
A combinatorial approach for

reconstructing rDNA repeats

Frederik Oehl

A thesis presented for the degree of

Master of Science

Algorithmic Bioinformatics

Heinrich Heine University Düsseldorf

Germany

April 21, 2022

Acknowledgements

I would like to thank my supervisors Professor Gunnar W. Klau and Professor Tobias Marschall

for their guidance and dedicated support during the preparation and development of this the-

sis. I would like to thank Sven Schrinner for the many exciting and helpful discussions we had,

and for his valuable comments on the thesis. Moreover, I would like to seize the opportunity

to thank everyone who gave me intellectual or emotional support during the past two years,

as these were not the easiest of times for completing one’s study.

Computational infrastructure and support were provided partly by the Centre for Information

and Media Technology, and partly by the Algorithmic Bioinformatics chair at Heinrich Heine

University Düsseldorf.

ii

Declaration

I hereby confirm that this thesis is my own work, and that I have only used the sources and

materials specified in my thesis.

Wuppertal, April 21, 2022

Frederik Oehl

iii

Abstract

The rDNA repeat sites are one of the regions on the human genome where as-

sembly is most difficult. In this thesis, we present a method that reconstructs the

individual rDNA repeat copies of human samples. It allows for a study of the

variation between the copies from one sample, as well as between different sam-

ples. Our method builds on techniques for graph assembly and sequence-to graph

alignment, that have recently been developed during the Telomere-to-Telomere

(T2T) Consortium’s effort to construct a new reference genome, and on the use

of ultra-long PacBio HiFi and Oxford Nanopore reads. On an assembly graph that

we construct with the help of these methods and technologies, we solve a combi-

natorial optimization problem. It yields the rDNA repeat copies of a given sample

as output. We prove the hardness of this optimization problem by proving the NP

-completeness of its corresponding decision problem.

In order to demonstrate the viability of our method, we present assemblies of the

rDNA repeat copies from six human samples. One of the samples is CHM13, the

basis for the new reference genome that the T2T Consortium recently completed.

This allows us to compare the output of our model in detail with the T2T Consor-

tium’s assembly of the rDNA repeat sites. The other five samples come from the

Human Pangenome Reference Consortium (HPRC). We hope that, in the future,

we can improve our model further, and can also develop methods for partitioning

the repeats onto different chromosomes and haplotypes.

iv

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Background & related work . 3

1.2.1 Telomere-to-Telomere Consortium reference genome 3

1.2.2 Related assembly methods . 4

1.3 Limitations of the model . 6

2 Method 7

2.1 External tools . 7

2.1.1 MBG . 7

2.1.2 GraphAligner . 9

2.2 Preprocessing . 11

2.3 Repeat selection model . 14

2.4 Hardness proof . 18

2.5 Output comparison . 24

2.6 Output checking . 28

3 Results 31

3.1 Reconstruction of rDNA repeats from CHM13 . 31

3.1.1 Preprocessing and parameter settings . 31

3.1.2 ILP performance . 33

3.1.3 Visualization of unexplained coverage on the graph 35

3.1.4 Repeat copies . 39

3.2 Comparison to the T2T Consortium’s Reconstruction 41

3.2.1 Repeat copies from T2T-CHM13 . 41

3.2.2 Edit distance-based comparison . 42

3.2.3 Analysis and comparison through shortest identifiers 43

3.3 Reconstruction of rDNA repeats from HPRC samples 47

4 Discussion 51

4.1 Evaluation of Results . 51

4.2 Future Work . 53

5 Conclusion 55

6 Literature 56

v

List of Figures

1 rDNA repeat sites . 1

2 Visualization of preprocessing . 13

3 Visual example for OPTIMAL REPEAT SELECTION . 17

4 Idea for reduction . 23

5 Complete bipartite graph . 24

6 Banded DP . 26

7 Banded DP with free shift . 27

8 Assembly graph for CHM13 . 32

9 CHM13 assembly graph with broken cycle . 32

10 Coverage explanation by the repeat selection model 36

11 Unexplained coverage on the graph . 37

12 Overexplanation hotspot . 38

13 Unexplained nodes . 39

14 Alignment of the CHM13 copies from the repeat selection model 40

15 Alignment of the T2T-CHM13 repeats . 41

16 Bipartite graph between repeats from T2T, and the repeat selection model 42

17 Lengths of shortest identifiers . 44

18 RS model identifiers in the HiFi reads . 45

19 T2T identifiers in the HiFi reads . 46

20 Alignments of the repeat copies from HG01258, HG01361, and HG01952 49

21 Alignments of the repeat copies for HG02257 and HG03579 50

List of Tables

1 Model performance on the HPRC samples . 48

vi

1 Introduction

1.1 Overview

The genome of all known life forms contains sequences of rDNA. They code for ribosomal RNA

(rRNA), an important constituent of ribosomes [1], molecular machines that are responsible

for protein synthesis in the cell. They contribute to a variety of important biological functions,

including aging [2]. On the human genome, there exist hundreds of long, highly similar se-

quences that code for rRNA. These sequences, called rDNA repeats, contain the coding regions

for the 18S, 28S and 5.8S rRNA. All rDNA repeat copies in the human genome are located

on the short arms of the five acrocentric chromosomes (13,14,15,21,22), where they occur in

arrays consisting of dozens of copies. These arrays are referred to as rDNA repeat sites. The

total number of copies on the genome varies between different individuals. A study by Ma-

linovskaya et al. [3], conducted on 651 individuals from Moscow and surrounding regions,

found between 200 and 711 repeat copies per human sample. A study by Parks et al. [4],

conducted on 2546 samples from the 1000 Genomes project, even found the copy number

varying between 61 and 1590 per individual.

Figure 1: The rDNA repeat sites in the human genome. On the short arms of chromosomes 13,14,15,21 and 22,

there are arrays consisting of dozens of repeat copies. Their number can vary strongly between individual human

beings, and between the different chromosomes of one human beinng. Each repeat copy consists of a coding

region, known as 45S, and a non-coding region, or intergenic spacer. The 45S region consists of the 18S, 5.8S and

28S regions, that code for parts of the ribosome [3], and internal and external transcribed spacers (ITS and ETS).

1

By default, an individual repeat copy in the human genome consists of a coding region of about

13 kbp length, also known as the 45S sequence, on which the 18S, 28S and 5.8S sequences

are located, followed by an intergenetic spacer (IGS) with a length of about 30 kbp [1]. Fig-

ure 1 gives a visual representation of the rDNA repeats in the human genome. Contrary to

this idealized depiction, however, real rDNA repeat copies are not exactly identical. They are

considered similar to each other, but they can differ in a number of ways, such as point mu-

tations, insertions, deletions, or inversions. There is even evidence for large-scale variation

between the repeat copies, including insertions and deletions of several thousand base pairs,

and inversions of whole copies [5].

Due to their length and similarity, the rDNA repeat sites are one of the sections of the genome

that are most difficult to resolve. Until a short time ago, all available types of reads were too

short to span an entire repeat copy. This made proper assembly virtually impossible for a long

time. Neither the variation between the individual copies, nor their order on the genome could

thus be determined. Only recently, as part of the newly published, complete human reference

genome assembled by the Telomere-to-Telomere (T2T) Consortium [6], the first reconstruc-

tion of the rDNA repeat sites of an individual human being was made available.

In the present, the development of a generic method for precise and fast de novo reconstruc-

tion of rDNA repeats from any given sample is getting within sight. One reason for this is

the invention of new sequencing techniques that lead to new types of reads, especially PacBio

HiFi [7] and ONT [8]. Another is the development of new methods and tools for assembly,

such as MBG [9] and GraphAligner [10], during the course of the T2T Consortium’s assem-

bly of the CHM13 reference genome. Building on these efforts, we propose a combinatorial

optimization-based model for reconstructing all individual rDNA repeat copies from given hu-

man samples. In this thesis, we present this model in detail, and demonstrate its utility.

We begin by outlining the research context in section 1.2. This includes a description of the

T2T Consortium’s reconstruction of the CHM13 rDNA repeat sites, as well as a description of

approaches similar to ours, that have been used for solving other genome assembly problems.

We also state the scope and limitations of our method. In section 2, we describe the method

itself. We start with a summary of the algorithms behind MBG and GraphAligner, since these

tools are important in the preprocessing of the data we use. We continue with a description

of the preprocessing steps in our workflow. Then, we formally introduce the model itself. We

prove the NP-hardness of the problem we want to solve by showing the NP-completeness of its

corresponding decision problem. Afterwards, we describe methods to compare the output of

our model with other reconstructions, and to assess the plausibility of its output. In section 3,

we present the results from our experiments with the model. We start by presenting our recon-

struction of the repeat copies from CHM13. We evaluate the performance of our model, and

compare the assembled repeat copies extensively with the T2T Consortium’s assembly. Then,

2

we move on to present our reconstruction of the repeat copies from five Human Pangenome

Reference Consortium (HPRC) samples. In section 4, we evaluate the results from our model,

and discuss ideas for future work and an expansion of our method. We end this thesis with a

conclusive summary in section 5.

1.2 Background & related work

1.2.1 Telomere-to-Telomere Consortium reference genome

The Telomere-to-Telomere (T2T) Consortium recently finished its reference genome CHM13,

which is the first complete reconstruction of a human genome. The respective papers ([6]

and [11] among others) have recently been published in Science. Compared to GRCh38, the

most comprehensive reference genome so far, T2T-CHM13 contains about 200 million bp of

newly reconstructed sequence. This includes 81 million bp of new or structurally variant, long,

highly similar repeat sequences [11], and, specifically, the rDNA repeat sites. Now follows a

summary of the T2T Consortium’s reconstruction of the rDNA sites, as described in [6].

As a first step, the authors used MBG to build a De Bruijn graph from PacBio HiFi reads, which

have very low error rates despite their length of 13.5 kbp on average. They choose a k-mer

size of 3501 for the assembly, which resulted in an output graph with low connectivity. The

authors interpreted different components and different clusters within the largest component

of the graph as belonging to the five different repeat sites on the chromosomes. They assigned

one component or cluster to each of these sites. Based on a k-mer comparison with the graph

components, they assigned the HiFi reads to the five distinct sites. Subsequently, the authors

assembled new graphs for the five chromosomes with MBG, this time using a much smaller

k-mer size of 201. The resulting graphs all show a large-scale circular structure. In order

to obtain the arrays of repeat sequences on the chromosomes, the authors included Oxford

Nanopore (ONT) reads from the repeat sites into the analysis. These reads can be hundreds

of thousands of base pairs long, and therefore span several repeat copies, but they are much

more error-prone than the HiFi reads. Like the HiFi reads, the ONT reads were compared to

the first graph in order to assign them to the different chromosomes.

The authors then aligned the ONT reads to the five graphs that correspond to the five repeat

sites, to trace the rDNA repeat copies in the graphs. The copies thus found were put into clus-

ters (‘morphs’) based on their similarity, and a consensus sequence was created for each of

these morphs. Now, for each morph, the authors estimated a copy number based on the num-

ber of matching ONT reads. In total, there are 32 different morphs, that is, 32 unique rDNA

repeat copies, that made it into the final reconstruction. The largest copy number estimate

for a single morph is 66. This means that, in the final reconstruction, there are 66 copies that

correspond to this morph. For all other morphs, this works analogously.

3

For resolving the order of the repeat copies on the chromosome, the authors built five graphs

out of the morphs, each one again representing a chromosome. Then, they aligned the ONT

reads to the morph graphs to determine paths that represent the sequence of rDNA repeat

copies on the genome. For chromosomes 14 and 22 respectively, the authors’ reconstruction

contains about 20 identical copies that form the center of the repeat sites, surrounded by other

copies that are not repeated as often. For chromosomes 13,15, and 21, the authors are less

confident when it comes to the order of the copies, since the structure of some of the morph

graphs was still very complex, and the ONT reads were too short to allow building reliable

walks in the graphs. For determining the order of the copies on chromosomes 13, 14, and 21,

the morphs ‘were polished and arranged in consecutive blocks, based on their coverage and

order in the graph’ [6]. The authors remark that the results for these chromosomes should be

treated with caution.

One important aspect of the reconstruction process is that the number of rDNA repeat copies

on the two haplotypes of a human genome varies. For their reference genome, however, the

authors have constructed only one sequence for each chromosome. As a consequence, not

all rDNA repeat copies that they assembled originally, were included in the final genome. In

the end, the authors selected those repeat copies that were included in the reference genome

based on, among other reasons, their similarity to the canonical rDNA unit KY962518.1.

Our own method builds upon the procedures for assembly and sequence-to-graph-alignment

developed during the course of the T2T Consortium’s reconstruction of CHM13. What is new

to our approach, however, is that it yields a mathematical model for turning read data from

any given sample, human or even non-human, into optimal repeat copies. We thus present a

generic method for rDNA repeat reconstruction, in contrast to a handcrafted approach fine-

tuned to a single dataset. Note that the model presented in this thesis only aims to reconstruct

the individual rDNA repeat copies, allowing for the study of their variation in a single sample

as well as between different samples. Resolving the order of the repeat copies and, finally,

haplotyping the copies, are the next steps on the way.

1.2.2 Related assembly methods

In its most basic outlines, our model is about selecting optimal paths on an assembly graph,

that are supposed to represent the repeat copies. In the preprocessing, we use MBG to con-

struct an assembly graph from all HiFi reads from a given sample, that map to the rDNA repeat

sites. Each node in this graph corresponds to a sequence of base pairs, and comes with a cover-

age value that denotes how often the sequence appears in the input data. Since we talk about

a graph with collapsed unitigs, these values can represent averages. We use GraphAligner to

align a set of very long, but error-prone ONT reads from the repeat sites to the graph. Now,

4

our main goal is to pick a fixed number of these ONT read alignments, that explain the cover-

age of the nodes as well as possible. This means, each selected alignment explains a certain

amount of coverage on each node that it contains, and we want to pick k alignments such that

as little coverage as possible is left unexplained. For each selected alignment, we then infer

the corresponding repeat copy by concatenating the sequences from the nodes the alignment

contains.

There are some instances where similar approaches have been applied successfully in the con-

text of genome assembly. Baaijens et al. [12] use a procedure for assembling viral quasispecies,

meaning mutant strains that belong to a single species of virus, that is based on optimization

on a variation graph. From a set of input contigs, the authors construct a directed variation

graph with a source node s and a sink node t through multiple sequence alignment. Each

node in the variation graph corresponds to a sequence of base pairs. For every node, the au-

thors compute an estimated coverage value. They proceed to construct s-t paths that form

potential virus haplotypes. For this, they make use of the fact that each of the input contigs

corresponds to a subset of nodes in the variation graph. This enables them to concatenate

overlapping contigs to form maximal-length paths (meaning s-t paths) on the variation graph.

