
Developing an Interactive Visualization
Tool for Pangenome Graphs

Yulian Martynovsky

A thesis presented for the degree of
Master of Science

Heinrich Heine University Düsseldorf
Germany

03th October, 2022

Acknowledgments

I express my gratitude to my assessors Prof. Dr. Gunnar Klau and Prof. Dr. Tobias Marschall
for providing this interesting topic. I owe special thanks to Philipp Spohr for being a very
helpful and available supervisor, and answering my many questions and taking a lot of time
for weekly meeting and feedback on my work. Further, I thank Max Ried for setting up
with the website and providing support. I thanks Jonas Weber and Matthias Häußler for
supporting my writing and thinking processes and providing nice work environments.

ii

Abstract

In understanding and interpreting genomic data, visualization plays an important role. To
analyze sequencing read data, the reads are often aligned to a reference genome. By
doing so the position of each read in the genome is identified. Since the alignment process
yields complex data, there is a need to manually review the data and therefore there is
a need for tools which enable this. If multiple references genomes are available, they
can be combined as a non-linear reference. Such a reference can be encoded in the
form of a pangenome graph. We developed GIraph, a tool to visualize such graphs. It
allow the user to interact with the visualized non-linear reference and gain insight into the
structure of the graph. Additionally, read data can be incorporated into the visualization to
to give a clearer overall view of how the reads align to the graph. In this thesis we present
GIraph, a web application based on JavaScript and the React framework, for visualization of
pangenome graphs and corresponding alignments to these graphs. We give an overview
of the features of GIraph and provide some benchmarks for to showcase what graph sizes
can be processed by GIraph.

iii

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Goals . 5

2 Preliminaries 6
2.1 Definitions . 6

2.1.1 Biological Preliminaries . 6
2.1.2 Pangenome Graph . 6
2.1.3 Cigar String . 7

2.2 Data . 7
2.2.1 Graphical Fragment Assembly 7
2.2.2 Graph Alignment Format . 9

3 Implementation 11
3.1 Tools and Libraries . 11

3.1.1 React . 11
3.1.2 Material UI . 12
3.1.3 AntV G6 . 12
3.1.4 Konva . 12

3.2 Application Structure . 12
3.2.1 Selectors . 13
3.2.2 GraphViewer . 13
3.2.3 Upload . 14
3.2.4 AlignmentViewer . 14
3.2.5 Adding Algorithms . 15

4 Results 17
4.1 Using GIraph . 17
4.2 Benchmarks . 24

5 Discussion 26
5.1 Outlook . 27

5.1.1 Error Feedback . 28
5.1.2 Alignment Viewer . 28
5.1.3 Graph Viewer . 29

6 Conclusion 32

iv

7 References 33

v

1 Introduction

Reference genomes are used in the analysis of sequencing data. The sequenced reads are
aligned to them to identify their likely presumed position in the genome. Linear reference
genomes are commonly used to achieve this. But since they only represent one possible
version of the genome, possible variations in the population are disregarded. This is a
limitation for analyses that align sequenced reads to reference genomes. It leads to a
biased interpretation of sequencing data due to reads not aligning or aligning at wrong
positions if the original sequence comes from a different variant. This can then lead to
issues in downstream analyses as such biases introduce errors to the mapping process [1,
2, 3]. In some cases, data on these variants is available [4] and can be incorporated into
the analyses. This can be done by representing the reference as a graph instead of a linear
string. Such graphs are called pangenome graphs or variation graphs. Tools like vg [5]
or GraphAligner[6] can be used to align sequenced reads to pangenome graphs.

This creates a great amount of complex biological data, which leads to the need for
tools that visualize this data in an intuitive way. For reads aligned to a linear reference,
a widely used tool, IGV, already exists [7]. A tool widely used to visualize pangenome
graphs is Bandage[8], which lacks the ability to display information about reads aligned
to the graph. For reads aligned to a variation graph, there is also already a tool, namely
SequenceTubeMaps [9]. Our goal is to develop a tool, which in addition to visualization
of variation graphs and aligned reads, allows the user to interact with the graph.

1.1 Related Work

In this section, we will look at some existing tools that have similar functionalities. To identify
features that our tool, GIraph, should have, we considered previously existing tools. IGV
visualizes alignments to linear reference genomes, Bandage displays pangenome graphs
and SequenceTubeMaps displays pangenome graph alignments. In Figures 1 and 2 we
can see how alignments are visualized in IGV. As the reference genome is linear, i.e.
a string, the reads can be listed at the position that they are mapped to. Reads that
overlap are listed below each other. Reads are represented as gray tracks. Insertions are
represented in blue and have a tooltip, that when clicked on to display the bases that are
inserted. Deletions are white and display how many bases are deleted. If the track is gray
the read matches the reference, otherwise it is either a deletion or insertion. Mismatches
from the reference are displayed by writing the mismatching base on the read track. In
Figure 3 we see the tooltip which appears by clicking of a read track. It displays additional
information about the read. Furthermore, IGV allows for different filters to be applied to
the reads. Moreover, there is a coverage track above the reads displaying the coverage

1

at a specific position.
In Figure 4, we can see how Bandage [8] displays pangenome graphs. The layout is

computed using the fast multipole multilevel method [10] and shows the structure of the
pangenome graph. Bandage cannot be used to display information about reads aligning
to these graphs.

In Figure 5, we see how SequenceTubeMaps visualizes the alignment. SequenceTube-
Maps visualizes graph alignments, so the reference is not just written as a string. The nodes
of the pangenome graph are represented as gray boxes and the sequence that the node
encodes is displayed at the top of the box. Reads are, similar to IGV, tracks that follow
a path through the nodes to which they align. While the track is in a node it is displayed
aligned to the reference in the same way is in IGV. This allows the user to see how the
reads are distributed in sections where, for example, there are SNPs and the read flow
splits into multiple paths and then combines again into a single node. Here, deletions are
displayed as grayed-out parts of the track, and insertions are marked with a ”*” and have
a tooltip that shows the inserted sequence. This means that it is not possible to visually see
how long an insertion is without hovering over each insertion. SNPs are again displayed by
writing the changed base on the read track. SequenceTubeMaps also features some filter-
ing options like a mapping quality cutoff. Additionally, it can also display further information
by color-coding mapping quality and forward and reverse strand reads. SequenceTube-
Maps cannot display the variation graph without corresponding reads and expects a linear
structure in the pangenome graph. The algorithm, as the name suggests, is based on the
problem of drawing maps for subway networks, however, the authors do not describe how
the algorithm works exactly [9]. The general problem of drawing such maps and rules that
these maps want to fulfill is further described by Wolff et al. [11]. The goal is to find a
layout such that the overarching structure, which in the case of subway maps is given by
real-world coordinates, is retained. For the SequenceTubeMaps this overarching structure
seems to be calculated using the aligned reads.

