932
https://doi.org/10.1006/jmbi.2000.5197
https://doi.org/10.1371/journal.pcbi.1000063
https://doi.org/10.1146/annurev.micro.55.1.709
https://doi.org/10.1146/annurev.micro.55.1.709
https://doi.org/10.1146/annurev.micro.55.1.709
https://doi.org/10.1146/annurev.micro.55.1.709
https://doi.org/10.1146/annurev.micro.55.1.709
https://doi.org/10.1093/bib/bbr030
https://doi.org/10.1089/cmb.1995.2.493
https://doi.org/10.1089/cmb.1995.2.493
https://doi.org/10.1089/cmb.1995.2.493
https://doi.org/10.1089/cmb.1995.2.493
https://doi.org/https://doi.org/10.1006/mpev.1996.0390
https://doi.org/https://doi.org/10.1006/mpev.1996.0390
https://www.sciencedirect.com/science/article/pii/S1055790396903905
https://www.sciencedirect.com/science/article/pii/S1055790396903905
https://doi.org/10.1093/nar/gkj118

[20] Jaime Huerta-Cepas, Salvador Capella-Gutierrez, Leszek P. Pryszcz, Ivan Denisov, Diego

Kormes, Marina Marcet-Houben, and Toni Gabaldón. “PhylomeDB v3.0: An expanding

repository of genome-wide collections of trees, alignments and phylogeny-based or-

thology and paralogy predictions”. In: Nucleic Acids Research 39.SUPPL. 1 (2011). ISSN:

03051048. DOI: 10.1093/nar/gkq1109.

[21] Roderic D.M. Page and Michael A. Charleston. “From Gene to Organismal Phylogeny:

Reconciled Trees and the Gene Tree/Species Tree Problem”. In: Molecular Phylogenetics

and Evolution 7.2 (1997), pp. 231–240. ISSN: 1055-7903. DOI: https://doi.org/10.

1006/mpev.1996.0390. URL: https://www.sciencedirect.com/science/article/pii/

S1055790396903905.

[22] W. Ford Doolittle. “Phylogenetic classification and the universal tree”. In: Science 284.5423

(1999), pp. 2124–2128. ISSN: 00368075. DOI: 10.1126/science.284.5423.2124.

[23] Roman L. Tatusov, Eugene Koonin, and David J. Lipman. “A genomic perspective on

protein families”. In: Science 278.5338 (1997), pp. 631–637. ISSN: 00368075. DOI: 10.

1126/science.278.5338.631.

[24] Saul B. Needleman and Christian D. Wunsch. “A general method applicable to the search

for similarities in the amino acid sequence of two proteins”. In: Journal of Molecular

Biology 48.3 (1970), pp. 443–453. ISSN: 0022-2836. DOI: https://doi.org/10.1016/

0022-2836(70)90057-4. URL: https://www.sciencedirect.com/science/article/pii/

0022283670900574.

[25] Michael S. Waterman. “General methods of sequence comparison”. In: Bulletin of Math-

ematical Biology 46.4 (1984), pp. 473–500. ISSN: 0092-8240. DOI: https://doi.org/10.

1016/S0092-8240(84)80054-3. URL: https://www.sciencedirect.com/science/article/

pii/S0092824084800543.

[26] William R. Pearson and Webb Miller. “Dynamic programming algorithms for biological

sequence comparison”. In: Methods in Enzymology 210 (1992), pp. 575–601. ISSN:

0076-6879. DOI: https ://doi .org/10 .1016/0076- 6879(92)10029 - D. URL: https :

//www.sciencedirect.com/science/article/pii/007668799210029D.

[27] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lip-

man. “Basic local alignment search tool”. In: Journal of Molecular Biology 215.3 (1990),

pp. 403–410. ISSN: 00222836. DOI: 10.1016/S0022-2836(05)80360-2.

[28] S. Karlin and Stephen F. Altschul. “Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes”. In: Proceedings of the

National Academy of Sciences 87.6 (1990), pp. 2264–2268. ISSN: 0027-8424. eprint:

https://www.pnas.org/content/87/6/2264.full.pdf. URL: https://www.pnas.org/

content/87/6/2264.