The authors enumerate all possible maximal-length paths that can be formed through contig

concatenation. Since, in principle, an exponential number of possible contig concatenations

exists, the number of possible paths can become very large. Later, Baaijens et al. improved

the path enumeration step by developing a network flow approach for estimating contig abun-

dances, that forms the basis for constructing the concatenated paths [13]. When the possible

paths are generated, the authors assign an optimal multiplicity to all of them. ‘Optimal’ means

that the coverage of the nodes is explained as good as possible through the multiplicities of

the paths. In the end, the authors pick all paths that have a multiplicity above a cutoff that

can be chosen freely.

Other, somewhat similar models relate to solving the MINIMUM PATH COVER problem. For ex-

ample, Rizzi et al. [14] present a genome assembly-related application of this problem. Given

a directed graph, MINIMUM PATH COVER asks for the minimum number of paths, such that

each node in the graph is covered. On DAGs, the problem can be solved in polynomial time.

What sets our model apart from all previous approaches we have knowledge of, is its level

of generality. We work with an undirected graph and assume no source and target node.

The graph can have a complex structure where it is not trivially visible what could count as

a potential repeat copy, even though we attempt to work with graphs that are as clean and

structured as possible. The graph can also have unconnected components. In fact, once we

have aligned the ONT reads to the graph, our model becomes more similar to SET COVER than

to a classical graph problem. In section 2.4, we will thus prove the problem’s hardness by

reducing from a variant of SET MULTICOVER. Another point is that we make extensive use

of the new generation of long reads. Aligning the long ONT reads to nodes generated from

5

accurate HiFi reads enables us to generate a not-too-large set of full, potential repeat copies,

from which we can then select the optimal ones. We hope that the flexibility of our model,

combined with the availabilty of the latest generation of long reads, enables us to meaningfully

reconstruct a large number of long and potentially variant repeats, as they occur on the rDNA

sites.

1.3 Limitations of the model

The model that forms the basis of this thesis aims at reconstructing the individual repeat copies.

In other words, we focus on showing the variation that is present in the hundreds of rDNA

copies on a human genome. This leaves open the problem of resolving the order of the repeat

copies on the genome. We do not yet have developed a formal method to solve this problem.

However, we will present an idea for ordering the copies, that we consider promising, in section

4.2. Another challenge that we do not cover is haplotyping the repeat copies, that is, finding

out whether two given repeat copies are located on the same haplotype of a chromosome. This

problem is closely linked to resolving the order of copies on the genome. A good method for

haplotyping likely presupposes a good method for ordering. Thus, we consider haplotyping

the copies to be the third, and final, step towards complete reconstruction.

6

2 Method

This section entails a complete description of the methods we employ to reconstruct the rDNA

repeat copies. We start by giving an overview of the external tools we use in our workflow.

We explain the tools MBG [9] and GraphAligner [10] in some detail due to their importance.

Next, we describe the preprocessing steps that are necessary to bring the input data into a form

that we can process with our model. The methods we use for the preprocessing were largely

developed by the T2T Consortium during the assembly of CHM13 [6]. After having outlined

the preprocessing steps, we formally introduce our model for determining the optimal rDNA

repeat copies. We prove that the problem we thereby solve is NP-hard. Finally, we describe

methods for comparing our output with other reconstructions, especially the rDNA repeat

copies from T2T-CHM13, and for checking our output for plausibility.

2.1 External tools

We make use of a number of tools to process the data we examine, and to visualize the output

of our model. The most important ones are: MBG for the assembly of de Bruijn Graphs from

input sequences, GraphAligner for aligning reads to to sequence graphs, Bandage [15] for vi-

sualizing sequence graphs, minimap2 [16] for mapping reads or the output of our model to

reference sequences, IGV (Integrative Genomics Viewer) [17] for visualizing the output of our

model, and Samtools [18] for various kinds of data processing in our workflow, such as trans-

forming FASTA files into BAM or SAM files, or vice versa. Out of these, we will explain MBG

and GraphAligner in some detail below. This is because we use them for crucial preprocessing

steps, and they are necessray to bring the input data into a form that our model can process.

Thus, it is necessary to understand the broad outlines of how they work algorithmically, and

what kind of output they produce.

Note that we assume that MBG and GraphAligner take two types of reads as input: MBG works

with PacBio HiFi reads, while GraphAligner takes ONT reads. This is not mandatory for the

two tools, but for our purpose, we do not have to mind about other types of reads. We will

come back to the reads in section 2.2. For now, it suffices to know that HiFi reads are long

and have a very low error rate compared to their length of, on average, 13.5 kbp, while ONT

reads have even greater length, but also a much higher error rate.

2.1.1 MBG

In order to construct the assembly graph from PacBio HiFi reads, we use MBG, which is a tool

for assembling de Bruijn Graphs from long reads with a low error rate, especially PacBio HiFi

reads. It was also used in the T2T Consortium’s effort to assemble the CHM13 genome. We

will now give a brief description of its method. For details, see the supplementary material of

[9].

7

As input, MBG takes a set of reads, a k-mer size k, a minimizer window size w, and k-mer and

unitig abundance cutoffs a and u. In the first step of the assembly process, MBG compresses

all homopolymer runs in the input reads to length 1. That means, if the reads contain runs of

the same character, like, for example, ‘AAAA’, they are collapsed into one single character (‘A’

in this case). The reason is that most errors in HiFi reads concern the length of homopolymer

runs. Next, a hash value is assigned to all k-mers in the reads. For the assembly, MBG employs

only a subset of the k-mers, known as minimizers. They are selected in the following way:

For each window of size w, only the k-mer with the lexicographically smallest hash value is

chosen. In each read, we start with the window [0 ... w − 1] and select the respective mini-

mizer, then continue with [1 ... w], [2 ... w+ 1], and so forth. In order to save space, a hash

function is applied to the k-mers, compressing them into 128-bit integers. Now, an assembly

graph is constructed, where the 128-bit hashes form the nodes. Edges are added between

all nodes that correspond to hashes that are adjacent in the reads. Paths that do not branch

are collapsed into single nodes, called unitigs. Edges that correspond to sequences that have

an abundance smaller than a, meaning they occur less than a times in the reads, and unitigs

with an abundance smaller than u, are deleted from the graph. The remaining nodes are then

changed back to sequences of base pairs, and the homopolymer runs are inserted into those

sequences, resulting in the completed assembly graph. As output, MBG then produces a GFA

[19] file containing the nodes and edges of the graph, and the nodes’ corresponding sequences.

For each node, MBG outputs a coverage value denoting the abundance of the sequence in the

read data. Since many nodes are actually collapsed unitigs, this must be interpreted as an

average value.

Bluntification. One important, additional assembly step we have to consider is called bluntifi-

cation. This term refers to the removal of overlaps between the nodes in the assembly graph,

subject to the condition that the walks in the original assembly graph are preserved. As input,

we have an assembly graph, where pairs of sequences that correspond to pairs of adjacent

nodes overlap. As output, we get a blunted graph, meaning that each pair of adjacent nodes

corresponds to two adjacent sequences, but the sequences contain no overlapping characters.

In addition, all walks that are contained in the input graph have to be contained in the output

graph, and vice versa.

Literature that describes the exact implementation of bluntification in MBG is scarce, but we

want to give at least a description of the principle involved. In the following, we will thus

give a brief summary of the bluntification algorithm designed by Eizenga et al. [20], in order

to illustrate the procedure. Note that Eizenga et al. implemented their algorithm under the

name ‘GetBlunted’.

The authors point out that, in order to create a blunted graph from a non-blunted assembly

graph, it is sometimes necessary to duplicate nodes, respectively their sequences. Thus, they

seek to transform the graph using a minimal amount of sequence duplications. For this, they

8

exploit a special property of complete bipartite subgraphs in the assembly graph: for adja-

cent nodes that belong to two partitions of a complete bipartite subgraph, or biclique, with the

edges between the partitions marking the adjacencies, the overlaps can be merged transitively.

This means that, for each pair of sequences that corresponds to two nodes, the overlapping

affix is removed from the sequence on one of the nodes. No duplication of sequences is neces-

sary. In order to maximize the number of overlaps that can be removed by transitive merging,

the graph has to be partitioned into a minimum number of bicliques. This problem, referred

to as BICLIQUE COVER, is NP-hard. By employing reduction techniques and using beneficial

properties of the assembly graph, bluntification with a minimum number of sequence dupli-

cations is still often possible in acceptable time.

In general, the takeaway is that bluntification is possible under the guarantee that important

structural properties in the graph remain unchanged, but can come at the price of redundancy

of sequences.

2.1.2 GraphAligner

For aligning ONT reads to the blunted assembly graph, we use the tool GraphAligner. From

the alignments, respectively a subset of best-fitting alignments, we later select the paths that

represent the optimal repeat copies. Now, we give a brief description of the way GraphAligner

functions.

GraphAligner takes as input a set of reads and a bidirected assembly graph, where the nodes

correspond to sequences of base pairs. The assembly graph is usually stored in a GFA file,

as produced by MBG. As output, GraphAligner produces a GAF [21] file containing all ap-

proximate alignments of the reads to the graph that have sufficient quality. The read align-

ment is conducted via a complex seed-and-extend procedure that involves lots of techniques

for speedup, and adapts banded Dynamic Programming for approximate sequence-to-graph

alignment. For each read we want to align, the tool first searches for exact matches (seeds)

between subsequences from the read, and substrings from the sequences that correspond to

graph nodes. By default, the search for seeds is conducted through the comparison of mini-

mizers from reads and graph nodes. Alternative methods, namely search based on maximal

unique matches (MUMs), or maximal exact matches (MEMs), can also be employed. Once the

the tool has found seeds for a read, the next step is to extend them through approximate match-

ing. Extension is conducted through a modified version of the Needleman-Wunsch-Algorithm

[22] for global alignment via Dynamic Programming (DP). In order to speed up the alignment,

a cutoff is set, and only the fraction of the DP matrix where the cutoff is not surpassed is cal-

culated. This procedure is called banded alignment, or banded DP [23] [24]. We will come

back to the technique in section 2.5. In order to adapt banded alignment to the special re-

quirements of sequence-to-graph alignment, the algorithm of GraphAligner involves a number

of extensions of the method. For example, in order to explore different neighboring nodes,

9

several bands that take up different paths of the DP matrix are calculated. Also, the size of the

band, meaning the size of the part of each row in the DP matrix that is actually calculated, is

changed dynamically during the alignment.

Finally, we should note that GraphAligner tests for alignment of reads to the graph node se-

quences that are found in the input file, but also to the reverse complements of these graph

node sequences. DNA always comes in two strands. These are complementary to each other,

such that ’A’ matches to ’T’, ’G’ matches to ’C’, but run in reverse order. For the sequence ’AGAG’,

the reverse complement would thus be ’CTCT’. If a read matches to the node sequence as it is

found in the input file, this is marked by a ’>’ in the alignment file. If the read matches to the

reverse complement of the sequence in the input file, this is marked by ’<’.

10

2.2 Preprocessing

In order to run our model, we first need to bring the input data into an appropriate form. In

the following, we will describe how we get from the input, consisting of PacBio HiFi reads and

ONT reads, to the blunted assembly graph with aligned reads, on which we run the model.

This process involves the tools MBG and GraphAligner presented above. Altogether, the pre-

processing steps draw heavily on procedures and tools developed by the T2T Consortium for

the CHM13 assembly (see the section on related work as well as [6]). This includes the align-

ment of long ONT reads into the assembly graph in order to identify potential paths in the

graph. Without this work, as well as the progress in long-read sequencing over the last years,

our method would not be feasible.

As input, we have two types of long reads: PacBio HiFi and Oxford Nanopore (ONT). These

two types have different, and, to some degree, complementary properties that we are going

to make use of. The HiFi reads combine a sizeable length of 13.5 kbp on average with a very

low error rate of 0.2% [7]. As mentioned above, most of the errors concern the length of ho-

mopolymer runs. The greatest strength of the ONT reads, on the other hand, is their length.

They frequently exceed 100 kbp, and can be up to a million bp long [8]. This means that a

large number of ONT reads from a sample that maps to the rDNA repeat sites are long enough

to cover a whole repeat copy with its length of about 45 kbp. However, they have an error rate

of about 15% [6], which is a lot higher than in the HiFi reads.

For obtaining the reads that map to the rDNA repeat sites from a given human genome, we

look at complete HiFi and ONT read sets for the human sample under study. We map these

reads to a canonical rDNA unit (we use KY962518.11), and keep only those that match approx-

imately. When we have obtained the reads, we assemble a blunted sequence graph from all

the HiFi reads using MBG. All the repeat copies we later select are paths in this graph. For the

graph assembly, there are two things we have to pay attention to: One is k-mer size, and the

other is the abundance cutoff for k-mers and unitigs. Regarding k-mers, a large size leads to

low connectivity of the graph, while a short size leads to an increase in the number of nodes,

edges, and cycles in the graph. Regarding k-mer and unitig abundance, a high cutoff leads

to loss of potentially important nodes, while a low cutoff leads to the inclusion of erroneous

k-mers into the graph, and to a very large number of nodes and edges. This also means that

memory use and runtime increases when the cutoff is set too low. In order to find a good

k-mer size for assembling the graph, we tested a large number of different sizes on HiFi reads

from T2T-CHM13. In the end, a k-mer size of 351 gave the best compromise between graph

connectivity and efficiency. Note that this is a large k-mer size by traditional standards, but

1https://www.ncbi.nlm.nih.gov/nuccore/KY962518.1

11

the low error-rate of HiFi reads also allows for the use of k-mer sizes of several thousands of

base pairs in some contexts. Regarding abundance, we test a number of different cutoffs for

each sample under study, and then settle for the one that represents the best compromise on

this specific graph.