2

Figure 1: Zoomed out view of reads in IGV.

Figure 2: Close up view of reads in IGV.

3

Figure 3: Tooltip of reads in IGV.

Figure 4: View of a graph in Bandage.

4

Figure 5: View of SequenceTubeMaps.

1.2 Goals

In our our tool for visualizing the alignment of reads to a pangenome graph, we want to
combine feature of Bandage and IGV. We want to make it easily accessible as a web
application. Further, we want to test the performance in terms of speed and the maximum
number of objects that can be displayed. Our application should support the analysis of
pangenomic data and allow users to gain deeper insights into their data. We want to give
users with different types of data multiple options to examine it, by providing options to
customize the display of the data. Further, our application should be intuitive to use and
allow future developers to contribute by implementing additional features. Finally, we give
an overview of the resulting features and provide benchmarks for the layout algorithms
available to the users Section 4.

5

2 Preliminaries

2.1 Definitions

In this section, we give definitions of the terms and concepts that are needed to understand
this thesis. We define graph structures and biological concepts that relate to these graph
structures.

2.1.1 Biological Preliminaries

The molecules that carry the genetic information of an organism are called DNA. In sim-
plified terms, DNA consists of a sequence of bases. Specifically, these bases are called
Adenine, Thymine, Cytosine and Guanine. We represent DNA as strings of bases and
usually abbreviate the base names using their first capital letter. We call such a string
of bases a DNA sequence. The reverse complement of a DNA sequence s is a DNA
sequence of the same length but with all of the bases switched with their complementary
base (A↔T, C↔G) and a reversed reading direction. We call a set of DNA strings that
includes the reverse complements of each string a genome. We define a read as a DNA
sequence of any length that is sampled from a genome. A read is usually a substring of
one of the DNA sequences in the genome that contains some differences in the form of
one or more bases being replaced, deleted (deletion) or added (insertion). An alignment
is an arrangement of reads to a genome. For each read, an alignment denotes the reads
origin DNA sequence and the way the read aligns base by base to the DNA sequence.

2.1.2 Pangenome Graph

To define Pangenome graphs we follow the definition of Eizenga et al. [12]. A pangenome
graph is a graph data structure that encodes multiple similar input sequences. Since redun-
dant information is only saved once, the data structure is smaller in comparison to saving
all sequences separately. A pangenome graph consists of nodes that are connected by
edges. Each node represents a piece of DNA sequence. The edges encode concate-
nations of these sequences. Pangenome graphs can contain the reverse complements of
DNA sequences in each node. These graphs are called bidirected graphs. The connec-
tions between different sequences and complements is then described by different edge
types. Pangenome graphs can be used to represent different relationships in genomic
data. They can represent multiple sequence alignments in a compact form, or represent
multiple reference genomes with defined paths that denote the references which it is build
from. Pangenome graphs can be used to represent different relationships in genomic data.
They can represent multiple sequence alignments in a compact form, or represent multiple

6

reference genomes with defined paths that denote the references which it is build from.
They can also be used to represent graphs that are used for assembly and represent a
set of sequenced reads in this case. All these graphs can be encoded in the Graphical
Fragment Assembly format described in Section 2.2.1.

2.1.3 Cigar String

A cigar string encodes how a query sequence aligns to a corresponding reference se-
quence. It is a sequence of operations. Each operation is preceded by a number, which
defines how often the operation should be executed. The following table shows the oper-
ations, their semantic meaning, and how they are executed.

Operation Description Consumes query Consumes reference

M alignment match (can be a sequence match or mismatch) yes yes
I insertion to the reference yes no
D deletion from the reference no yes
N skipped region from the reference no yes
S soft clipping (clipped sequences present in SEQ) yes no
H hard clipping (clipped sequences NOT present in SEQ) no no
P padding (silent deletion from padded reference) no no
= sequence match yes yes
X sequence mismatch yes yes

Table 1: Excerpt of the cigar string specification as specified in
https://samtools.github.io/hts-specs/SAMv1.pdf

2.2 Data

In this section, we present the data that we worked with and define how the data files are
structured, and what information they contain.

2.2.1 Graphical Fragment Assembly

Graphical Fragment Assembly, short GFA, is a format used to represent graphs that contain
genomic information. The GFA files are denoted with the extension .gfa. These graphs can
represent assemblies or variations in genomes1. The information is stored line based and
each line starts with a single character representing the type of the line. The information

1https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md

7

https://samtools.github.io/hts-specs/SAMv1.pdf
https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md

in each line is tab separated. In the following we give an overview on the information
contained in the different line types, that we use.

Segment lines, denoted with an S, define nodes of the graph. A segment line should
contain a name field, which should be unique as it defines the name of this segment.
Further, the sequence contained in this segment is a required field but if the sequence
is not provided it can be filled with a ”*”. Segments may contain optional fields, which
should be formatted in the following way: [tag]:[type]:[value], with [tag] being the name
of the field, [type] being being a single case-sensitive letter that defines the format of value,
and [value] being the information stored in this field.

Lines denoted with an L define a Link, which represent edges in a graph. A link line
contains two fields to denote the start and end point of the edge. These are given as the
names of segments. For both segments an orientation is defined as we encode bidirected
graphs. These fields contain either a + or - to denote the orientation. The overlap between
the two segments is shown in the last required field in the form of a cigar string. It can be
omitted by giving ”*” as a value. As with segment lines, optional fields can be appended
after the required fields in the format described above.