30

https://doi.org/10.1093/nar/gkq1109
https://doi.org/https://doi.org/10.1006/mpev.1996.0390
https://doi.org/https://doi.org/10.1006/mpev.1996.0390
https://www.sciencedirect.com/science/article/pii/S1055790396903905
https://www.sciencedirect.com/science/article/pii/S1055790396903905
https://doi.org/10.1126/science.284.5423.2124
https://doi.org/10.1126/science.278.5338.631
https://doi.org/10.1126/science.278.5338.631
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
https://www.sciencedirect.com/science/article/pii/0022283670900574
https://www.sciencedirect.com/science/article/pii/0022283670900574
https://doi.org/https://doi.org/10.1016/S0092-8240(84)80054-3
https://doi.org/https://doi.org/10.1016/S0092-8240(84)80054-3
https://www.sciencedirect.com/science/article/pii/S0092824084800543
https://www.sciencedirect.com/science/article/pii/S0092824084800543
https://doi.org/https://doi.org/10.1016/0076-6879(92)10029-D
https://www.sciencedirect.com/science/article/pii/007668799210029D
https://www.sciencedirect.com/science/article/pii/007668799210029D
https://doi.org/10.1016/S0022-2836(05)80360-2
https://www.pnas.org/content/87/6/2264.full.pdf
https://www.pnas.org/content/87/6/2264
https://www.pnas.org/content/87/6/2264

[29] Stephen F. Altschul, Thomas Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng

Zhang, Webb Miller, and David J. Lipman. “Gapped BLAST and PSI-BLAST: a new gen-

eration of protein database search programs”. In: Nucleic Acids Research 25.17 (Sept.

1997), pp. 3389–3402. ISSN: 0305-1048. DOI: 10.1093/nar/25.17.3389. eprint: https:

//academic.oup.com/nar/article-pdf/25/17/3389/3639509/25-17-3389.pdf. URL:

https://doi.org/10.1093/nar/25.17.3389.

[30] Christiam Camacho, Vahram Avagyan, Ning Ma, George Coulouris, Jason Papadopoulos,

Kevin Bealer, and Thomas Madden. “BLAST+: architecture and applications”. In: BMC

Bioinformatics 10.1 (2009), p. 421. ISSN: 1471-2105. DOI: 10.1186/1471-2105-10-421.

URL: http://www.biomedcentral.com/1471-2105/10/421.

[31] Liisa B. Koski and G. Brian Golding. “The closest BLAST hit is often not the nearest neigh-

bor”. In: Journal of Molecular Evolution 52.6 (2001), pp. 540–542. ISSN: 00222844. DOI:

10.1007/s002390010184.

[32] Ioanna Karamichali, V. Lila Koumandou, Amalia D. Karagouni, and Sophia Kossida. “Fre-

quent gene fissions associated with human pathogenic bacteria”. In: Genomics 103.1

(2014), pp. 65–75. ISSN: 0888-7543. DOI: https://doi.org/10.1016/j.ygeno.2014.02.

001. URL: https://www.sciencedirect.com/science/article/pii/S088875431400007X.

[33] Christopher S. Henry et al. “Systematic identification and analysis of frequent gene

fusion events in metabolic pathways”. In: BMC Genomics 17.1 (2016). ISSN: 14712164.

DOI: 10.1186/s12864-016-2782-3. URL: http://dx.doi.org/10.1186/s12864-016-

2782-3.

[34] Roman L. Tatusov, Arcady R. Mushegian, Peer Bork, Nigel P. Brown, William S. Hayes,

Mark Borodovsky, Kenneth E. Rudd, and Eugene Koonin. “Metabolism and evolution of

Haemophilus influenzae deduced from a whole-genome comparison with Escherichia

coli”. In: Current Biology 6.3 (1996), pp. 279–291. ISSN: 0960-9822. DOI: https://doi.

org/10.1016/S0960-9822(02)00478-5. URL: https://www.sciencedirect.com/science/

article/pii/S0960982202004785.

[35] Scott McGinnis and Thomas Madden. “BLAST: at the core of a powerful and diverse set

of sequence analysis tools”. In: Nucleic Acids Research 32.suppl2 (July 2004), W20–W25.

ISSN: 0305-1048. DOI: 10.1093/nar/gkh435. eprint: https://academic.oup.com/nar/

article-pdf/32/suppl_2/W20/6210425/gkh435.pdf. URL: https://doi.org/10.1093/

nar/gkh435.

[36] Johannes Köster and Sven Rahmann. “Snakemake-a scalable bioinformatics workflow

engine”. In: Bioinformatics 28.19 (2012), pp. 2520–2522. ISSN: 14602059. DOI: 10.

1093/bioinformatics/bts480.

[37] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley, CA:

CreateSpace, 2009. ISBN: 1441412697.