As for the structure of the graph, our goal is to work with as few a priori assumptions as possi-

ble. We want to be able to process complex input from largely unknown regions of the genome,

and therefore want to avoid dependency on assumptions about how these regions must look

like if we want to produce meaningful output. Thus, we do not define start or end nodes on

the graph, nor assume a direction of the edges, as a condition for running our model. We treat

the graph as undirected and otherwise take it as it is outputted by MBG. There is only one ex-

ception: We do have to get rid of the graph’s large-scale circular structure. This feature of the

graph is produced by the fact that the rDNA repeat copies form tandem arrays on the human

genome. Since we want each path we later select to correspond to exactly one repeat copy,

and the ONT reads are often longer than one copy, we need to modify the graph structure,

such that the paths we select do not correspond to two or more consecutive repeat copies. For

this, we first align the canonical rDNA unit to the graph. In the area where beginning and end

of the alignment are located, we then remove edges until there is no short path between the

beginning and the end of the alignment left. Note that this is the only manual intervention

into the output of MBG that is necessary. If there is future work on this project, it will involve

thinking about a more elegant, generic method for either disposing of the circular structure,

or working with it.

The next step is to align the ONT reads to the graph, for which we use GraphAligner with de-

fault settings. All alignments are paths over a subset of the graph nodes. The sequence of base

pairs that corresponds to an alignment is the concatenation of the sequences that correspond

to the graph nodes. For each node sequence, the GAF file contains information on whether

the sequence as it is stored in the GFA file, or its reverse complement, is part of the alignment.

All alignments are undirected, meaning there are two possible ways to traverse the path in the

graph. By aligning the ONT reads to the graph built from HiFi data, we combine the length

of the ONT reads and the precision of the HiFi reads, in order to obtain paths that potentially

represent single rDNA copies. For each ONT read, we only keep the alignment with the low-

est error rate. Before applying the model, we further restrict the set of alignments we select

from by keeping only those alignments with suitable length. For example, this can refer to all

alignments that differ at most 5%, or 10%, in length from the canonical rDNA unit. Figure 2

gives a visual overview of all the preprocessing steps.

12

Figure 2: A visualization of the preprocessing for our model. As input, we have PacBio HiFi and ONT reads (top

row). From the HiFi reads, we assemble a blunted graph, where each node corresponds to a sequence of base

pairs (middle row). For each node, we have a value c(v) that gives an estimate of the abundance of the

corresponding sequence in the input data. The blue numbers mark this value. When we have constructed the

graph, we align the ONT reads to it, such that each ONT read corresponds to a path in the graph (bottom row).

For example, the bright yellow ONT read from the top right image corresponds to the node path

1− 3− 5− 6− 7− 9 in the image at the bottom.

13

2.3 Repeat selection model

Following the preprocessing of the input data, we now introduce the model for finding the

optimal set of rDNA repeat copies. First of all, we are given an undirected graph G = (V, E).

Each v ∈ V corresponds to a sequence over the alphabet {A, C , G, T}, which we are going to

call sequence(v). Also, we have two functions c : V → R and w : V → R, that assign a coverage

value c(v) and a weight w(v) to each node. With regard to the output from the preprocessing

steps, we interpret the blunted assembly graph that MBG outputs as G, and, for each node in

the assembly graph, we interpret the corresponding sequence of base pairs as sequence(v). We

interpret the abundance value, or coverage value, MBG outputs for the sequence belonging to

a node v as c(v). It refers to how often the sequence occurs in the read data, or how many

times it is covered by the reads. Since, as described above, we deal with average values, this

value is not necessarily an integer, hence c(v) ∈ R. Through w, we assign a weight to each v

based on the length of sequence(v). As a default, we set w(v) = log(len(sequence(v))).

Furthermore, we are given a multiset RAln = {ra1, ra2, ..., ran}, where each element rai is a

set of nodes that form a path in G. We interpret the set of ONT read alignments from the

preprocessing as RAln. Each path rai represents a potential rDNA repeat copy. Note that RAln

is a multiset, so two paths rai , ra j can be identical. If two identical paths are selected, they

count as two independent repeat copies.

As our goal is to find the k rDNA repeat copies present in the sample, we want to select k ∈ N

paths from RAln that represent these copies. The set of selected paths we call ROpt . We thus

have to determine the optimization criterion or criteria based on which we select ROpt ⊆ RAln,

and we have to determine our k.

Regarding the optimization criterion, we want to optimally explain the summed coverage val-

ues c(v) of all the sequences that correspond to the nodes v, comparable to what Baaijens et al.

[12] do on the viral quasispecies graphs (section 1.2.2). The basic idea is that, since the value

c(v) comes from the number of times sequence(v) occurs in the reads, we can use it to esti-

mate how often sequence(v)must occur in the actual repeat copies. We assume that there is an

approximately proportional relationship between c(v) and the number of times sequence(v)

occurs in the repeat copies. We thus introduce the proportionality factor cavg ∈ R. It indi-

cates which value of c(v) we expect to be equivalent to one occurrence of sequence(v) in the

actual repeats. For example, cavg = 10 expresses that, if c(v) = 10 for a node v, we expect

sequence(v) to occur once in the repeat copies. Note that cavg is an approximate value, and

for any single node v, the coverage c(v) is likely not an exact multiple of cavg . However, we

assume that, if we choose cavg aptly, the relation holds on average. One possibility for choosing

cavg is to try different values and use binary search to find the one that leads to the minimal

objective value. Also, the average read coverage in the sample we examine can serve as an

orientation point.

14

We interpret cavg as the amount of coverage that one selected path rai explains on each node v

that is contained in rai . This leads us to the value pathcov(v). It denotes the number of paths

from ROpt that contain v, multiplied by cavg . Formally, pathcov(v) = cavg · |{ra ∈ ROpt |v ∈

ra}|.

An example might serve to illustrate what we do with the pathcov value. Imagine a node v

with a coverage value c(v) = 50. Imagine further that cavg is set to 10. Now, if five paths

from ROpt contain v, we have pathcov(v) = 50. Thus, a coverage of 50 counts as explained

for v. Since c(v) = 50, we have explained all coverage on v. In case only four paths from ROpt

contain v, we have pathcov(v) = 40, and thus, the coverage c(v) on v is under-explained by

10. Conversely, if six paths contain the node, we have over-explained its coverage by 10.

Since we do not wish to differ between over- and under-explanation, we can express the

relation between c(v) and pathcov(v) for any node v in terms of the absolute difference

|c(v)− pathcov(v)| between the two values. In the minimization function, we multiply this

term by w(v). This way, we can weigh the nodes, and it becomes more important to explain

coverage on some nodes, than on others. If we set w(v) = log(len(sequence(v))), this means

nodes with a long corresponding sequence have more weight than nodes with a short corre-

sponding sequence.

Regarding the number of paths to select k, we want a value that is identical to (or a good

estimator of) the number of rDNA repeat copies in the genome under study. Thus, in order to

derive k, we look at the set of PacBio HiFi reads. We divide the number of reads that map to

the canonical rDNA unit by the number of reads from the whole genome in order to estimate

the percentage of the genome that is made up of rDNA repeat copies. Since we know the

length of the human genome, as base pair counts for GRCh38 and CHM13 are available online

in the NCBI database2, we can now estimate the total length of the rDNA regions in base pairs.

And since we also know the average length of a single rDNA repeat unit, we can estimate the

number of repeat copies that fits best to our length estimate. Note that, for now, we do not

take ploidy into account. As is the case in haploid reference genomes, such as T2T-CHM13, we

treat each repeat copy as if it existed only once. The problem of ploidy is a future challenge

that is connected to the problem of haplotyping the copies.

Now, we have all the ingredients to define Problem 1: OPTIMAL REPEAT SELECTION. In the next

chapter, we will prove the hardness of this problem by giving an NP-completeness proof for its

corresponding decision problem. In order to solve the problem, we formulate it as an Integer

Linear Program (ILP). The objective function is convex, but can be translated into linear form,

enabling us to use Integer Linear Programming to tackle the problem. The set ROpt that the

model yields as output represents the set of rDNA repeat copies. We translate them back into

2www.ncbi.nlm.nih.gov/assembly/GCA_000001405.29 and www.ncbi.nlm.nih.gov/assembly/GCA_009914755.4

15

Problem 1.

OPTIMAL REPEAT SELECTION

Input: An undirected graph G = (V, E).

A multiset of reads RAln = {ra1, ra2, ..., ran}, where each read

is a path in G.

A value c(v) ∈ R for each v ∈ V .

A constant cavg ∈ R.

A weight w(v) ∈ R for each v.

A fixed value k ∈ N , denoting the number of paths to select.

Output: A subset ROpt ⊆ RAln with |ROpt |= k, such that
∑

v∈V |c(v)− pathcov(v)| ·w(v)

is minimized.

For each node v ∈ V , pathcov(v) = cavg · |{ra ∈ ROpt |v ∈ ra}|.

sequences of base pairs by concatenating the sequences that correspond to the nodes. Based

on the information on sequence orientation from the GAF file, we decide for each sequence

whether to pick the sequence as it is stored in the GFA file, or its reverse complement. Figure 3

gives a visual example for the complete process of picking rDNA repeat copies through solving

OPTIMAL REPEAT SELECTION.

16

Figure 3: Solving OPTIMAL REPEAT SELECTION on the example instance known from figure 2. In a), we have the

graph, with the ONT read alignments marked in different colors. The blue numbers above each node are the

values c(v)− pathcov(v). For a), the values are identical to c(v). The amount of coverage that one path explains

per node, cavg , is set to 2. The weight w(v) is set to 1. We want to select k = 3 paths that minimize the objective

function. Before we select any path, the value of the objective function equals
∑

v∈V c(v) ·w(v). In b), c) and d),

we always add one path to our selection. Note that, in this figure, we split the selection step into three different

subfigures for illustrational purposes. In reality, the problem is not solved iteratively, but globally by an ILP solver.

A selected path is marked by a fat, dotted line. In each subfigure, the value k above the graph shows the number

of paths we still have to select. The current value of the objective function is always shown in the bottom right

corner. In the end, the objective function has a value of 4, which is the minimal value we can achieve with the

available paths. In e), we have the 3 optimal paths that have been selected. Each of the nodes corresponds to a

sequence of base pairs. In f), we have the actual repeat copies, derived from the paths. The colors denote

different base pairs, while the numbers denote the nodes to which the subsequences correspond. The black lines

denote the boundaries of the sequences for the single nodes.

17

2.4 Hardness proof

For proving the hardness of the given problem, we prove the NP-completeness of the corre-

sponding decision problem. In a decision problem, we do not ask for an optimal solution, but

instead, we ask whether a solution exists that is smaller than a given value ` ∈ N. We define

the decision problem REPEAT SELECTION as follows:

Problem 2.

REPEAT SELECTION

Input: An undirected graph G = (V, E).

A multiset of reads RAln = {ra1, ra2, ..., ran}, where each read

is a path in G.

A value c(v) ∈ R for each v ∈ V .

A constant cavg ∈ R.

A weight w(v) ∈ R for each v.

Two numbers k ∈ N and ` ∈ N .

Question: Is there a subset ROpt ⊆ RAln with |Ropt |= k, such that
∑

v∈V |c(v)− pathcov(v)| ·w(v) ≤ `?

For each node v ∈ V , pathcov(v) = cavg · |{ra ∈ ROpt |v ∈ ra}|.

In order to proof the NP-completeness of the problem, we need to show that REPEAT SELEC-

TION ∈ NP, and that REPEAT SELECTION is NP-hard.

Lemma 1: REPEAT SELECTION ∈ NP.

Proof Given a certificate that an instance of REPEAT SELECTION is a YES instance, we must be

able to check in polynomial time whether the certificate is valid. For an instance of REPEAT

SELECTION, a certificate is a multiset of k reads from RAln. We validate it as follows: For each

node v ∈ V , we count the number of times it occurs in the reads from the certificate. We

multiply the counts with cavg to get pathcov(v) for each v. We then plug the pathcov(v)

values for v into the formula
∑

v∈V |c(v)− pathcov(v)| · w(v), and check whether it sums up

to at most `. This procedure can be executed in polynomial time: The counting step is in

O(|RAln| · |V |), calculating pathcov(v) for all v ∈ V is in O(|V |), and computing
∑

v∈V |c(v)−

pathcov(v)| ·w(v) is in O(|V |) as well. It follows that REPEAT SELECTION ∈ NP.

18

In order to proof the NP-hardness of REPEAT SELECTION, we show that SET MULTICOVER WITH

MULTIPLICITY CONSTRAINTS ≤p
m REPEAT SELECTION.

Problem 3. The SET MULTICOVER WITH MULTIPLICITY CONSTRAINTS (SMCwMC) problem is

defined by Hua et al. [25] as follows:

In the set multicover problem, we are given a universe N of n elements and a

family of sets F = {S1, ..., S|F |} where each Si is a subset of N , and we need to find

a minimum cardinality sub-family F ′ ⊆ F such that each element i ∈ N is covered

bi integral number of times. [...] Note that in order to minimize the total number

of picked sets, each set [...] can be chosen a number of times. Here if we further

require that each set [...] can be chosen at most a specified number of times, the

SMC problem becomes the SMC with multiplicity constraints problem.

For the decision variant of SET MULTICOVER WITH MULTIPLICITY CONSTRAINTS, we are thus

given a universe N , consisting of n elements, and a demand bi ∈ N for each element i ∈ N .

We have a family of sets F , where each S j ∈ F is a subset of N , and set a multiplicity constraint

m j for each S j . In addition, we have a value k ∈ N0. Now, we ask: Can we select F ′ ⊆ F with

|F ′| ≤ k, such that all elements i ∈ N are covered by the sets in F ′ at least bi times?

Note that we interpret the problem in the following way: If we select a set S j multiple times,

each selection adds 1 to the size of F ′. The reason is: If multiple selection of S j did not add to

F ′, the solution for SMC with bi ∈ N would be the same as when all bi were set to 1, as long

as we do not include the multiplicity constraints. In this case, we could just look for a subset

of F that covers each element from N , and then multiply the sets as often as we need to fulfill

the bi , with no penalty. This would imply that SMC for arbitrary bi is trivially identical to SET

COVER. Thus, we say that if we select a set S j multiple times, it adds to the size of F ′ each

time.

SMCwMC is a generalization of the NP-hard [26] problem SET COVER. It is easy to see that the

hardness of SET COVER implies hardness of SMCwMC, as any instance of SET COVER reduces

to an instance of SMCwMC where the demand bi is set to 1 for each i ∈ N , and the multiplicity

constraint m j for each set S j is 1 as well.

Our goal now is to show that SMCwMC reduces to REPEAT SELECTION. We are given an in-

stance I of SMCwMC, consisting of a universe N = {1, ..., n} with demands bi for each i ∈ N , a

family of sets F = {S1, ..., S|F |} with multiplicity constraints m j for each S j , and a value k. We

want to transform it into an instance I ′ of REPEAT SELECTION with a value k′ = k denoting the

number of reads we select, and a threshold ` we want to underbid, such that SMCwMC(I ,k)

= TRUE ⇐⇒ REPEAT SELECTION(I ′,k′,`) = TRUE.