Lastly, path lines, marked with a P, denote a path through the graph. This line contains
a path name. The path itself is defined in a separate field as a comma separated list of
segment names, which have a + or - appended to define their orientation. Following this
field we have a field containing a comma separated list of cigar strings, which define how
the segments on the path overlap. If this list is provided, it contains one less entry than
the list of segment names. This field can again be omitted by giving ”*” as a value. In
the following, we show an example for a gfa file and provide a corresponding graph in
Figure 6.

8

1 S node1 ACTGTTA
2 S node2 A
3 S node3 G
4 S node4 GTACTAA
5 S node5 C
6 S node6 TCTA
7 L node1 + node2 + *
8 L node1 + node3 + *
9 L node2 + node4 + *
10 L node3 + node4 + *
11 L node4 + node5 + *
12 L node4 + node6 + *
13 P path1 node1+,node3+,node4+,node6+ *

Listing 1: Example of a gfa file.

ACTGTTA GTACTAA TCTA
G

A C

Figure 6: The nodes contain their sequence defined in the segment lines (for this example we kept them
unique) and the blue line shows the path that the path line describes. As we do not represent it as a
bidirected graph we also omitted the different edge types here.

2.2.2 Graph Alignment Format

The Graph Alignment Format (also Graphical mApping Format), short GAF, is a format that
describes sequence to graph alignments. Files in this format have the extension .gaf. Each
line in this format represents a read that is aligned to a graph defined in GFA format. A
detailed definition of all required fields can be found at 2. We mainly use the field path
matching, which defines the nodes that the read spans. Another field that is relevant to us
is the optional cigar string field. This cigar string shows how the read aligns to the nodes
in the path. In the following, we show an example of such a file with read1 being a read
that is the same sequence as path1 in Listing 1 and read2 being a read that covers the

2https://github.com/lh3/gfatools/blob/master/doc/rGFA.md#the-graph-alignment-format-gaf

9

https://github.com/lh3/gfatools/blob/master/doc/rGFA.md#the-graph-alignment-format-gaf

1 read1 19 0 19 + >node1>node3>node4>node6 19 0 19 19 19 255
2 read2 7 0 7 + >node1 7 0 7 7 7 255

Listing 2: Example of a gaf file.

whole of node1 from Listing 1. For better readability, we changed the tabs to spaces in
this example.

10

3 Implementation

In this section, we will describe the used tools and libraries that are relevant for the im-
plementation and give an overview of the structure of the application. GIraph is written in
JavaScript and thus can be used on any operating system using a browser.

3.1 Tools and Libraries

In this section, we will give a short overview of the most important tools and libraries that
we use for our implementation to give some basic understanding of their functionalities.
We use the JavaScript framework React3 to create the website and to manage the state and
render cycles of our application. Further, we use Material UI4 to provide us with ready-to-
use React components for buttons, headers, and similar elements. As we want to visualize
graphs we use AntV G6[13] for this problem and we draw our AlignmentViewer on a
canvas element and use konva5, specifically react-konva, as a Wrapper for the Canvas
API6. The version of all used packages is documented in the package.json file and the
application can be installed locally using npm7.

3.1.1 React

React is a framework for creating websites and user interfaces that manages state and
renders components dependent on that state to the Document Object Model(DOM). As
such, developers only need to define the state and create components dependent on that
state. In React, variables can be declared as state and React will automatically update the
components of our application that depend on these variables. Further, components allow
us to split our code in smaller, more manageable parts as each component only needs to
know how to render itself. We describe the rendering behavior of a component using the
Javascript Syntax Extension(JSX). This syntax extension is similar to HTML in appearance and
is converted to actual HTML during the rendering of a component. Also, it follows a tree
structure like HTML, meaning a component can have any number of child components,
but only one parent component. As such, our application also follows this tree structure.
The relation between the components of GIraph is shown in Figure 7.

3https://reactjs.org/
4https://mui.com/
5https://konvajs.org/
6https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
7https://www.npmjs.com/

11

https://reactjs.org/
https://mui.com/
https://konvajs.org/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://www.npmjs.com/

3.1.2 Material UI

Material UI is a library that provides us with ready-to-use React components for various
UI elements. We use it as a base for all of our components except for the GraphViewer
and the AlignmentViewer components as these are based on a canvas element created
by AntV G6 and konva, respectively. The components come with already applied styling
and we use them for most of our UI elements.

3.1.3 AntV G6

AntV G6 is a graph drawing library [13], which we use to render our graphs and it further
provides functionalities and various event listeners,which we use to allow the user to interact
with the graph. Moreover, AntV G6 allows us to register layout algorithms in addition to
the ones that are already provided, and we elaborate on how to add these algorithms
in Section 3.2.5. It also allows high customization for the individual elements that are
displayed, which we also use in Section 3.2.2 and discuss further possible use cases in
Section 5.

3.1.4 Konva

Konva is a Wrapper Library for the Canvas API. Specifically, we use react-konva, which
wraps the functionalities even further into React components. For us, this means we can
create various canvas shapes as React components. Moreover, this allows us to keep our
code structure more uniform and thus more readable as we can create canvas elements
as React components, which are directly connected to the state, instead of manipulating
the canvas elements manually outside of the React component life-cycle.

3.2 Application Structure

In this section, we will give an overview of the structure of our application and then elaborate
on the specific components that we implemented. We give a detailed overview of how
these components should be used from the point of view of a user in Section 4. In Figure 7
we see the overarching structure of GIraph. We omitted all components that correspond
to regular DOM elements, which we mostly use for the alignment of the other components,
Material UI components, that are mostly wrapped in the shown components, and react-
konva components. As such the figure only contains components that we created for
GIraph.

12

App

PathSelector

GraphCfg AlignmentViewerGraphViewer

ComponentSelectorAlgorithmSelectorUpload

Loadinganimation Header

Figure 7: General component structure of GIraph.

3.2.1 Selectors

We have three Selector components, that are all used to set options to customize the graph
visualization. All of them are drop down menus and when the user selections an option the
graph view is updated. The AlgorithmSelector components allows us to choose a layout
algorithm from a fixed list of algorithms. The algorithms are defined in a separate file in the
form of an object, which contains labels for the available algorithms. This list of algorithms
can be easily expanded by future developers as we describe in further detail in Section
3.2.5.