31

https://doi.org/10.1093/nar/25.17.3389
https://academic.oup.com/nar/article-pdf/25/17/3389/3639509/25-17-3389.pdf
https://academic.oup.com/nar/article-pdf/25/17/3389/3639509/25-17-3389.pdf
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1186/1471-2105-10-421
http://www.biomedcentral.com/1471-2105/10/421
https://doi.org/10.1007/s002390010184
https://doi.org/https://doi.org/10.1016/j.ygeno.2014.02.001
https://doi.org/https://doi.org/10.1016/j.ygeno.2014.02.001
https://www.sciencedirect.com/science/article/pii/S088875431400007X
https://doi.org/10.1186/s12864-016-2782-3
http://dx.doi.org/10.1186/s12864-016-2782-3
http://dx.doi.org/10.1186/s12864-016-2782-3
https://doi.org/https://doi.org/10.1016/S0960-9822(02)00478-5
https://doi.org/https://doi.org/10.1016/S0960-9822(02)00478-5
https://www.sciencedirect.com/science/article/pii/S0960982202004785
https://www.sciencedirect.com/science/article/pii/S0960982202004785
https://doi.org/10.1093/nar/gkh435
https://academic.oup.com/nar/article-pdf/32/suppl_2/W20/6210425/gkh435.pdf
https://academic.oup.com/nar/article-pdf/32/suppl_2/W20/6210425/gkh435.pdf
https://doi.org/10.1093/nar/gkh435
https://doi.org/10.1093/nar/gkh435
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480

[38] Anaconda Software Distribution. Version Vers. 2-2.4.0. 2020. URL: https://docs.anaconda.

com/.

[39] Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J. Cox,

Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski,

and Michiel J. L. de Hoon. “Biopython: freely available Python tools for computational

molecular biology and bioinformatics”. In: Bioinformatics 25.11 (Mar. 2009), pp. 1422–

1423. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btp163. eprint: https://academic.

oup.com/bioinformatics/article-pdf/25/11/1422/944180/btp163.pdf. URL: https:

//doi.org/10.1093/bioinformatics/btp163.

[40] Christiam Camacho, Thomas Madden, Tao Tao, Richa Agarwala, and Aleksandr Morgulis.

“BLAST Command Line Applications User Manual”. In: Bethesda (MD): National Center

for Biotechnology Information (US) MD (2019), pp. 1–28. URL: https://www.ncbi.nlm.

nih.gov/books/NBK279690/.

[41] Jonathan Kans. “Entrez Direct: E-utilities on the UNIX Command Line”. In: National

Center for Biotechnology Information Md (2020), p. 161. URL: https://www.ncbi.nlm.

nih.gov/books/NBK179288/.

[42] Django. Version 2.2.5. 2019. URL: https://djangoproject.com.

[43] Richard D Hipp. SQLite. Version 3.31.1. 2020. URL: https://www.sqlite.org/index.html.

[44] PostgreSQL. Documentation PostgreSQL 13.2. Version 13.2. 2021. URL: https://www.

postgresql.org/docs/release/13.2/.

[45] Dirk Merkel. “Docker: lightweight linux containers for consistent development and de-

ployment”. In: Linux journal 2014.239 (2014), p. 2.

[46] Bootstrap 4. Version 4.6.x. 2020. URL: https://getbootstrap.com/.

[47] Nicolas M. Schmelling, Robert Lehmann, Paushali Chaudhury, Christian Beck, Sonja

Verena Albers, Ilka M. Axmann, and Anika Wiegard. “Minimal tool set for a prokaryotic

circadian clock”. In: BMC Evolutionary Biology 17.1 (2017). ISSN: 14712148. DOI: 10.

1186/s12862-017-0999-7.

[48] Paolo Di Tommaso, Emilio Palumbo, Maria Chatzou, Pablo Prieto, Michael L. Heuer, and

Cedric Notredame. “The impact of Docker containers on the performance of genomic

pipelines”. In: PeerJ 2015.9 (2015), pp. 1–10. ISSN: 21678359. DOI: 10.7717/peerj.

1273.

[49] Eric W Sayers et al. “Database resources of the National Center for Biotechnology Infor-

mation”. In: Nucleic Acids Research 47.D1 (Nov. 2018), pp. D23–D28. ISSN: 0305-1048.

DOI: 10.1093/nar/gky1069. eprint: https://academic.oup.com/nar/article-pdf/47/

D1/D23/27437595/gky1069.pdf. URL: https://doi.org/10.1093/nar/gky1069.