There are two main difficulties. The first is that, in order to fulfill the demands, each element

i ∈ N from I has to be covered at least bi times. In contrast, in order to solve I ′, we compute

an absolute value for each node v. Thus, one cannot straightforwardly take a node vi ∈ V and

19

its value c(vi) as a substitute for an i ∈ N and its demand bi . The second difficulty is that,

for I , we look for a solution that consists of at most k sets from F , while for I ′, we look for a

solution that consist of exactly k reads.

The ideas for solving these two problems are the following: For each i ∈ N with coverage de-

mand bi , we create a node vi with c(vi) = bi and a second node v′i with a very large coverage

value c(v′i). These nodes are always contained in the exact same reads. This means that, while

coverages greater than bi increase the penalty for node vi , they still decrease the penalty for v′i .

The summed penalty for both nodes decreases until a coverage of bi is reached, and stays the

same for coverages greater than bi . Figure 4 at the end of this section provides a visualization

for how this works.

In order to provide that k′ is exactly k, we introduce k empty dummy reads. We can represent

them as a single dummy read rdummy = {;} with a multiplicity of k′. Thus, if the solution

contains less than k′ reads, we can simply add dummy reads, such that we have a solution of

size exactly k′.

Lemma 2: REPEAT SELECTION is NP-hard.

Based on the ideas described above, we construct I ′ in the following way: For each element

i ∈ N , we create two nodes vi and v′i . We set c(vi) = bi and c(v′i) =
∑

S j∈F m j , where m j is the

maximal allowed multiplicity for S j . This means c(v′i) equals the number of non-empty reads

in RAln, including their multiplicities. Thus, no node can possibly be covered by more than

c(v′i) reads. Now, for each set S j , we create a read. We want to be able to select the read as

many times as the multiplicity constraint allows the selection of S j in I . Note that it takes only

log(m j) bits to encode each multiplicity m j , so generating m j identical reads would require

an exponential number of bits relative to the number of bits we need to store the multiplicity

constraints. Since we want a polynomial-time reduction, we have to avoid this. In order to do

so, we just assign the multiplicities to the corresponding reads. This means we store the reads’

identical copies implicitly. For each element i ∈ S j , the read that corresponds to S j contains vi

and v′i . In addition to the reads that correspond to the sets S j ∈ F , we create an empty dummy

read with a multiplicity of k′ = k, and add it to our set of reads. We set cavg = 1 and w = 1.

This ensures that for each v or v′, pathcov(v) equals exactly the number of covering reads.

Finally, we set `=
∑

vi ,v
′
i
c(v′i)− c(vi).

Now, we have to show that SMCwMC(I ,k) = TRUE ⇐⇒ REPEAT SELECTION(I ′,k′,`) = TRUE

holds.

"=⇒ ":

Since we assume SMCwMC(I ,k) = TRUE, we know that, for I , we we have a set F ′ of at most

size k, such that all elements i ∈ N are covered at least bi times. Now, for I ′, we select the

reads that correspond to the sets in F ′. That means, if a set S j ∈ F ′ has a multiplicity of p, we

20

also select the corresponding read p times. As a consequence, all nodes vi and v′i are covered

at least bi times. For each vi and v′i , we know they occur in exactly the same reads, and are

covered the same number of times. Now, thanks to the additional nodes v′i , we have a solution

that is ≤ `. There are two cases to consider:

In the case that an element i ∈ N from I is covered exactly bi times, both of the correspond-

ing nodes in I ′ are also covered exactly bi = c(vi) times. In other words, we know that in

this case, pathcov(vi) = pathcov(v′i) = c(vi). It follows that |c(vi)− pathcov(vi)| = 0, and

|c(v′i)− pathcov(v′i)| = |c(v
′
i)− c(vi)| = c(v′i)− c(vi). The penalty for both nodes thus sums

up to c(v′i)− c(v). Figure 4c provides an example for this. The rule holds for all pairs vi , v′i .

Thus, we know that if all elements in I are covered exactly bi times,
∑

vi ,v
′
i
c(v′i)− c(vi) is the

total penalty in I ′. This is exactly `.

In the case that an element i ∈ N from I is covered more than bi times, we know that

pathcov(vi) > c(vi) holds for the corresponding vi . We also know that, since c(v′i) is at least

as big as the number of all reads that can possibly be selected, pathcov(v′i) = pathcov(vi) ≤

c(v′i). From pathcov(vi)> c(vi) follows that |c(vi)−pathcov(vi)|= pathcov(vi)−c(vi). From

pathcov(v′i) = pathcov(vi) ≤ c(v′i) follows that |c(v′i)− pathcov(v′i)| = c(v′i)− pathcov(v).

Thus, if we sum up the penalties for the two nodes, we get c(v′i) − c(vi) again. Figure 4d

provides an example for this. Now we know that for each element in I that is covered more

than bi times, we get a penalty of c(v′i)− c(vi) in I ′.

It follows that, for each element i ∈ N from I that is covered at least bi times, the summed

penalty for the two corresponding nodes is c(v′i) − c(vi). Thus, if SMCwMC(I ,k) = TRUE,
∑

vi ,v
′
i
c(v′i)− c(vi) is the total penalty for I ′. This is exactly `. If the solution for SMCwMC(I ,k)

required less than k sets, we can add the empty dummy read for I ′ with a multiplicty such

that the solution for REPEAT SELECTION(I ′,k′,`) has exactly k′ = k reads. We have thus shown

"=⇒ ".

"⇐= ":

Since we assume REPEAT SELECTION(I ′,k′,`) = TRUE, we know that, for I ′, we have k′ ≤ k

non-empty reads that together cover the nodes such that the total remaining penalty is at most
∑

vi ,v
′
i
c(v′i)− c(vi). Since, for two nodes vi and v′i , the summed penalty cannot become smaller

than c(v′) − c(v), we know that we have a total penalty of exactly
∑

vi ,v
′
i
c(v′i) − c(vi). This,

however, can only be the case if each node vi is covered at least c(vi) = bi times. The rea-

son is that, if pathcov(vi) = pathcov(v′i) < c(v) for nodes vi , v′i , then |c(vi)− pathcov(vi)|+

|c(v′i)−pathcov(v′i)|> c(v′i)− c(v). Thus, if a node vi is covered less than c(vi) = bi times, the

summed penalty for vi and v′i is always greater than c(v′i)− c(v). Figures 4a and 4b exemplify

this. We already know the summed penalty for vi and v′i is exactly c(v′)− c(v) for each pair

of nodes where pathcov(vi) ≥ c(v), and cannot get smaller. This means that as soon as the

summed penalty for one pair of nodes vi , v′i is greater than c(v′i)− c(vi), the total penalty for

I ′ is always greater than
∑

vi ,v
′
i
c(v′i)− c(vi) = `. It follows that if REPEAT SELECTION(I ′,k′,`) =

TRUE, each element i ∈ N from I must be covered at least bi times. We have shown "⇐= ".

21

We now know that SMCwMC reduces to REPEAT SELECTION. We still need to prove that the

reduction is possible in polynomial time. Creating vi and v′i from all i ∈ N is linear to the

number of elements in N , and thus in O(N). Setting the c(vi) and c(v′i) values is linear to the

number of elements in N as well. Creating the reads from the sets S j in F could in principle

take exponential time, since, for each set S j , we need as many reads as the multiplicity con-

straint for S j allows. These could be exponentially many. Thus, we only create one read for

each S j , and remember its multiplicity m j . This implicit creation of reads takes linear time

compared to the number of elements in F , and is thus in O(|F |). The same holds true for

creating the dummy reads. Again, there could be exponentially many of these. But if we just

create one dummy read and store its multiplicity, we only need constant time.

Since these are all the necessary steps to construct I ′ from I , the reduction takes only poly-

nomial time. It follows that SMCwMC ≤p
m REPEAT SELECTION, and therefore, we know that

REPEAT SELECTION is NP-hard.

Now, we can prove the main result.

Theorem 1: REPEAT SELECTION is NP-complete.

Proof REPEAT SELECTION ∈ NP and REPEAT SELECTION is NP-hard =⇒ REPEAT SELECTION is

NP-complete.

22

Figure 4: An example for two nodes vi , v′i ∈ V from I ′, created from an element i ∈ N with bi = 2 in I . We set

c(vi) = 2, and c(v′i) to a number that is larger than any possible coverage for a node. pathcov(v) denotes the

coverage for a node v. The orange areas in the diagrams denote the remaining penalties for the nodes. The blue

areas mark the coverage for the nodes, as long as it is not redundant. If the coverage is greater than c(v) for a

given node v, the redundant coverage is penalized. Hence, orange area is added for that node. Now, we look

what happens if read coverage increases. As long as coverage is below bi = c(v), the summed penalty for both

nodes decreases when the coverage increases. In the example, this means that if we have a coverage of 1

(subfigure b), the penalty is lower than if we have a coverage of 0 (subfigure a). For a coverage of 2, it decreases

further (subfigure c). If coverage is equal to bi or higher, the summed penalty remains constant if we increase

coverage further. Thus, the total penalty for a coverage of 3 (subfigure d) is the same as for a coverage of 2. This

way, we can translate the demands from I into penalties in I ′ even though we punish redundant coverage in

REPEAT SELECTION.

23

2.5 Output comparison

For the purpose of examining our results, it is necessary to have a method for comparing out-

puts. This is especially salient since for CHM13, there exists a reconstruction of the rDNA

repeat sites that has recently been conducted by the T2T Consortium [6]. Comparing the out-

puts of both reconstructions, and studying their differences, opens up the possibility to better

understand the results our model produces. Yet, even for resolving rDNA material from other

samples, for which no other reconstruction exists, a method for comparison is useful, because

it allows to see how different parameter settings in our model affect its output.

Our goal is to compare whole sets of repeat copies, rather than single copies. This means we

need a suitable metric that, given two sets of repeat copies S1 and S2, allows us to measure

how similar each copy from one set is to each copy from the other. For this purpose, we use a

model that employs edit distance and minimum weight perfect matchings on bipartite graphs.

In the following, we are first going give the definitions for these concepts.

Let us recall the definition of a bipartite graph. The definition is cited after [27]. Since we

took it from continuous text, we had to change the formulation slightly.

Definition 1. A bipartite graph is an undirected graph G = (V, E), where V is partitioned into

two sets, V1 and V2, such that there are no edges between vertices in V1 and there are no edges

between vertices in V2.

What we want is a complete bipartite graph, which is a special kind of bipartite graph.

Definition 2. A bipartite graph G = (V1, V2, E) is called a complete bipartite graph, if for all

pairs of nodes vi , v j with vi ∈ V1, v j ∈ V2, there exists an edge e = {vi , v j} ∈ E.

Figure 5: A complete bipartite graph with the two subsets V1, V2.

24

We say that the two sets of nodes V1, V2 correspond to S1 and S2. Each edge between two

nodes vi ∈ V1, v j ∈ V2 has a label that denotes the similarity between the two corresponding

strings. For expressing the distance between each pair of strings, we use the classic model of

edit distance. We use the simplest variant of the model, the Levenshtein distance [28] or unit

cost edit distance [27]. For abbreviation, we will simply refer to the unit cost edit distance as

edit distance in the text.

Definition 3. Given two strings s1, s2 over an alphabet Σ, the unit cost edit distance d(s1, s2)

equals the minimum number of edit operations that are necessary to transform s1 into s2. As

edit operations, we understand (1) Replacing a character in a string with another character

from A, (2) Inserting a character into a string, and (3) Deleting a character from a string.

Since it is time-consuming to compute edit distances, we introduce a cutoff c ∈ N for the edit

distance computation. When we compare two strings, and their edit distance surpasses c, we

skip the computation. Instead, we label the edge between the two corresponding nodes with a

high dummy value. Since we are primarily interested in strings that are similar to each other,

we can include c into our model without losing valuable information. We will soon see how c

allows us to increase the speed of computation. Now, we can define the problem we want to

solve.

Problem 4.

COMPLETE BIPARTITE EDIT DISTANCE GRAPH

Input: Two sets of strings S1, S2.

A cutoff c ∈ N .

Output: A complete bipartite graph G = (V1, V2, E) where the nodes in V1, V2

correspond to the sequences in S1, S2, and a function f : E→ N , such that

∀ e = {vi , v j} ∈ E : f (e) =







d(si , s j) if d(si , s j)≤ c

max{|si|, |s j|} else

The problem can be solved in polynomial time. For computing the edit distance between two

strings, we can construct an optimal global alignment via Dynamic Programming with the

Needleman-Wunsch Algorithm [22], where we set mismatch, insertion and deletion cost to

1, and match benefit to 0. This way, we can compute edit distances for all pairs of strings

si ∈ S1, s j ∈ S2 in O(|S1| · |S2| · max{|si|, si ∈ S1} · max{|s j|, s j ∈ S2}) time. The term

max{|si|, si ∈ S1} denotes the length of the longest string in S1. The runtime results from the

fact that we need O(|si| · |s j|) time for computing an optimal global alignment for two strings

si , s j , while we need to compute optimal global alignments for all pairs of strings where one

string is from S1, and the other from S2. Once we have the edit distance values, construct-

ing the complete bipartite graph with the labeled edges is trivially possible in O(|V |+|E|) time.

25

Figure 6: A simple form of banded DP for faster computation of an optimal global alignment for two strings.

Here, we have chosen a cutoff of c = 3. We only compute fields with a distance of at most 3 from the diagonal,

since all other entries can only be reached through more than 3 indel operations.

Since we have to deal with sets of hundreds of repeats, and every single repeat contains more

than 40000 characters, alignments take a lot of time in practice. In order to speed up the

computation, we thus use the technique of banded Dynamic Programming [23][24]. This

means that we use our cutoff c and, for each row of the DP matrix, we only compute entries

that have a distance of at most c from the diagonal. That way, we have to compute at most 2 · c

entries in each row. If, for example, c =
max{|si |,|s j |}

10 , we only have to compute at most 20% of

all entries in the DP matrix. See figure 6 for a visual example. In addition, if we have reached

a row where no entry with a value smaller or equal to c exists, we can skip the computation.

Note that for the purpose of this thesis, we only have implemented a naive and basic variant

of banded DP, and a number of more sophisticated speedups are possible.