The ComponentSelector component can be used to choose a specific subgraph, that
is a connected component, to be displayed. The list of connected components is sorted
by size and each component is assigned a unique identifier, so that multiple connected
components of the same size can be distinguished.

The PathSelector component requires that the uploaded graph contains path lines as
described in Section 2.2.1. We can choose between one to five paths at the same time,
which will then be displayed in the graph by changing the affected nodes to donut shaped
nodes. These nodes have a thick outer ring that is split uniformly into section for each
selected path that they are contained in. Each selected path is assigned a color from a
predefined color palette and the donut ring section of the nodes is colored correspondingly.
For the colors we use the colorblind barrier-free color pallet proposed by Masataka Okabe
and Kei Ito 8.

3.2.2 GraphViewer

The GraphViewer component handles the visualization of the graph and changes that have
to be handled when the users changes the options for the display. These changes include

8https://jfly.uni-koeln.de/color/#pallet

13

https://jfly.uni-koeln.de/color/#pallet

setting options using the selector components described in Section 3.2.1 and the upload
of new files. We use AntV G6 to display the graph. As AntV G6 needs an existing
DOM element to append a canvas to, we have to manage it ourselves outside of the React
component life cycle. This is also true for any further manipulation of the graph in the form
of changes to the display options above. For each of the three selector component, we
create an Effect Hook9 to manage the changes to the graph manually as it is not part of
the React life cycle.

3.2.3 Upload

The Upload component consists of a button that opens an input menu on click. We use this
component to allow the user to upload a single gfa file with and optionally a corresponding
gaf file. These are then parsed and the corresponding state is updated. Further, we use
the library browser-line-reader10 to read the data in chunks to save memory space during
data upload. During the parsing of the files we also compute the connected components
of the graph. Then, we reset all other configurations, that are kept in a state, to their starting
values.

3.2.4 AlignmentViewer

The AlignmentViewer component uses react-konva to display the alignment at a single
selected node on a html canvas element. For this, the data, specifically the gaf¸ file, requires
an entry with the ”cg” tag which contains a cigar string as described in Section 2.1.3.

We map each character in the cigar string to a corresponding react-konva component,
except for Insertions(marked with an ”I”). Consecutive insertions are accumulated and
displayed as a single number, denoting how many insertions occurred at this position. The
reads are sorted left-justified by the first appearing symbol, but ignoring insertions.

As we generate these symbols are react components and store them in an array,
each of these components needs a unique key as described in https://reactjs.org/docs/
lists-and-keys.html#keys. In our implementation each starting coordinates for the compo-
nents is only used once, and as such we can use this position as a unique key for the
component by converting it to a string. We pass this array to a react-konva Layer compo-
nent to create a canvas with our elements. As the html canvas element has a maximum
size, which depends on the used browser11, we do not want to create a canvas that is

9https://reactjs.org/docs/hooks-effect.html
10https://github.com/stanrogo/browser-line-reader
11https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas#maximum_canvas_size

14

https://reactjs.org/docs/lists-and-keys.html#keys
https://reactjs.org/docs/lists-and-keys.html#keys
https://reactjs.org/docs/hooks-effect.html
https://github.com/stanrogo/browser-line-reader
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas#maximum_canvas_size

large enough for all elements. For large alignments this would slow down the website and
the canvas might not even support the needed size. Thus, we create a canvas that is the
size of the displayed view with some additional space for padding. To allow the user to
navigate the whole alignment we implement scrolling using css transform12 as this provides
a fast way of moving the view to the desired position without needing to create a canvas
spanning all elements.

3.2.5 Adding Algorithms

We provide the user with a range of layout algorithms to use. We use implementations of
AntV G6 and ogdfjs13, which is based on ogdf[14]. We explain the structure of how the
algorithms are stored and how developers can easily expand the available algorithms with
implementation of other libraries and their own implementations.

We store the algorithms in an array of objects in a separate JavaScript file. We differ-
entiate between two cases in this array. Firstly, algorithms that are implemented by AntV
G6. These consist of an object that only contain their label as defined in the AntV G6
documentation 14. We store all other algorithms as an object with 2 attributes.The first
attribte is a label, which is used in the AlgorithmSelector for the user to see and also in
the GraphViewer to register the layout. The second attribute is an object, that should con-
tain a function called ”execute()”. This function should calculate x and y positions for all
nodes. Thus, a new algorithm can be added by expanding the array with such an object.
A more detailed overview of how AntV G6 handles custom layouts can be found in the
corresponding part of the documentation15. In the following, we present an example for a
single algorithm of both described types in our implementation.

12https://developer.mozilla.org/en-US/docs/Web/CSS/transform
13https://github.com/ZJUVAI/ogdf.js
14https://g6.antv.vision/en/docs/api/graphLayout/guide
15https://g6.antv.vision/en/docs/api/registerLayout

15

https://developer.mozilla.org/en-US/docs/Web/CSS/transform
https://github.com/ZJUVAI/ogdf.js
https://g6.antv.vision/en/docs/api/graphLayout/guide
https://g6.antv.vision/en/docs/api/registerLayout

1 import G6 from "@antv/g6";
2 import * as ogdf from "ogdfjs";
3

4 export const algorithms = [
5 {
6 label: "FMMM GorgeousAndEfficient",
7 layoutAlgorithm: {
8 async execute() {
9 let self = this;
10 let nodes = self.nodes;
11 let edges = self.edges;
12

13 let layout = new ogdf.Layout.FMMMLayout({
14 graph: { nodes: nodes, links: edges },
15 webworker: true,
16 parameters: {
17 qualityVersusSpeed: "GorgeousAndEfficient",
18 unitEdgeLength: 100,
19 },
20 });
21

22 const output = await layout.run();
23 nodes = output.nodes;
24 edges = output.links;
25 },
26 },
27 },
28 {
29 label: "dagre",
30 },
31];

16

4 Results

In this section, we present the results of this thesis. The goal of this thesis was to create
an application that supports the analysis of genomic data. As such, the results consist of
the application and its features. We firstly describe what kind of data is required to run
and use our application. Then, we describe how the application should be used. We also
provide some benchmarks in relation to graph size and density of edges for each of the
different algorithms that is available in GIraph. The code can be accessed at https://git.
hhu.de/yumar101/graph-alignment-visualizer and we collect issues and known bugs at
https://git.hhu.de/yumar101/graph-alignment-visualizer/-/issues. Further, we provide
a Digital Object Identifier16.