32

https://docs.anaconda.com/
https://docs.anaconda.com/
https://doi.org/10.1093/bioinformatics/btp163
https://academic.oup.com/bioinformatics/article-pdf/25/11/1422/944180/btp163.pdf
https://academic.oup.com/bioinformatics/article-pdf/25/11/1422/944180/btp163.pdf
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://www.ncbi.nlm.nih.gov/books/NBK279690/
https://www.ncbi.nlm.nih.gov/books/NBK279690/
https://www.ncbi.nlm.nih.gov/books/NBK179288/
https://www.ncbi.nlm.nih.gov/books/NBK179288/
https://djangoproject.com
https://www.sqlite.org/index.html
https://www.postgresql.org/docs/release/13.2/
https://www.postgresql.org/docs/release/13.2/
https://getbootstrap.com/
https://doi.org/10.1186/s12862-017-0999-7
https://doi.org/10.1186/s12862-017-0999-7
https://doi.org/10.7717/peerj.1273
https://doi.org/10.7717/peerj.1273
https://doi.org/10.1093/nar/gky1069
https://academic.oup.com/nar/article-pdf/47/D1/D23/27437595/gky1069.pdf
https://academic.oup.com/nar/article-pdf/47/D1/D23/27437595/gky1069.pdf
https://doi.org/10.1093/nar/gky1069

A Abbreviations

List of Abbreviations

DNA Deoxyribonucleic acid

nr non-redundant

HGT Horizontal Gene Transfer

LCA Last Common Ancestor

RBH Reciprocal Best Hit

DPA Dynamic Programming Algorithm

HSP High Scoring Pairs

DAG Directed Acyclic Graph

URL Uniform Resource Locator

DOI Digital Object Identifier

SQL Structured Query Language

MVT Model-View-Template

BLAST Basic Local Alignment Search Tool

FTP File Transfer Protocol

NCBI National Center for Biotechnology Information

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

CSV Comma Separated Values

XML Extensible Markup Language

CSS Cascading Style Sheets

33

B Appendix

blastp Protein sequence similarity search against protein subjects or

databases.

blastn Nucleotide sequence similarity search against nucleotide subjects or

databases.

blastx Translates a nucloeitde query to a proetin sequence and conducts a

similarity search against protein subjects or databases.

tblastx Similarity search of a translated nucleotide query against translated

nucleotide subjects or databases.

tblastn Similarity search of a protein query against nucleotide subject se-

quences or databases translated at search time.

makeblastdb Program for formatting BLAST databases.

blastdb_aliastool Program for connecting different databases.

blastdbcmd Report producing program for BLAST databases.

Scripts Various other scripts that help with the utilization of NCBI databases

or the execution of BLAST command-line tool programs.

Table 1: Overview of BLAST command-line tool programs

Figure 8: Section of the project creation view with the pre-formatted nr database. Scientific names are converted

to taxonomic nodes via BioPython and the get_species_taxid.sh script provided by the BLAST C++ command-line

tool. Taxonomic nodes are used for limiting BLAST searches.

34

Figure 9: Section of the project creation view with uploaded genomes. Previously uploaded genomes can also be

assigned as databases.

35

Figure 10: Section of the pipeline dashboard view directly after execution. No rule has finished, the progress bar

is at zero percent.

36

	Scientific background
	Classification of homologous sequences
	The dichotomy of homology - paralogs and orthologs
	Identification of orthologs and paralogs
	Methods for identifying sequence similarity
	BLAST is a fast and accurate heuristic algorithm for sequence similarity searches

	Reciprocal BLAST for inferring orthologous sequences
	Practical challenges in performing reciprocal BLAST analyses
	Snakemake as a workflow engine for reciprocal BLAST analyses
	Research goals

	Material and methods
	Programming language and packages
	BLAST C++ command-line tool and NCBI data
	Snakemake as the core utility for pipeline execution
	Django as web framework for application development
	Docker for application deployment
	Guidelines
	Installation instructions
	Developer Guidelines
	User Guidelines

	Web tool for reciprocal BLAST analyses
	Project and source code directory structure
	Front end overview
	The blast project view as main page
	Project creation interface for a structural project setup
	Project details for informations and results
	Pipeline dashboard for Snakemake execution and monitoring
	Pipeline execution via Snakemake
	Comparison to previously used reciprocal BLAST methods
	Inference of orthologous sequences of the circadian clock gene kaiA from Synechococcus elongatus PCC 7942

	Discussion
	Snakemake enhances reciprocal BLAST analyses
	Snakemake allows further enhancements
	The web application eases data deployment and pipeline execution
	Outlook

	Abbreviations
	Appendix