If we want to compare rDNA repeat copies, for example the ones from our model with the

ones contained in T2T-CHM13, we have to keep in mind that the rDNA repeat sites are tandem

arrays. This means they are cyclic, and it is hard to pin down exact start and end positions

for the single repeat copies. Basically, one can choose any point, as long as the choice is

made consistently over the whole repeat array under examination. However, if we compare

our ouput with the sites in CHM13, it can be hard to find start and end points for the copies

from CHM13 that match perfectly with the start and end of our copies. To account for this

problem, we allow for free shift in our implementation of global alignment. This means, one

does not have to enter and leave the DP matrix at the top left, respectively the bottom right

corner. Instead, one can start at most m fields below, or at most m fields to the right of the

26

Figure 7: Banded DP with free shift. We have set m= 2, what means that one can start at most two fields away

from the top left entry without extra costs. One can leave the DP matrix at the minimal entry from the five fields

at the bottom of the diagonal. If we leave the cutoff c the same, and add a free shift value m, the size of the band

is 2 · (c +m).

top left entry, without costs. The same goes for leaving the DP matrix, where one can pick the

minimum from the last m fields of the bottom row, and the bottom m fields of the rightmost

column. The value m can be determined by the user. This way, we hope to ensure meaningful

comparison of copies, even if we do not find start points that match well. For a visual example,

see figure 7.

Once we have the complete bipartite edit distance graph for two sets of rDNA repeat copies,

we have a number of possibilites for comparison. One is to compute a minimum weight perfect

matching for the graph, that is, a subset of the graph edges such that each node has a degree

of exactly 1, and the sum of the edge weights is minimal. This way, we can assess the overall

similarity of the two sets, since we can see whether there are many pairs of similar copies even

if each node from one set can only be connected to one node from the other set. Note that it is

possible that the output sets are of different sizes. In this case, we can add dummy nodes and

edges with high values to obtain sets of equal size, and to compute a valid perfect matching.

Besides the minimum weight perfect matching, there is other valuable information we can

obtain from the graph. For example, we can compare how many nodes from each of the two

sets are connected to least one edge with a label that is below the cutoff c. If the number of

such nodes is far greater in one set than in the other, this is an indicator for greater variation

between the copies in the set where fewer nodes have good matches.

27

2.6 Output checking

In the absence of direct observations or a well-established ground truth, validation of com-

plex new findings, such as hundreds of long sequences of DNA, is a difficult subject-matter.

Validation strategies can easily become circular, since proof of a model’s correctness would

presuppose some degree of knowledge about the very object the model is supposed to newly

reconstruct. In other words, evaluating output becomes a hard task if we assume little or no

knowledge about how it should look like. This evokes the question how we can still be reason-

ably certain that our model produces good results.

To back up the claim that our model yields plausible output, we pick a unique subsequence

of each repeat copy from the output and look whether we can find these sequences in the

PacBio HiFi reads we use as input. To be precise, from each repeat copy, we want the shortest

subsequence that occurs exactly once in the entire set of repeat copies. The idea is that, since

the HiFi reads have an error rate of only 0.2% [7], a sequence that occurs in one of the real

rDNA repeat copies should have exact matches in some of the reads, if it is not longer than a

few hundred base pairs. Conversely, a sequence that does occur in the output of our model,

but not in the real rDNA repeats, should be absent from the reads. This is because it is unlikely

that errors in the reads, and errors in our model, produce exactly the same false sequence.

Since each of the sequences we test for occurs in exactly one repeat copy from our output, we

can check for each particular copy whether the variation it represents is plausible. Again, we

should also note that most errors in the PacBio HiFi reads relate to homopolymer runs. Thus,

we can increase the reliability of this method by applying homopolymer compression to both

the output of our model, and the HiFi reads.

For our method to work, we need to extract suitable sequences from the repeat copies that

form the output of our repeat selection model. The goal is to find subsequences for each copy

that occur in none of the other copies, and that are as short as possible. A close relative is

the problem of finding a shortest unique substring (SUS) for a given string. The method for

solving our problem will build heavily on methods for finding shortest unique substrings. Let

us first give the definition of a SUS.

Definition 4. Given strings s, s∗, where s∗ is a substring of s, we call s∗ a shortest unique

substring of s if the following requirements are fulfilled: (1) s∗ occurs exactly once in s, and

(2) There exists no substring s∗∗ of s with |s∗∗|< |s∗| that occurs exactly once in s.

Based on the concept of shortest unique substrings, we define Problem 5: SHORTEST IDENTI-

FIERS.

28

Problem 5.

SHORTEST IDENTIFIERS

Input: A set of strings S = {s0, s1, ..., sn}.

Output: For each si ∈ S, the shortest substring s∗i of si that (1) Occurs only once in si ,

and (2) Occurs in no other string in S.

For now, we call the substrings we want to find identifiers because each of them is unique to

one string from the set, and hence identifies it. The problem of finding the shortest identifiers

can be solved efficiently. For this, we use modifications of data structures that allow for the

efficient search of shortest unique substrings, namely suffix arrays [29] and LCP arrays [29].

We give definitions of these structures borrowed from [27] due to their succinct character.

Definition 5. The suffix array SAS[1..n] of a text S = s1s2 ···sn is the permutation of [1..n] such

that SAS[i] = j iff suffix S j..n has position i in the list of all suffixes of S taken in lexicographic

order.

Note that suffix arrays can be built in O(n2 · log(n)) with a naive approach, while it is also

possible to build them in linear time using induced sorting [30]. The suffix array can easily be

modified such that it contains the lexicographic ordering of all suffixes from a set of strings,

instead of just one string. This structure is called a generalized suffix array [31]. It is also pos-

sible to invert suffix arrays. While a suffix array contains the starting positions of all suffixes

of a string, sorted in lexicographic order, the inverted suffix array contains all lexicographic

ranks of the suffixes, sorted in the order of the suffixes’ starting positions. Regarding the order

of the starting positions for suffixes from a set of strings S = {s0, s1, ..., sm−1}, we say the first

n0 = |s0$| positions are occupied by the suffixes from s0, the next n1 = |s1$| positions are

occupied by the suffixes from s1$, and so on. You can thus find all lexicographical ranks for

suffixes from s0 in the generalized suffix array by querying 1,2, ..., n0 in the inverted suffix ar-

ray. The same goes for all other strings and their respective intervals in the inverted suffix array.

Another important data structure for finding the identifiers, that is closely related to the suffix

array, is the LCP array:

Definition 6. Given a string S = s1s2 · · · sn, with sn = $, and a suffix array SAS[1..n], a longest

common prefix array LC P[2..n] is an array such that LC P[i] stores the length of the longest

prefix that is common to suffixes S[SA[i − 1]..n] and S[SA[i]..n].

As the definition was taken from continuous text, we made some slight changes in the formu-

lation. For each suffix, the LCP array stores the length of the longest prefix it has in common

with its lexicographical predecessor. LCP arrays can be constructed in O(n) time using Kasai’s

Algorithm [32]. For fast search of SUS, there are different ways [33]. One is to use the LCP

29

array. For each suffix s′, we can compare its LCP value with the LCP value of its lexicographical

successor. That means, we compare the longest common prefix of s′ and its lexicographical

predecessor with the longest common prefix of s′ and its lexicographical successor. The max-

imum of both values denotes the length of the longest non-unique prefix of s′. This works

correctly because the suffix with which s′ shares the longest prefix must be one of it its lexi-

cographical neighbors. To get the length of the shortest unique prefix of s′, we can just add

1 to the length of its longest non-unique prefix. If we query the shortest unique prefixes for

all suffixes of a string and pick the shortest one among them, we know the SUS. This works

because, in a string, each substring is the prefix of a suffix of the string. Thus, the shortest

unique prefix is also the SUS. The only exception is when the longest non-unique prefix of a

suffix is the suffix itself. This time, we cannot add 1 to get a non-unique suffix, since we have

reached the end of the string. We thus have to catch this special case to get a correct result.

Since we know the starting positions of all suffixes, we can also infer start and end position of

the SUS.

If we have a set of strings S, and want to find the shortest identifier s∗i for a string si ∈ S, we can

proceed analogously. First, we build a generalized suffix array that stores the lexicographical

ranks of all suffixes for the strings from S. We also build the corresponding LCP array, and the

inverted generalized suffix array. Then, we query the inverted generalized suffix array for the

lexicographic ranks of all suffixes from si . We use the LCP array to identify the shortest unique

prefixes for all these suffixes. Since we compare the suffixes with the closest lexicographical

neighbors from all strings, we always get the shortest prefix that is unique in the entire set

of strings. From the shortest unique prefixes of all the suffixes, we can then again pick the

shortest one. This way, we get the shortest substring from si that is unique in the entire set of

strings. Hence, we have our identifier s∗i .

Once we have the set of identifiers, we can search them in the HiFi reads. As mentioned

above, we can apply homopolymer compression to both the reads and the output from our

repeat selection model to reduce error rates. This means, we compute the shortest identifiers

in the compressed repeat copies, and search them in the compressed HiFi reads. The low

error rate of the compressed reads allows for exact pattern matching. As long as we can find

identifiers with a length of, roughly, 1000 bp or less, we can confidently search for them in the

reads without having to fear a large number of false negatives. If an identifier is not in the read

data, this is likely due to an error by our repeat selection model. Conversely, if an identifier is

present in the read data, we do not expect it to be a false positive, unless the identifier is very

short. This is because it is unlikely that an error in our model produces by chance a sequence

that actually is in the data. Moreover, we count the number of reads in which an identifier is

found. So, we can see whether a sequence occurs very often in the reads, what suggests that

it is present in more copies than our model predicts, or very rarely, what might indicate a false

positive.

30

3 Results

With the repeat selection model, we assembled the rDNA repeat copies from CHM13, as well

as from five Human Pangenome Reference Consortium (HPRC) samples. As described above,

an assembly by the T2T Consortium already exists for CHM13, allowing for comparison of

the results. In the following, we first describe our assembly of the CHM13 repeats. On the

one hand, we look at how well the repeat selection model performs on the input graph. For

this, we examine how much of the coverage on nodes with different length and coverage

depth in the assembly graph the model is able to explain. On the other hand, we look at

the reconstructed repeat copies themselves, and present an IGV visualisation of an alignment

of the copies against the canonical rDNA unit. Based on the methods described in sections

2.5 and 2.6, we then move on to compare our reconstructed repeats for CHM13 with the T2T

assembly, and analyse them further. Finally, we present our reconstruction of the repeat copies

from the five HPRC samples.

The source code for the repeat selection model, as well as for the output comparison and

output checking methods, can be found on GitLab3.

3.1 Reconstruction of rDNA repeats from CHM13

3.1.1 Preprocessing and parameter settings

For our assembly of the CHM13 repeats, we used PacBio HiFi and ONT alignments correspond-

ing to version 1.0 of T2T-CHM13. The data is available online4. For version 1.0 of T2T-CHM13,

the reads were already aligned to the rDNA sites, but not resolved for single repeat copies. This

means the alignments contain pileups of reads on the sites were the rDNA regions are located

on the respective chromosomes. We thus did not have to search the reads that match to the

rDNA sites ourselves, as we would later have to do for the HPRC samples.

From the HiFi reads from all the five sites, we constructed a blunted assembly graph using

MBG. As k-mer size, we used 351. Regarding the k-mer and unitig abundance cutoffs, we

choose a value of 10 after experimenting with a number of different cutoffs. The resulting

output graph consisted of 4237 nodes and 5206 edges. The largest connected component

made up 65.14% of the graph, while 6.34% of the nodes were isolated. Average coverage

depth on the nodes was 27.6. The largest connected component showed a cyclic structure, as

expected when assembling a graph from highly similar tandem repeats. Figure 8 is a Bandage

[15] visualization of the assembly graph, focusing on the largest connected component.

3https://gitlab.cs.uni-duesseldorf.de/albi/albi-students/ma-frederik-oehl
4https://github.com/marbl/CHM13#telomere-to-telomere-consortium

31

Figure 8: A Bandage visualization of the blunted assembly graph for CHM13. This image focuses on the largest

connected component, with its characteristic cyclic structure.

As described in section 2.2, the next step consisted in breaking the cyclic structure. For this,

we first aligned the canonical rDNA unit KY962518.1 to the graph using GraphAligner. As

expected, the alignments roughly followed the circular struture of the largest connected com-

ponent, allowing us to break the circle in a position that corresponds to the beginning and end

of the canonical rDNA unit. For breaking the graph’s cyclic structure, we removed 12 edges in

total. Figure 9 shows a Bandage visualization of the graph, after breaking the cycle.

Figure 9: Bandage visualization for the CHM13 assembly graph, after the removal of edges to break the graph’s

cyclic structure.

32

The next step consisted in aligning the ONT reads to the graph. For this, we used GraphAligner

with default settings, meaning that alignments are considered valid if they have a similarity

of at least 65% to the corresponding sequence of base pairs formed by the graph nodes. From

the resulting, very large set of alignments we kept only the best one for each ONT read. From

these alignments, in turn, we kept only those that are at most 5% longer or shorter than the

canonical rDNA unit, meaning those that have a length between 42.5 and 47 kbp. This re-

striction means that we might miss more exotic copies with massive insertions or deletions,

as they can sometimes occur [5]. But since we do not know how often copies with strongly

divergent lengths are present in the DNA, and want to avoid a scenario were the model selects

copies that are useful for the optimization, yet much too short or too long to be realistic, we

decided to make this restriction. It is, of course, also possible to set different cutoffs. Later, in

the HPRC samples, we choose a more relaxed threshold of +/− 10% of the canonical rDNA

unit’s length. For CHM13, we found a total of 1517 alignments among the best alignments for

the ONT reads, that have the desired length. These form the universe from which we select

the optimal paths.

After the alignment, the next step was to determine the values for the number of paths to

select k, the coverage cavg that a single selected path explains on a node, and the weight w for

the nodes. We derived k from counting the number of HiFi reads both on the entire genome,

and on the rDNA repeat sites. Since we know the length of the human genome, and have

plausible estimates for the average length of a single rDNA repeat copy, we can thus calculate

the estimated number of repeat copies in our sample. This way, we arrived at k = 221, which

is very close to the T2T Consortium’s estimate of 219 copies [6]. For cavg , we started with

the average node coverage given by MBG (27.6). By running the model with different values

for cavg and using binary search, we found out that the value of the optimization function

becomes minimal for cavg = 17.5. We decided to work with this experimentally determined

value. Regarding the weight w, the main goal we want to achieve by introducing this value is

to include the length of the sequences corresponding to the graph nodes into the calculation.