4.1 Using GIraph

In this section, we describe how to display a pangenome graph in GIraph and elaborate
how to analyse the graph using GIraphs features. Firstly, a user needs to start GIraph,
either by visiting https://franz.cs.hhu.de/graph-alignment-visualizer/ or by cloning the
repository and hosting it locally. To access GIraph online, the user has to be connected to
the Network of the Heinrich-Heine-University in Düsseldorf. In this section, we will describe
how to display a pangenome graph in GIraph. In Figure 8, we show the starting screen of
GIraph. The steps described in the following are the same for both methods of accessing
GIraph.

16https://doi.org/10.5281/zenodo.7140777

17

https://git.hhu.de/yumar101/graph-alignment-visualizer
https://git.hhu.de/yumar101/graph-alignment-visualizer
https://git.hhu.de/yumar101/graph-alignment-visualizer/-/issues
https://franz.cs.hhu.de/graph-alignment-visualizer/
https://doi.org/10.5281/zenodo.7140777

Figure 8: First view when accessing GIraph.

Secondly, we need to upload data. To upload files, we can press the menu button and
following that the appeared ”Upload” button. The user can see that data was successfully
uploaded as the ”No Data loaded!” text disappears and an empty canvas with a minimap
appears as shown in Figure 9.

Figure 9: Data was uploaded successfully.

We can upload a gfa file and optionally an additional gaf file. This enables the selector
components, which stops them being grayed out. We can select an algorithm to display
our graph from the list of available algorithms.

18

Figure 10: The user can choose an algorithm to layout the data after uploading it.

The implementations of the algorithms are provided by AntV G6 and ogdfjs and doc-
umentation regarding these algorithms can be found on the respective websites. After
calculating the layout the graph is displayed and the currently visible sector of the graph
is marked on the minimap as shown in Figure 11. Alternatively, the user can select a
connected component first, then the chosen component is displayed in a grid.

Figure 11: Data rendered with the dagre layouting algorithm.

The minimap is positioned at the bottom left of the graph view and shows a miniature
version of the layout. To navigate the graph the view can be dragged with the mouse, by
holding the left mouse button, and the level of zoom can be adjusted with the mouse wheel.
To increase performance the node labels and edges are not displayed during dragging

19

and zooming of the view. The zoom level can also be set to the maximum level by pressing
ctrl + 1. Dragging and zooming the graph view is also reflected on the minimap.

The graph view contains additional information about the data, in addition to the connec-
tivity of nodes. Hovering over nodes and edges shows a tooltip with information regarding
the number of reads passing this node/edge if a gaf file is provided. Moreover, the edge
thickness is scaled with the read count as can also be seen in Figure 11. We calculate the
read count on a node or an edge by counting how many reads contain this node or are
using the edge in question.

The layouts are not guaranteed to prevent visual overlap between nodes or to provide
a layout that is visually useful to the user. Thus, the nodes can be moved around to clarify
unclear portions of the graph by dragging them while pressing the left mouse button. To
increase performance edges adjacent to a dragged node are not visible for the duration
of the drag.

Next to the selector element for the algorithm are two further selector elements, for
connected components and paths, respectively. These are shown in Figures 12 and 13.
The component selector can be used to select connected components of the graph, which
causes the graph viewer to only display this specific connected component. These are
sorted by size, beginning with the full graph. Each component is assigned a unique ID.
The user can see the number of nodes that a component contains in the selector. When a
component is selected the graph is rerendered with the currently selected algorithm. When
working on large graphs we recommend choosing the relevant component, if applicable,
to increase the performance of the graph viewer as there are fewer elements to display.

Figure 12: The user can choose a connected component.

The path selector can be used to display paths specified in the gfa file. Up to 5 paths

20

can be selected. The affected nodes are then displayed in a donut shape with the ring of
the donut colored in equal proportions for each path that they belong to. The path names
in the path selector are colored with the same colors, to clarify which nodes belong to
which path. The used color palette is colorblind friendly17. In Figure 14 we can see a
graph with one path marked, and in Figure 15¸ we can see a graph with two paths marked
and the opened path selector with the path names colored accordingly.

Figure 13: The user can select up to 5 paths.

Figure 14: Graph with one selected path.

17https://jfly.uni-koeln.de/color/#pallet

21

https://jfly.uni-koeln.de/color/#pallet

Figure 15: Graph with two selected paths.

22

Figure 16: Graph after selecting a node to see the alignment viewer.

23

Clicking a node opens the alignment viewer below the graph view as shown in Fig-
ure 16. The alignment viewer displays the sequence belonging to the clicked node and if a
gaf that has ”cg” tags is provided and there are reads that pass over this node, the reads
are displayed below the sequence. In this case, we also show a coverage track above the
sequence. The scaling of the coverage track is defined on the left end of the coverage track
and starts with zero and shows the maximum value for the coverage on this node. Below
the sequence, the individual reads are displayed. These are sorted left justified, meaning
reads that start at the beginning are displayed at the top of the alignment viewer. The cigar
strings, which encode how the read aligns to the nodes, are parsed to different symbols.
Matches are displayed with a blue rectangle, deletions are displayed with a line and inser-
tions are displayed as a number. These symbols align under the corresponding sequence
symbol, except for insertions, which don’t have a corresponding symbol in the sequence.
Rather, insertions are displayed on the position before they occur. Other symbols are
displayed right below their corresponding position in the sequence and are differentiated
into 2 types, alignment matches and deletions. They are differentiated by different colors
and deletions are thinner, to make them easier recognizable as a difference compared to
the sequence. The colors for this visualization are chosen from the color palette described
in Section 3.2.1. The alignment view has separate scroll bars for vertical and horizontal
scrolling, that can also be operated by mouse wheel and shift + mouse wheel, respectively.

4.2 Benchmarks

In this section, we provide some benchmarks for the different layout algorithms in terms of
the size and edge density of the graphs. The graphs are generated using a method by
Batagelj and Brandes[15] implemented by networkx18. As these graphs do not have an
inherit structure we also created a ladder graph dataset. It only takes the amount of nodes
as parameter. In Figure 17 we see a ladder graph. The overall structure of the graph is
shown on the minimap.

18https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_
graphs.fast_gnp_random_graph.html

24

https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.fast_gnp_random_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.fast_gnp_random_graph.html

Figure 17: Ladder graph rendered with FMMM.

We provide the python script used to generate the data at https://git.hhu.de/yumar101/
graph-alignment-visualizer/-/blob/main/data_generator.py, which also contains the used
seeds. The benchmarks are performed on a machine running Ubuntu 20.04 with 8GB
of memory and a Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz. We used Firefox 105.0
for the experiments and we restarted the browser between each run to ensure that the
conditions for the experiments are as similar as possible. We run each data set 3 times
and then average over all runs of the same size and edge density. For the random graphs
we need to calculate a value p, which denotes the probability with which an edge exists.
As we want to keep the edge density about the same between datasets we calculate p de-
pending on the node count as follows: p = nodeCount∗avgEdges

nodeCount2 , where avgEdges denotes
the average amount of edges that we want per node. For this value we chose 0.5 and
0.7 as parameters as higher values lead to graphs with no visible structure, regardless of
which algorithm is used to display it as we end up with a very large connected component
with high node degrees and many components that only contain one node. As the ladder
graph has a fixed construction based on the node count we denote these entries with ”lad-
der” in Table 2. We set a time limit for the computation of the layout of 3 minutes. Entries
are denoted with (T) if they overstepped this limit. If not all of the three runs overstep this
limit, we still give a time value but mark it with a (T). The runs that overstep the limit are not
used for the calculation of the average. If we run out of memory during the calculation we
denote this with (M).

25

https://git.hhu.de/yumar101/graph-alignment-visualizer/-/blob/main/data_generator.py
https://git.hhu.de/yumar101/graph-alignment-visualizer/-/blob/main/data_generator.py

Algorithm average edge count\node count 103 104 105

FMMM GorgeousAndEfficient
0.5 1.2 6.9 75.5
0.7 2.1 12.5 -

ladder - 22.4 -

FMMM BeautifulAndFast
0.5 1.2 7.9 81.2
0.7 2.1 11.4 -

ladder - 22.6 -

FMMM NiceAndIncredibleSpeed
0.5 1.3 8.0 62.7
0.7 2.0 11.4 -

ladder - 35.0 -

Sugiyama
0.5 1.2 9.0 156.0(T)
0.7 2.1 72.4 -

ladder - (T) -

dagre
0.5 1.4 44.2 (T)
0.7 1.7 57.1 -

ladder - (M) -

GEM
0.5 2.5 19.7 (T)
0.7 2.5 16.9 -

ladder - 28.1 -

StressMinimization
0.5 4.5 (M) (M)
0.7 5.3 (M) -

ladder - (M) -

Table 2: Benchmarks of the used algorithms in seconds.

5 Discussion

In this section, we give an outlook on features that are currently lacking and could be
implemented in the future.

GIraph allows the user to upload gfa files and examine the encoded graph. For an
overall structural overview of the graph, it provides features for navigation like a minimap.
Further, the user can zoom into and out of the graph to switch between a more detailed
view of specific regions and a broad overarching view. The user can navigate the detailed
view by dragging it. The sequence information of a node can be accessed by clicking
on it. In GIgraph, a multitude of layout algorithms are available. Additionally, multiple

26

encoded paths can be displayed at the same time.
Depending on the graph, none of the available algorithms may yield a layout that

satisfies the user. In such a case the user can drag nodes manually to clarify the graph
view. We currently have no options to display jumps and walks, which can be defined in
more recent GFA versions19 and also do not consider the input of rGFA files[16].

If a gaf file is provided additionally to the gfa file, the graph view itself already gives the
user more information compared to the above case. The user can see the read flow on the
edges as these are scaled according to their read count. This can be used in combination
with the colored paths to examine how the reads relate to the different paths. If the reads
in the gaf file contain cigar strings these can also be displayed by clicking on a node. This
function could be improved by allowing the input of an additional fasta file to get more
detailed information on the reads, for instance not only the positions of insertions but also
which bases have been inserted.

The alignment view also has room for improvement. Currently, zooming is only available
on the development branch20 as it is not in a user friendly state.

Further, when loading and layouting large graphs, GIraph can run into issues in terms
of runtime and memory, we try to overcome this by allowing the user to choose smaller
connected components of the graph, but these might not exist in such a graph. As we
can see in Table 2 the algorithms all scale with the size of the data in terms of nodes
and edges. Some algorithms are not feasible for large graphs, so we recommend using
one of the FMMM variations as they proved to be the most reliable when working with
larger datasets. When using a hierarchical algorithm, Sugiyama should be preferred as it
is more reliable compared to dagre. If GIraph is used on a computationally more powerful
machine some algorithms that run out of memory in our experiments may still successfully
calculate a layout, which can be preferable to FMMM. Further, we set a time limit for the
experiments, but the user may choose to wait longer to achieve a result.

5.1 Outlook

In this section, we cover possible future features and elaborate on how these can be
incorporated in GIraph.

19https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md#w-walk-line-since-v11
20https://git.hhu.de/yumar101/graph-alignment-visualizer/-/tree/dev

27

https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md#w-walk-line-since-v11
https://git.hhu.de/yumar101/graph-alignment-visualizer/-/tree/dev

5.1.1 Error Feedback

Giraph lacks feedback for the user if something goes wrong. Currently, errors during
upload of the data are displayed in the console. If the cause of the error is the content of
the file the user does not get feedback on what exactly is wrong with the file. This can be
solved by checking each case manually and creating a component that displays errors to
the user with a meaningful error message. Further, errors caused by layout algorithms are
also only shown in the console and in the case that an algorithm does not throw an error,
but also does not calculate a layout, GIraph most likely crashes.