Since longer nodes account for a greater part of the selected copies’ sequence, we want the

model to pick those with a higher priority. We decided to set w(v) = log(|sequence(v)|) for

each node v. We see this as a compromise between not prioritizing length at all (w(v) = 1

for all v), and possibly overprioritizing it by setting w(v) = |sequence(v)|, where some nodes

would have hundreds of times more weight than others.

3.1.2 ILP performance

As input for our model, we used the entire graph except for the isolated nodes. Furthermore,

we used those ONT alignments that fulfill the requirements, and the parameter settings de-

scribed above. We decided to remove the isolated nodes, since we considered it very unlikely

to find a single node that would serve as an entire repeat copy. We kept all the other compo-

33

nents of the graph, though using only the largest component might also be a possibility worth

considering. We formulated our model as an Integer Linear Program (ILP) and ran it on the

free solver that comes with Python’s PULP package (COIN) and, later, on the commercial solver

Gurobi 9.1.2. With COIN, we could reduce the gap between lower bound and best found so-

lution to under 0.5% within less than 300 seconds. Reaching an optimal solution, however,

turned out to be infeasible: even after 750000 seconds (208.3 hours), there was still a gap of

0.36%. In a later 250000 seconds (69.4 hours) run with Gurobi, we found a solution that is

about 0.1% better than the previous one after about 4400 seconds, but still could not prove its

optimality. A gap of 0.03% was still left over in this hitherto longest Gurobi run. Note that the

results discussed in the following come from the long COIN run, since the Gurobi run was only

performed at a later stage of the thesis, when the time window was narrower. Based on the

best bound found with COIN, this solution is a 1.0036-approximation of the optimal solution.

If we take the best bound we later found with Gurobi into account, we can even say that it is a

1.0015-approximation. Thus, we consider it meaningful enough for the analysis. For the later

experiments with the HPRC samples, we used Gurobi in all five cases. Note that on four out

of five HPRC samples, we could solve the REPEAT SELECTION problem to optimality without

problems, what indicates that this is possible for most instances, while the CHM13 instance

appears to be an unlucky case.

Regarding the output, we have 2739451.9 worth of weighted coverage that is either under-

or overexplained, with the best bound we found as yet being 2735590.9. The total, weighted

coverage of all nodes before running the model is 7800128.3. If we only count nodes that are

covered by ONT reads, the values are 2661516.9 and 7722193.3. Thus, the model explains

about 65% of the coverage on the nodes. The top row in figure 10 shows how strongly the

model over- or underexplains the coverage of the nodes on the input graph. For many nodes,

the value is close to 0, meaning there is little over- or underexplanation of their coverage.

Yet, there are clear exceptions. For one, we have about 700 unexplained nodes, meaning

their coverage is the same as before the run. All of these are nodes that are not covered by

any ONT alignment, so, by definition, the model cannot explain them. Also, as we explain

below, almost all have very low coverage. Perhaps more important are nodes whose coverage

is overexplained by more than 100%, what means they have more coverage after the run, than

before. In the most extreme case, a node is overexplained by a factor of about 250. There is

one more case of overexplanation by a factor of over 100, and four cases of overexplanation

by a factor of 40 to 50. For the plots in figure 10, we have removed these outliers and set a

cutoff of -10 and -20, respectively. The plots in the middle row of figure 10 show the over-

and underexplanation for all nodes, versus their coverages before the run, or c(v) values.

If we take the c(v) value into consideration, we see that it is very low for almost all of the

strongly overloaded nodes. Generally, the more coverage a node has before the run, the better

it is explained, though there is some bias towards underexplanation on nodes with very high

coverage values. For the unexplained nodes, it is true as well that they tend to have very

34

low c(v) values. In the left plot in the middle row, the points that correspond to unexplained

nodes are located to the very right. Almost all are concentrated in the bottom right corner,

and are visible as one green dot. When we plot over- and underexplanation of nodes against

the lengths of their corresponding sequences (bottom row in figure 10), we observe a similar

trend: if a node sequence is longer, it is more likely that the model explains its corresponding

node well. The general tendency seems to be that the model overloads short nodes with

low coverages in order to explain ‘pricey’ nodes, though other factors are important as well.

Naturally, it is easier to overexplain a node with low coverage, as this requires only a few

paths. The results from section 3.1.3 suggest that coverage fluctuation on the graph is another

contributing factor.

3.1.3 Visualization of unexplained coverage on the graph

In order to find out where the overloaded and unexplained nodes are located, we created an-

other Bandage visualization of the blunted assembly graph, and color-coded its nodes based

on how strongly the model over- or underexplains their coverage. We color unexplained nodes

in plain red (X11 color: #ff0000). For nodes that are underexplained by less than 100%, we

use five different shades of red, depending on how close the model comes to a perfect expla-

nation of their coverage. To be more precise: If a value of 0 means that a node is perfectly

explained, while a value of 1 means that it is unexplained, or underexplained by 100%, we

divide the interval (1,0] into sub-intervals (1,0.8], (0.8,0.6], and so on. Nodes on which the

model explains at most 20% of coverage fall into the interval (1,0.8], and we assign the X11

color #ffafaf to them. Nodes on which the model explains more than 20%, but no more than

40%, fall into the interval (0.8, 0.6], and we assign the X11 color #ffbfbf to them. Thus, the

more coverage the model explains on a node, the lighter is the shade of red we assign to the

node. For overexplained nodes, we do the same thing in reverse, but use shades of blue instead

of red. If the model overexplains a node by less than 20%, we assign the X11 color #efefff

to it. If the model overexplains a node by at least 20%, but less than 40%, we color the node

in #dfdfff. We use plain blue (#0000ff) if a node is overexplained by at least 100%, but less

than 120%. If a node is overexplained by more than 120%, we use darker tones of blue. For

outlier nodes whose coverage is explained more than 50 times, we use the color black.

Figure 11 shows the largest connected component of the graph. Note that the thickness of the

nodes in the figure is directly proportional to their pre-run coverage c(v). If a node u has a cov-

erage of 30 before we run the model, while a node v has a coverage of 300, v will be ten times

thicker than u in the figure. This way, it becomes easier to see how much of the total coverage

on the graph the model explains. The figure allows us to make some interesting observations.

Especially, one can see that most thick nodes in the bottom-left part of the graph are slightly

underexplained, whereas, in the top-right part of the graph, they are slightly overexplained.

At the top-right end, slight underexplanation becomes the norm again. This suggests that the

35

Figure 10: Explanation of coverage on the nodes of the CHM13 graph. In the histograms in the top row, the

x-axis denotes how strongly the coverage is under- or overexplained. A value of 1 means that a node is not

covered by any path. A value of 0 means the coverage on a node is perfectly explained. A value of less than 0

means that a node is covered by more paths than necessary to explain its coverage. The y-axis shows how many

nodes fall into each interval of size 0.2 (left) or 0.05 (right) on the x-axis. The right histogram is identical to the

left one, but zoomed in such that only values in the interval (−1,1) are shown.

In the scatter plots in the middle row, the x-axis is the same as in the top row. The y-axis now shows the coverage

depths for the nodes prior to the application of the model, also referred to as c(v) values. The color of the points

shows the density of the plot. Where the points are blue, there is low density, meaning fewer datapoints fall into

the given area. Yellow color denotes high density. In the scatterplots in the bottom row, under- or

overexplanation is plotted against node lengths.

36

Figure 11: The largest connected component of the blunted assembly graph. We color-coded the nodes, such that

red color denotes that a node is underexplained, while blue color means that a node is overexplained. The darker

the color on a node is, the stronger it is under- or overexplained. The thickness of the nodes is directly

proportional to their c(v) values.

HiFi read coverage for different regions of the rDNA repeat copies may fluctuate.

In order to see where the strongly overloaded nodes, as well as the unexplained nodes, are

located, we need to zoom in. Figure 12 shows an excerpt from the top-right part of the graph,

that contains a cluster of strongly overloaded nodes. We can see that the ‘blue shift’ in the

nodes coincides with a chaotic region on the graph. Compared to neighboring regions, it con-

tains more sub-paths of different lengths. In other, similar regions, we can observe similar blue

shifts, though they are not as pronounced. In figure 12, even some of the thicker nodes are

strongly overloaded. As the great majority of overloaded nodes in other regions of the graph

have low c(v) values, this is an unusual phenomenon. A possible explanation for blue shifts in

chaotic regions are coverage drops in these regions. When the summed c(v) value of all the

nodes that are covered by potential paths becomes too small in a given region, the model is

forced to overload some nodes. To answer the question why chaotic regions on the graph seem

37

Figure 12: A cluster of strongly overloaded nodes.

to coincide with coverage drops, further study is necessary. Possibly, there are some regions

on the rDNA repeats where the HiFi reads have unusually high error rates, what would lead

to a high number of unique k-mers and unitigs for these regions.

Figure 13 shows the bottom-left end of the graph, where a number of unexplained nodes are

located. In the left subfigure, unexplained nodes are colored in red, as described above. In

the right subfigure, nodes that are not covered by any path from RAln are colored in white. By

definition, the model cannot explain these nodes, since no ONT alignment contains them. As

explained in section 3.1.2, none of the unexplained nodes on the CHM13 assembly graph is

contained in any potential path. If a node is contained in one or more paths from RAln, it is

also contained in at least one path from ROpt . As a consequence, all of the unexplained nodes

are invisible in the right subfigure.

Among the unexplained nodes in the figure, there are two with a high c(v) value of around

1900. They are located at the bottom of the figure. These nodes may represent discrepancies

between the HiFi and ONT reads, as their corresponding sequences are frequent in the HiFi-

based assembly, but do not occur in the ONT reads. A far larger fraction of unexplained nodes

are low-coverage nodes with only one neighbor on the graph. In the figure, they stretch out

orthogonally from the main structure of the graph, and are thus visible as ‘antennas’. Antenna

nodes occur on the whole graph, but are most frequent in chaotic regions. This, as well as

their large number and low coverage, makes it unlikely that they represent potential start or

end points of repeat copies. Rather, we suggest to regard them as similar to isolated nodes.

38

Figure 13: A zoom-in on the bottom-left end of the graph. In the left subfigure, we depict the nodes in the same

way as in figures 11 and 12. In the right subfigure, we made nodes invisible with white color if they are not

contained in any path in RAln, and hence cannot be selected by the model. The short, black lines in the right

subfigure are edges between invisible nodes.

3.1.4 Repeat copies

As output, the repeat selection model yields the k individual rDNA repeat copies, where

k = 221 for the CHM13 sample. For exploring the structure of the copies, we mapped all

of them against the canonical rDNA unit KY962518.1, using minimap2 [16]. We found that

many of the copies differ considerably from the canonical rDNA unit. Especially, they can

contain larger insertions and deletions. When experimenting with minimap2 in order to pro-

duce the clearest alignment, we found that it works best to use the ‘-ax splice’ command. The

‘splice’ command is normally used for mapping mRNA, where the non-coding regions have

been removed, against DNA. This means that the tolerance for deletions in the alignment is

increased. For aligning our rDNA copies, of which some contain indels with a length of 1000bp

or more comapared to the reference unit, this approach yielded the cleanest results. In order

to produce an instructive visualization of the alignment, as shown in figure 14, we used the

Integrative Genomics Viewer (IGV) [17].

When we consider the visualized alignment, we can see that the coding region, which is located

at 0 to 13 kbp on the copies, is altogether more stable than the non-coding region. In the

coding region, the copies show polymorphisms with regard to the reference unit, but there are

no massive insertions or deletions. Also, there is no large-scale variation between the copies

in this region. Some parts of the coding region contain virtually no polymorphisms, while

others are more active. The active regions are in rougly the same spots for all of the copies.

When we look at the non-coding region, or intergenic spacer (IGS), the differences become

39

Figure 14: The CHM13 repeat copies that our model reconstructed, mapped against the canonical rDNA unit.

The copies are represented by the pileup of sequences that makes up the large bottom part of the figure. Each

horizontal segment in this pileup is one copy. Areas that are colored in grey show no difference to the canonical

rDNA unit. White spaces denote deletions, while longer blue spaces denote insertions. Colored dots denote SNPs.

We used minimap2 for the alignment, and IGV for the visualization. Approximately the leftmost third of the

image represents the coding region of the copies, while the other two thirds correspond to the non-coding region.

more pronounced. For one, in the region that separates the coding region from the IGS, about

a third of all the repeat copies show massive deletions with a length of 1000bp or more.

Some also have large-scale insertions of about 800bp length. In the visualization in figure

14, deletions are indicated by white spaces, while insertions are indicated by longer stretches

marked in blue. In the central part of the non-coding region, located roughly between 20 and

32 kbp, a fraction of copies shares a large number of point mutations and smaller insertions.

The other copies are more similar to the reference unit in this region, except for 21 copies that

have massive deletions at about 24 kbp. In contrast to some of the other parts of the IGS, the

region between 32 kbp and 42 kbp appears to be very stable. Like in the coding region, the

copies generally show little difference to each other, or to the reference unit. The differences

to the reference unit tend to be even smaller than in the coding region, which does have some

instability hotspots. Towards the end of the repeat copies, at around 42 kbp, there is another

region that shows marked differences between the output copies and the reference unit, and

between the copies themselves. These difference appear in the form of point mutations, as

well as insertions. It is also noteworthy that for some of the output copies, the alignment does

not encompass the first, or last, few thousand base pairs of the reference unit. It is not clear

whether this is an error produced by our model, or whether some rDNA copies actually start

later or end earlier, or whether they may differ greatly from the reference unit in the start and

end regions.

40

3.2 Comparison to the T2T Consortium’s Reconstruction

3.2.1 Repeat copies from T2T-CHM13

For comparing our output with the rDNA repeats from the T2T Consortium’s reconstruction,

we first extracted the individual rDNA copies from the T2T-CHM13 reference genome. For

this, we aligned the last 100 bp of the canonical rDNA unit against the reference, in order to

find plausible ending positions for each repeat copy. We treated each slice of DNA between

two ending points as one individual repeat copy. For the copies at the beginning of each repeat

region, we additionally had to search for a starting position with the first 100bp of the canonical

rDNA unit. We extracted all 219 rDNA copies from T2T-CHM13. Note that there are only 32

different copies in the reference genome, as pointed out in section 1.2.1. In contrast, all 221

output copies from our model are unique, even though the model does allow for multiple

identical copies. We visualized the T2T copies in the same way as we did with the output of

our model. Figure 15 shows this visualization. Note that the T2T copies, as they are shown in

the figure, are sorted according to chromosome of origin, so the order is not comparable to the

order of output copies from our model above. Still, certain structural similarities are visible.