5.1.2 Alignment Viewer

The alignment viewer has room for improvement in multiple aspects. Firstly, tools for linear
alignment, like IGV, provide the user with multiple options to filter or color the reads, for
example by read direction or mapping quality. Further, additional information about the
reads can be displayed. The direction of the read can be displayed by an arrowlike tip at
one end of the read signifying the direction. These features can be implemented by defining
boolean states for these options, or in case of cut offs input fields that take numerical values,
and then using these states to check if a reads satisfies the desired criteria in the calculation
of the individual components in the AlignmentViewer component. This can be expanded
upon by reading in an additional fasta file to get the exact bases that are inserted for each
insertion, these can then be displayed in a tooltip when hovering above the corresponding
insertion. For this, it is enough to save only the bases that are inserted to save memory,
as the remaining information is already in the cigar string. Moreover, tooltips can be used
to display information that may only be relevant sporadically, for example the read id to
identify specific reads or to show all information about a read at the same time, instead of
filtering all reads by the desired criteria. This can be implemented by creating a state and
and event handler for each react-konva component that is created for a read, this event
handler can then set the state when it is clicked and a tooltip component can be created
depending on that state. The tooltip component can be implemented using a Material UI
box component21.

Additionally, the user may want to see the path that an individual read takes through the
graph. This can be achieved by again defining a state that holds the information about the
chosen read and then displayed by coloring the edges along its path. The coloring of the
edges can be achieved similarly to the coloring of the nodes in Section 3.2.2 by adding

21https://mui.com/material-ui/react-box/

28

https://mui.com/material-ui/react-box/

an Effect Hook22 and can also make use of the color palette used for the paths as we do
not utilize all colors of this palette in our visualization.

Another improvement to the alignment viewer is to make some elements of it to always
appear in the view. Currently, the sequence of the node that is written above the read
tracks disappears when the users scrolls down along the read track, as does the coverage
track. As the sequence and coverage information is relevant to all the reads regardless
of where they are displayed in the alignment view, they should be kept statically visible
above the when the user scrolls down and should only change the view if the user scrolls
horizontally.

5.1.3 Graph Viewer

The Graph Viewer has some features that could be imporoved upon or included in future
work, which we describe here. Firstly, as seen in the benchmarks the viewer has perfor-
mance issues with large graph instances in regards to node and edge count. This could
be addressed by using a webGL based renderer instead of the current canvas based one.
As webGL based rendering is harder to implement, they usually provide less features than
canvas based renderers but are more perfomant as they can run some of their code on
the GPU23. This can be implemented in addition to the canvas rendering and provided
to the user as an option for large graphs. For this a component can be created that im-
plements the graph view using a webGL based library, that would probably have less
features available, and then based on the users choice either the canvas or the webGL
based component is used to render the graph. A potential library for this is NetV.js [17],
for which they also provide benchmarks in terms of amount of rendered nodes. There is
also such a feature planned for AntV G6, which is currently in development24.

Another feature that is interesting for the graph view is the display of coverage on
the graph. This information is currently only displayed for edges in the form of edge
thickness and for the nodes, this information is only available in the tooltips. An approach
for this is to scale the nodes size similarly to how it is done with the edges, this leads to
issues with layouting, as many algorithms do not take into account differing node sizes.
Additionally, the node size might not be easily comparable from a visual point of view.
We suggest customizing the node shape to add a ”coverage meter” above the nodes
that displays the amount of reads passing this nodes passing this node compared to the

22https://reactjs.org/docs/hooks-effect.html
23https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial/Getting_started_with_
WebGL

24https://github.com/antvis/G6/pull/3566#issuecomment-1065023635

29

https://reactjs.org/docs/hooks-effect.html
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial/Getting_started_with_WebGL
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial/Getting_started_with_WebGL
https://github.com/antvis/G6/pull/3566#issuecomment-1065023635

node with the highest amount of reads passing through it. The shape could be similar
to a loading bar. This can be implemented by defining a custom shape, similarly to how
we define custom algorithms in AntV G6 in Section 3.2.5. The corresponding function
here is called registerNode and its usage is detailed in the AntV G6 documentation and
elaborated upon by some examples25. The user should be able to toggle this coverage
meter. Additionally, it makes sense to allow the user to select a subset of nodes for which
this coverage meter is calculated. If the nodes in question have a lower coverage then the
rest of the graph, calculating this coverage meter only for this subset allows the user to see
nuanced coverage difference in more detail. For this, the user needs a practicable way
to select multiple nodes. AntV G6 provides two already build in functionalities that can
be used to select larger areas of the graph at once. One is the brush selection26, which
allows the user to draw a rectangle around an area to select all nodes within. The other
on is the lasso selection27 , which allows the user to draw a line to select all encompassed
nodes. For nodes, that are not in the vicinity of each other or if only very specific nodes
should be select, these could be selected manually by clicking on them.

Another area of improvement is the layouting. The user may want to layout parts of
the graph using different methods. This would be preferred in the case of a graph that in
the case of a graph that has a linear structure for the most part and a part that cannot be
layed out nicely with methods like Sugiyama [18] or dagre 28. For this, the node selection
methods described in the paragraph above could be used as well and then the user can
choose a specific layout method for the selected nodes. The AntV G6 documentation also
provides an example29.

Another feature that can be added is the the display of reads from the gaf file, that
contain edges that are not contained in the gfa file. This can happen during assemblies,
if edges are discarded during refinement steps. Such edges can be saved separately
during the upload of the data and then displayed in the graph viewer by toggling them
on or off. This can be implemented similarly to how the switching between components
described in Section 3.2.2 is implemented and can also be visibly marked as edges that
are not contained in the original graph.

Furthermore, the navigation lacks an option to automatically search for specific nodes in
the graph. For such a feature an additional field can be created where the user can input

25https://g6.antv.vision/en/docs/manual/middle/elements/nodes/custom-node
26https://g6.antv.vision/en/docs/manual/middle/states/defaultBehavior#brush-select
27https://g6.antv.vision/en/docs/manual/middle/states/defaultBehavior#lasso-select
28https://github.com/dagrejs/dagre
29https://g6.antv.vision/en/examples/net/layoutMechanism#subgraphLayout

30

https://g6.antv.vision/en/docs/manual/middle/elements/nodes/custom-node
https://g6.antv.vision/en/docs/manual/middle/states/defaultBehavior#brush-select
https://g6.antv.vision/en/docs/manual/middle/states/defaultBehavior#lasso-select
https://github.com/dagrejs/dagre
https://g6.antv.vision/en/examples/net/layoutMechanism#subgraphLayout

the name of the node that they want to find. For this field the Autocomplete30 component
provided by Material UI can be useful, to provide auto-completion for the node names,
which this field can then save to a state. The graph viewer can then use this state similarly
to how the paths are colored, but instead of coloring existing nodes, we can add edges
between nodes. Finally, the user may want to save the graph after they displayed it with a
specific layout and moved nodes around. This data could then be uploaded again to get
the same view with the nodes set at the positions from when it was saved. This can be done
by creating a component, that creates a custom file format, that contains all information of
the graph view, including the positions of the nodes and then lets the user download this
file.

30https://mui.com/material-ui/react-autocomplete/

31

https://mui.com/material-ui/react-autocomplete/

6 Conclusion

We created GIraph, a web application, to analyze pangenome graphs. We combine
features of different tools, for example the visualization of pangenome graphs from Bandage
and the visualization of alignments from IGV. This allows users to analyze their graphs
using features that they are familiar with and that have been proven to be useful for such
analyses. A user can upload graphs and display them with various layouts, depending on
the resources that their machine provides. This gives the user an overview of the structure
of their graph and shows them where complex regions of the graph are. Further, we allow
the user to incorporate read data into the visualization. The read data then alters the graph
to show the user where the reads align to the graph. This allows further examination of
the alignment on specific nodes. The graph view is interactive, such that the user can
focus on specific elements of the graph and move elements around for a more appealing
visualization. We give benchmarks for the layout algorithms used in GIraph. These provide
a guideline on which algorithms can be used on what graph sizes and what runtimes are
to be expected. The FMMM algorithm is currently the most reliable algorithm and shows
a scaling behavior that is feasible for larger graphs. We give an outlook on features that
could be included in future releases. Examples are filtering options for the graph and
alignment viewer, and expanded navigation options to find specific nodes in the graph.
Moreover, we give details on how these features could be implemented.

In conclusion, we built a tool to visualize pangenome graphs and corresponding align-
ments. Although it could be improved upon in further work, GIraph can handle practically
relevant datasets. Our tool provides a new combination of visual features, which could
help the comprehension of genomic data in future projects.

32

7 References

[1] Débora YC Brandt et al. “Mapping bias overestimates reference allele frequencies
at the HLA genes in the 1000 genomes project phase I data”. In: G3: Genes,
Genomes, Genetics 5.5 (2015), pp. 931–941.

[2] Torsten Günther and Carl Nettelblad. “The presence and impact of reference bias
on population genomic studies of prehistoric human populations”. In: PLoS genetics
15.7 (2019), e1008302.

[3] Mazdak Salavati et al. “Elimination of reference mapping bias reveals robust im-
mune related allele-specific expression in crossbred sheep”. In: Frontiers in genetics
(2019), p. 863.

[4] Stephen T Sherry et al. “dbSNP: the NCBI database of genetic variation”. In:Nucleic
acids research 29.1 (2001), pp. 308–311.

[5] Erik Garrison et al. “Variation graph toolkit improves read mapping by represent-
ing genetic variation in the reference”. In: Nature biotechnology 36.9 (2018),
pp. 875–879.

[6] Mikko Rautiainen and Tobias Marschall. “GraphAligner: rapid and versatile sequence-
to-graph alignment”. In: Genome biology 21.1 (2020), pp. 1–28.

[7] Helga Thorvaldsdóttir, James T Robinson, and Jill P Mesirov. “Integrative Genomics
Viewer (IGV): high-performance genomics data visualization and exploration”. In:
Briefings in bioinformatics 14.2 (2013), pp. 178–192.

[8] Ryan R Wick et al. “Bandage: interactive visualization of de novo genome assem-
blies”. In: Bioinformatics 31.20 (2015), pp. 3350–3352.

[9] Wolfgang Beyer et al. “Sequence tube maps: making graph genomes intuitive to
commuters”. In: Bioinformatics 35.24 (2019), p. 5318.

[10] Stefan Hachul and Michael Jünger. “Large-graph layout with the fast multipole mul-
tilevel method”. In: (2005).

[11] Alexander Wolff. “Drawing subway maps: A survey”. In: Informatik-Forschung und
Entwicklung 22.1 (2007), pp. 23–44.

[12] Jordan M Eizenga et al. “Pangenome graphs”. In: Annual review of genomics and
human genetics 21 (2020), p. 139.

[13] Yanyan Wang et al. “G6: A web-based library for graph visualization”. In: Visual
Informatics 5.4 (2021), pp. 49–55.

[14] Markus Chimani et al. “The Open Graph Drawing Framework (OGDF).” In: Hand-
book of graph drawing and visualization 2011 (2013), pp. 543–569.

33

[15] Vladimir Batagelj and Ulrik Brandes. “Efficient generation of large random networks”.
In: Physical Review E 71.3 (2005), p. 036113.

[16] Heng Li, Xiaowen Feng, and Chong Chu. “The design and construction of reference
pangenome graphs with minigraph”. In: Genome biology 21.1 (2020), pp. 1–19.

[17] Dongming Han et al. “Netv. js: A web-based library for high-efficiency visualization
of large-scale graphs and networks”. In: Visual Informatics 5.1 (2021), pp. 61–66.

[18] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. “Methods for visual under-
standing of hierarchical system structures”. In: IEEE Transactions on Systems, Man,
and Cybernetics 11.2 (1981), pp. 109–125.

34

	Introduction
	Related Work
	Goals

	Preliminaries
	Definitions
	Biological Preliminaries
	Pangenome Graph
	Cigar String

	Data
	Graphical Fragment Assembly
	Graph Alignment Format

	Implementation
	Tools and Libraries
	React
	Material UI
	AntV G6
	Konva

	Application Structure
	Selectors
	GraphViewer
	Upload
	AlignmentViewer
	Adding Algorithms

	Results
	Using GIraph
	Benchmarks

	Discussion
	Outlook
	Error Feedback
	Alignment Viewer
	Graph Viewer

	Conclusion
	References