Like in the output from the repeat selection model, the coding regions of the copies appear

similar to one another, though there are a number of differences to the canonical rDNA unit.

Between coding region and IGS, many copies show large deletions, or longer insertions. In the

region between 20 and 32 kbp, some copies have a large number of polymorphisms. Between

32 and 42 kbp, the copies appear stable, while at the end of the copies, there is another region

crowded with polymorphisms. These features are similar to the output from our model. Yet,

the differences between the two reconstructions are significant, as further analysis shows.

Figure 15: The CHM13 repeat copies from the T2T reference genome. We mapped the copies against the

canonical rDNA unit, just like the output copies from the repeat selection model above. They are sorted

according to their chromosome of origin, with the topmost ones from chromosome 13, and so on.

41

3.2.2 Edit distance-based comparison

For a copy-to-copy comparison of the two datasets, we computed a complete bipartite graph

of the kind we described in section 2.5. The two sets of rDNA repeat copies function as the

two sets of strings V1, V2. The edges in the graph denote the edit distances between each pair

of copies. As cutoff c, we choose 4500, meaning that we label an edge between two nodes

with the edit distance if the two copies have a similarity of, approximately, 90% or more. We

allow for a free shift of up to 1000, in order to anticipate possible differences in the exact

start points of the copies from the different sets. If c is surpassed, we set the edge label to the

total length of the longer one of the two strings. This large dummy value ensures that, in the

MWPM, edges between nodes with more than 90% similarity are selected with priority.

Strikingly, in the complete bipartite edit distance graph, only 54 out of 221 copies from the

repeat selection model have an edge to at least one of the T2T copies, whose value is smaller

than 4500. Conversely, 215 out of the 219 T2T copies are adjoined to such an edge. The

MWFM contains only 53 pairs of nodes that are connected with an edge whose value is below

4500. Figure 16 shows a Graphviz-based [34] visualization of the bipartite edit distance graph,

containing only the edges with values below 4500, and only the nodes that are adjoined to at

least one such edge.

Figure 16: A visualization of the bipartite graph between the repeat copies from the two sites. All edges with

values over 4500 were deleted, so the connections between similar nodes become visible. All nodes that became

isolated through the edge removal were deleted as well. Orange nodes stand for copies from the repeat selection

model, while blue nodes stand for T2T copies. The bottom picture is a zoomed-in excerpt from the top picture,

that shows the top picture’s center. The pictures were created with Graphviz [34], via a Python interface.

42

In the graph, blue nodes correspond to copies from the T2T reference genome, while orange

nodes correspond to copies from the repeat selection model. As we can see, small numbers of

orange nodes are often connected to large numbers of blue nodes. The most likely explana-

tion is that clusters of blue nodes that are connected to the same few orange nodes represent

identical, or very similar, repeat copies. After all, the T2T reference genome contains only

32 different copies, and the most abundant of these occurs 66 times. There are also some

instances where clusters of orange nodes and clusters of blue nodes are densely connected,

as on the left and bottom-left side of the top figure. In these cases, we presumably have a

high similarity between a number of copies from the repeat selection model and a number of

copies from T2T, as well as between copies that come from the same set. In other instances,

orange nodes are only connected to a single blue node. Thus, some of the copies from our

model that do have similar ‘partners’ in the T2T stack, do not seem to have much in common

with any of those copies that are abundant in the DNA according to the T2T reference genome.

On the whole, a smaller subset of rDNA copies from our model is similar to a far larger subset

of the T2T copies. For many copies from our repeat selection model, there exists no similar

copy in the T2T reference, while for almost all of the copies from T2T, there exists a similar

copy from our model. Given figures 14 and 15, such a big difference was not necessarily

expected, since, even though the two visualizations may not look similar in all regards, they

do at least show some structural similarities. It is possible that the IGV-based visualization

overemphasizes similarities between the two datasets, though further analysis is required to

find out how and why this might happen.

3.2.3 Analysis and comparison through shortest identifiers

We interpret the results from the edit-distance based comparison as evidence that, compared

to the T2T reference genome, the repeat selection model predicts significantly higher variation

in the rDNA repeats. With the method from 2.6, we investigated this finding further, in order

to find out whether the prediction that our model makes is justified. For each of the different

repeat copies from both datasets, we determined the shortest identifier, in order to search it in

the set of HiFi reads from CHM13. If the shortest identifier from a given repeat copy is present

in the read data, we regard this as evidence that the copy, or at least those features of the copy

that tell it apart from all other copies, is present in the real DNA.

We conducted two runs: one with homopolymer compressed repeat copies, and one with

uncompressed copies. Through the homopolymer compression, we hope to reduce the number

of false negatives when we search the identifiers in the set of PacBio HiFi reads, since most

errors in these reads relate to homopolymer run lengths. Figure 17 shows the lengths of the

shortest identifiers from the copies in both datasets. As it turns out, about 100 copies from the

repeat selection model output have identifiers that are shorter than 50 base pairs. The great

majority of copies has identifiers that are shorter than 500 bp. This is especially true for the

43

compressed copies, where no identifier is longer than 1000 bp. We can thus say that, given the

low error rate of PacBio HiFi reads, false negatives are unlikely, especially for the compressed

identifiers. Regarding the 32 different T2T copies, the situation is a bit different. Again, the

majority of the copies has identifiers that are no longer than 1000 bp. However, there are five

outliers with identifiers that are significantly longer. In the most extreme case, the shortest

identifier is about 22000 bp (uncompressed copies), or 16000 bp (compressed copies) long.

Thus, for some T2T copies, the shortest identifiers are probably too long to trace them even in

the highly accurate HiFi reads.

Figure 17: Histograms that show the lengths of the shortest identifiers for all repeat copies. The top row shows

the identifier lengths in the copies from the repeat selection model. The bottom row shows the lengths for the 32

different T2T copies. The plots in the left column show the lengths for identifiers in the uncompressed copies.

The plots in the right column show the lengths for the compressed copies.

For the repeat copies from our model, we searched all compressed and uncompressed iden-

tifiers in the sets of compressed and uncompressed PacBio HiFi reads, respectively. For 182

out of 221 uncompressed identifiers, and 183 compressed identifiers, we could find at least

one match in the reads. Thus, for the majority of the copies generated by our model, there

is at least some supporting evidence. As mentioned before, all repeat copies produced by the

repeat selection model were unique, even though it is also possible for the model to select non-

unique copies. For 143 uncompressed identifiers, and 160 compressed identifiers, we could

find at least 10 matches in the reads. We thus see more identifiers with a higher number of

matches when we include the homopolymer compression, what indicates that this additional

44

step improves the quality of our results. Interestingly, there are also 59 uncompressed, and

49 compressed identifiers that occur 100 times or more in the read data. This indicates that

for some identifiers, there is more evidence in the data than our model can explain. These

might occur more often in the real DNA, than the repeat selection model predicts. It is also

interesting that fewer compressed than uncompressed copies occur more than 100 times in

the data, indicating that runs with uncompressed data might also lead to overrepresentation

of some identifiers. Figure 18 shows the results for both runs, with the number of matches

for each identifier plotted against the identifiers’ length. It is visible that the compressed run

(bottom row) tends to produce a higher number of matches for long identifiers.

Figure 18: Length and number of matches in the HiFi reads for each identifier of the repeat copies that our model

generated. The x-axis denotes the number of matches in the read dataset. The y-axis denotes the length of the

identifiers. The top row shows the results for the uncompressed identifiers and reads, the bottom row shows the

results for the compressed ones. The plots in the right column are zoomed-in versions of the plots in the left

column, that show only identifiers with at most 200 matches.

For the 32 different T2T copies, we conducted the same experiments as for the copies from

the repeat selection model. Figure 19 shows the results in the same way as figure 18 did for

the previous run. For 27 out of 32 uncompressed identifiers, and 30 compressed ones, we

could find at least one match in the HiFi reads. As the bottom right plot in figure 19 shows,

homopolymer compression allowed us to find matches for three long identifiers with a length

of 5000 bp or more. For 20 compressed and uncompressed identifiers, respectively, we could

find more than 100 matches in the read data. This was expected, since many of the T2T copies

45

occur more than once on the repeat sites from the reference genome.

Figure 19: Length and number of matches in the HiFi reads for each identifier from the T2T copies.

On the whole, we assume that at least those 160 identifiers of the repeat copies from our model,

that occur 10 times or more in the homopolymer compressed reads, are present in the real data.

We assume it is very unlikely that the exact same, false sequence occurs multiple times in the

highly accurate reads, and is also selected by our model as part of an optimal repeat copy.

Thus, we conclude that a considerable part of the variation that our model predicts is genuine.

At the same time, however, there are 38 identifiers for which there is no evidence. Also, 49

identifiers occur in the data much more often than we would expect based on the copies the

repeat selection model produces. Thus, in total, it is still likely that the model generates too

many variant copies. Regarding the T2T copies, many of the corresponding identifiers have a

high number of matches in the read data. This indicates that it is justified to assume that these

copies, or very similar ones, do indeed occur multiple times in the DNA. At the same time, as

mentioned above, there is also evidence that supports many of the unique copies generated

by the repeat selection model. We conclude that the extent of variation between individual

repeat copies in the real genome must be higher than the T2T reference genome predicts, but

lower than the repeat selection model predicts.

46

3.3 Reconstruction of rDNA repeats from HPRC samples

We used the repeat selection model to reconstruct the rDNA repeat copies from five human

samples provided by the Human Pangenome Reference Consortium (HPRC). The samples we

used are HG01258, HG01361, HG01952, HG02257, and HG03579. Read data for them is

available online5. More information on the HPRC, and the quickly developing field of pange-

nomics in general, can be found in Miga et al. [35].

In all five cases, we started our workflow with the unmapped HiFi and ONT reads from the

complete samples. We extracted the reads that align to the rDNA repeat sites by mapping

all reads to the canonical rDNA unit KY962518.1. From the reads we found, we constructed

blunted assembly graphs with MBG. Since these graphs contained two to three times as many

nodes and edges as the assembly graph for CHM13, we decided to raise the k-mer and unitig

abundance cutoffs from 10 to 24. The resulting, simpler graphs contain between 3142 and

5587 nodes, while the graph for CHM13 contains 4237 nodes. All five graphs showed a cyclic

structure in their respective largest connected component. We broke the cycles in the same way

we did for CHM13. On each graph, we had to remove about 10 edges. Aligning KY962518.1

to the graph for finding a suitable spot to break the cycle turned out slightly more difficult than

in the case of CHM13. For HG01258, HG02257 and HG3579 it was not possible to find an

end-to-end alignment for the reference unit with GraphAligner. This indicates that the rDNA

repeats from the HPRC samples differ more strongly from the reference unit, than those from

CHM13. However, we could align the coding region of KY962518.1 successfully in all cases. As

the coding region marks the beginning of the rDNA reference unit, this is sufficient to find the

right place for breaking the cycle. Incidentally, this experience also confirmed the assumption

that the coding region is the most stable part of the rDNA repeats.

Regarding the sequence-to-graph alignments generated from the ONT reads, we decided to

admit alignments into the set of potential repeats RAln if their length differs by at most 10%

from the rDNA reference unit. This is more relaxed than in the case of CHM13, where we only

allowed a length difference of 5%. This change is a reaction to the observations described

in the last paragraph, which indicate that the repeats from the HPRC samples may be more

different from the reference unit than those from CHM13. For determining k, the number of

repeats to select, we proceeded in the same way as for CHM13. The same goes for the weight

w(v), which we again set to log(|sequence(v)|) for each node v. For determining the coverage

cavg that a path explains on each node it traverses, we conducted runs with several different

values for each sample. With binary search, we approximated an optimal value, that reduces

the amount of overexplained and underexplained coverage as much as possible.

5https://github.com/human-pangenomics/HPP_Year1_Data_Freeze_v1.0

47

Table 1 lists up the parameter settings for all five samples, as well as the results of the runs with

our model. Some columns in the table require a short explanation. Coverage pre-run denotes

the total amount of weighted coverage on all nodes in the graph before we ran the model. This

includes nodes that are not covered by any ONT alignment. Coverage post-run denotes the

total amount of weighted, over- or underexplained coverage after we ran the model. For de-

termining the percentage of explained coverage, we compute
�

1− Coverage post-run
Coverage pre-run

�

· 100. If

the gap between the best solution and the best bound for a sample is smaller than 0.01%, we

say that we have found an optimal solution.

For solving the Integer Linear Program, we used the commercial solver Gurobi 9.1.2 in all

cases. Note that for all samples except HG01258, we could solve the OPTIMAL REPEAT SELEC-

TION problem to optimality in less than 7500 seconds. In the case of HG02257, it took only

55 seconds to find an optimal solution. Only for HG01258, a small gap of 0.02% remained

even after 7500 seconds. Since we could find optimal or near-optimal solutions quickly for

the HPRC samples, we suspect that CHM13, where both COIN and Gurobi could not find prov-

ably optimal solutions in runs that took several days, is an exceptional case. We expect that,

on most instances, an ILP based on our model can produce an optimal solution within a few

hours. However, some uncertainty does remain, as runtime can vary by orders of magnitude

between different instances.

Sample |RAln| k cavg Coverage Coverage Explained ILP Gap
pre-run post-run coverage runtime

HG01258 902 157 22 6843835.8 2523671.1 63.1% 7500s 0.02%

HG01361 689 112 27 5798865.7 2479513.9 57.2% 485s < 0.01%

HG01952 1485 152 27 7601852.0 2801403.8 63.1% 1826s < 0.01%

HG02257 397 124 21.5 4691861.1 1801916.7 61.6% 55s < 0.01%

HG03579 811 230 33 15272751.3 6014994.3 60.6% 544s < 0.01%

Table 1: Parameters and ILP results for the HPRC samples.

Regarding the coverage that is left over on the different instances after running the repeat

selection model, further analysis is necessary to determine where it comes from. Based on

the analysis of the CHM13 instance, we suspect that, again, some nodes are not covered by

any ONT alignment and thus cannot be explained, while some others might be significanty

overloaded by the model.

For the repeat copies from the HPRC samples, we created IGV-based visualizations in the same

way as we did for the copies from CHM13. In all cases, we aligned the copies to the rDNA

reference unit with minimap2, and ran IGV on the resulting alignment. Figures 20 and 21

48

Figure 20: IGV visualizations for alignments of the repeat copies for HG01258 (top), HG01361 (middle) and

HG01952 (bottom) against the rDNA reference unit.

49

Figure 21: Visualized alignments for HG02257 (top) and HG03579 (bottom).

show these alignments. They reveal notable differences between the samples. For example,

the deletions between coding and non-coding region are pronounced in HG01258, and even

more so in HG02257 and HG03579, but mostly absent in HG01952. HG02257 and HG03579

also show a large number of polymorphisms in this region. For some copies from HG01361,

minimap2 failed to align the first 15 to 20 kbp to the reference unit. This might indicate the

presence of large-scale deletions, or other massive structural differences. The polymorphisms

in the central part of the IGS, that we could observe in CHM13, are mostly absent from the

HPRC samples. The only exception are some copies from HG01952, that show long deletions

in this area.

50

4 Discussion

4.1 Evaluation of Results

We presented assemblies for the individual rDNA repeat copies of six different samples. This

includes CHM13, as well as five samples provided by the Human Pangenome Reference Con-

sortium. On all instances, we could either solve the OPTIMAL REPEAT SELECTION problem to

optimality, or find near-optimal solutions with an approximation factor of 1.005 or better. In

all cases, it was possible to find such a close approximation within 7500 seconds or less. The

time for solving the problem to optimality on different instances does, however, vary greatly.

The two most extreme cases were HG02257, where we found an optimal solution after 55

seconds, and CHM13, where we ran the solvers for several days, yet could not solve the prob-

lem to optimality. Despite this variance, we can confidently say that, for the instances we

examined, it was always possible to find a close approximation of an optimal solution in an

acceptable timespan. We expect this to be similar on other instances.

In order to assess the quality of our findings, we analysed the assembly results for the CHM13

instance, and compared them to the rDNA assembly conducted by the T2T Consortium. We

could show that the results from both approaches differ considerably, especially in the sense

that our model predicts greater variation between the individual copies. By retracing the

shortest identifiers from each individual repeat copy in the HiFi read data, we could find ev-

idence that a lot of the variance that our model predicts might indeed be present in the real

DNA. However, we could also show that some identifiers of the copies from our model are

not present in the HiFi data, while others are present significantly more often than the repeat

selection model predicts. Thus, the model probably overestimates the variation between rDNA

copies in the real genome by some degree.

For the HPRC assemblies, we did not analyse the results in the same detail as for CHM13. In

part, this is due to time constraints. We focused our analysis on CHM13, because it serves as the

basis for the T2T Consortium’s reference genome. It thus offers a very convenient opportunity

for comparing our output with state-of-the-art results. We expect a shortest identifier-based

analysis of the HPRC samples to yield similar results compared to CHM13. Since a divergence

in results could tell us something about what weak points our model may have, and on which

instances it works particularly good or bad, we consider such an analysis to be a good starting

point for future attempts to overhaul and improve the model.

What we did do with the HPRC samples was creating visualizations based on alignments

against the canonical rDNA unit. These visualizations serve to uncover structural differences

between the different copies from each individual sample, as well as between the complete

samples. Through the visualizations, we could show that our model predicts large deletions

and insertions for a subset of copies from all of the samples. Most of these features are located

51

on the same hotspots, for example the junction between the coding and non-coding region of

the copies. From sample to sample, the extent and frequency of these large-scale deviations

from the canonical rDNA unit differ strongly. The same is true for single-nucleotide poly-

morphisms (SNPs). For these mutations, the model predicts some recurring hotspots. One is

located at the end of the copies, and another one in the region between 20 and 32 kbp. Some

other ones are present in the coding region. While the hotspots in the coding region and at the

end of the copies are present in all samples, the region between 20 and 32 kbp is less active

in some of the samples, especially HG01258, HG01361 and HG01952. The presence of large-

scale structural differences between individual rDNA copies, and between different samples,

is, in principle, consistent with what is known from the rDNA repeat copies (see especially

Smirnov et al. [5]). Our model might even underestimate the copies’ variance in length, since

we restricted the set of potential paths on the graph, that we select from, to paths whose cor-

responding sequences are similar in length to the canonical rDNA unit. However, there is also

some disagreement with the literature regarding where exactly the most variant parts of the

copies are located. See figure 1 in Smirnov et al. [5] for a visual comparison. One suggestion is

that this difference might result from analysing samples that come from different populations.

We have not included population data into our present analysis, but a comparison between

the alignments of the HPRC samples in section 3 shows that the extent and location of the

variability hotspots can vary to some degree between different samples. A future study with a

larger sample size, that takes ancestral data for different individuals into account, might serve

to examine this assumption further.

On the whole, we believe that our model is able to produce viable results for a diverse range

of samples, and in an acceptable timeframe. Yet, there is also room for improvement. One

important point is that, in the preprocessing, we currently have to remove edges manually to

break the cyclic structure of the assembly graph’s largest connected component. It would be a

clear improvement if we were able to automate this step. Also, the current depencence of our

model on a blunted assembly graph may be disadvantageous in some cases, since it is hard to

assess in what way redundant nodes, that are created in the bluntification process, may distort

the results. Another point is the decision-making regarding the parameter settings. Right now,

the methods for determining k and w(v) have, to some degree, an ad hoc character. In the

case of cavg , we tune the parameter by running the model a number of times, to search a value

that leads to the least amount of unexplained coverage. Stricter criteria for choosing these

values would be welcome.

More points of potential improvement can be derived from the analysis of the model’s output.

This relates especially to the findings from sections 3.1.2, 3.1.3 and 3.2.3. We know that the

model overloads some of the nodes in the assembly graph significantly, while some other nodes

are not covered by any of the ONT alignments that serve as potential paths. Even though this

mostly affects shorter nodes with low coverage, we need to get a more precise understanding

of how this comes about, in order to assess possibilities for improvement. Moreover, from the

52

shortest identifier-based analysis of the output, we know that the model tends to overestimate

the variation between the different rDNA copies in the genome. Again, we need to know more

about why this happens, in order to make suitable adjustments. One possible improvement

might consist in setting higher k-mer and unitig abundance cutoffs for the assembly graph,

what would lead to fewer nodes and edges, and hence fewer possibilities for variant paths.

4.2 Future Work

As outlined in the last paragraph, there are a number of possibilities for improving the work

we presented in this thesis, and a revision of the current model is a worthy future goal. Aside

from this, there is another, bigger challenge. In section 1.3, we pointed out that the model we

present in this thesis only yields an assembly of individual rDNA repeat copies. This allows for

comparing the structure and variance of rDNA repeats within a sample, and between samples.

Moreover, for now, the number of rDNA copies we assemble is based on the assumption that

we reconstruct a haploid genome. Real human genomes, as is well known, are diploid, while

other organisms can have even higher ploidy. For a complete reconstruction of the rDNA re-

peat sites, two more steps are therefore necessary. The first one consists in partitioning the

repeat copies according to their chromosomes of origin, and resolving the order of the copies

on the chromosomes. The second one consists in haplotyping the copies. This means, we need

to move from a reference genome-like model of the repeat sites, that yields one idealized hap-

lotype for each of the five sites, to an assembly that includes two different haplotypes for each

chromosome. Note that it is possible that not only the individual copies, but also the number

of copies on a given chromosome, might differ between the two haplotypes.

We now want to present a first sketch of a method for partitioning the repeat copies onto the

five different chromosomes, as well as for resolving the order of the copies on the chromo-

somes. It is based on solving a variant of the TRAVELING SALESMAN problem. As input, the

proposed method takes the set of assembled copies from the repeat selection model, and the

unaligned ONT reads from the repeat sites. The main idea consists of the following steps:

1. For each pair of repeat copies, i and j, cut both copies in half, and create two sequences si j

and s ji out of the halves. The first half of si j is the second half of copy i, and the second half

of si j is the first half of copy j. Conversely, the first half of s ji is the second half of copy j, and

the second half of s ji is the first half of copy i.

2. Map the ONT reads against each si j , to find out how much support there is for the sequences,

and thus, how plausible it is that the corresponding copies are neighbors in the genome. To

assess the plausibility for each sequence si j , we need to develop a function that assigns a cost

ci j to each si j , based on its support in the ONT reads. It may be difficult to determine what

‘good support’ in the error-prone ONT reads means, and to find a suitable cost function.

53

3. As we have seen, the repeat selection model yields a set of k repeat copies. Step 1 of the

method outlined here yields a set of 2k2 sequences. Step 2 yields a cost ci j for each sequence

si j . From this input, construct a complete, bidirectional graph, where the nodes correspond to

the repeat copies, while the edges correspond to the sequences. Thus, for repeat copies i and

j, the edge (i, j) corresponds to si j , while (j, i) corresponds to s ji . Each edge (i, j) is labeled

with the cost ci j of the corresponding sequence.

4. On the graph from step 3, find a minimum-cost tour that traverses all nodes exactly once.

We allow 4 wildcards, that is, four edges whose cost can be set to 0. These edges can be chosen

freely from the set of all edges in the graph. The plan is that the wildcards separate the arrays

of copies on the different chromosomes. Each subsequence of nodes from the optimal tour, that

contains no wildcard, corresponds to a repeat array on one chromosome. We think this makes

sense because, given that the copies are located in arrays on five different chromosomes, the

unknown tour that corresponds to the ground truth should contain subsequences of very low

cost, separated by four expensive edges. The wildcards should allow for eliminating the cost

of these expensive edges, such that we can find an optimal tour that corresponds to what is

present in the DNA.

5. Given the five arrays of repeat copies that step 4 yields as output, assign each of them to

one of the five chromosomes in question. Currently, we do not have a suitable criterion for the

assignment, yet we believe that it is possible to construe one.

It is clear that this is only a very rough sketch of a method that might lead to success, and

there are a number of problems. Especially, it might be difficult to construe a meaningful cost

function for the sequences that serve as edges in the graph. However, we think that a good

solution to the problem of partitioning the copies into five sets, and resolving their order, is

possible with a procedure that goes along these lines.

After assigning the copies to the chromosomes, and ordering them, we still need to make the

transition from a haploid to a diploid assembly of the rDNA repeat sites. This means, we need

to determine which rDNA copies from a given chromosome are located on the same copy of

that chromosome. As of yet, we have not looked into possible solutions to this problem, or its

connections to the problem of partitioning and ordering the repeat copies. On the way towards

an automated method for complete de novo assembly of rDNA repeat sites, it presumably marks

the final step.

54

5 Conclusion

In this thesis, we presented a model for the assembly of rDNA repeat copies on human genomes.

We proved the hardness of the optimization problem that we solve, and used our model to as-

semble the rDNA repeat copies of six different human samples. On the whole, we believe that

our approach is successful, while improvements are certainly possible. Importantly, a compar-

ison between the output of our model, and the T2T Consortium’s assembly of CHM13, showed

that our model generates repeat copies that vary more strongly than the ones from the T2T

assembly. Some, though not all, of the additional variation appears to be genuine. We need

to analyse the output of our model further, in order to better understand where its specific

properties come from. Additionally, we need to collect more evidence for or against the justi-

fiability of the model’s output on different samples, in order to optimize its results.

With regard to runtime, we could show that our model is able to provide good approximations,

and often even optimal solutions, in a timespan of less than two hours. Time investment for

the preprocessing steps is harder to calculate. Based on our experience, it varies only slightly

between different samples, though. On the whole, we believe that our method is fast enough

to allow for the reconstruction of, e.g., a few dozens of samples in an acceptable timeframe.

We hope that we can, for example, apply it to study the differences in the rDNA repeats of

different human populations.

Future challenges include partitioning the repeat copies onto their five chromosomes of origin,

and resolving their order on the chromosomes, as well as reconstructing the two different hap-

lotypes of human samples. We hope that, for these steps, it is also possible to develop feasible,

combinatorial optimization-based methods.

55

6 Literature

References

[1] Saumya Agrawal and Austen R.D. Ganley. “The conservation landscape of the human

ribosomal RNA gene repeats.” In: PLoS ONE 13 (12 2018). DOI: 10.1371/journal.

pone.0207531.

[2] Meng Wang and Bernardo Lemos. “Ribosomal DNA harbors an evolutionarily conserved

clock of biological aging.” In: Genome Research 29 (3 2019), pp. 325–333. DOI: 10.

1101/gr.241745.118.

[3] Elena M. Malinovskaya et al. “Copy Number of Human Ribosomal Genes With Aging:

Unchanged Mean, but Narrowed Range and Decreased Variance in Elderly Group.” In:

Frontiers in Genetics 9 (306 2018). DOI: 10.3389/fgene.2018.00306.

[4] Matthew M. Parks et al. “Variant ribosomal RNA alleles are conserved and exhibit tissue-

specific expression.” In: Science Advances 4 (2 2018). DOI: 10.1126/sciadv.aao0665.

[5] Evgeny Smirnov et al. “Variability of Human rDNA.” In: Cells 10 (2 2021). DOI: https:

//doi.org/10.3390/cells10020196.

[6] Sergey Nurk et al. “The complete sequence of a human genome.” In: Science 376 (6588

2022), pp. 44–53. DOI: 10.1126/science.abj6987.

[7] Aaron M. Wenger et al. “Accurate circular consensus long-read sequencing improves

variant detection and assembly of a human genome.” In: Nature Biotechnology 37 (2019),

pp. 1155 –1162. DOI: 10.1038/s41587-019-0217-9.

[8] Miten Jain et al. “Nanopore sequencing and assembly of a human genome with ultra-

long reads.” In: Nature Biotechnology 29 (4 2018), pp. 338 –345. DOI: 10.1038/nbt.

4060.

[9] Mikko Rautiainen and Tobias Marschall. “MBG: Minimizer-based sparse de Bruijn Graph

construction.” In: Bioinformatics 37 (16 2021), pp. 2476–2478. DOI: 10.1093/bioinformatics/

btab004.

[10] Mikko Rautiainen and Tobias Marschall. “GraphAligner: rapid and versatile sequence-

to-graph alignment.” In: Genome Biology 21 (253 2020). DOI: 10.1186/s13059-020-

02157-2.

[11] Mitchell R. Vollger et al. “Segmental duplications and their variation in a complete

human genome.” In: Science 376 (6588 2022). DOI: 10.1126/science.abj6965.

[12] Jasmijn A. Baaijens et al. “Full-length de novo viral quasispecies assembly through vari-

ation graph construction.” In: Bioinformatics 35 (24 2019), pp. 5086 –5094. DOI: 10.

1093/bioinformatics/btz443.

56

https://doi.org/10.1371/journal.pone.0207531
https://doi.org/10.1371/journal.pone.0207531
https://doi.org/10.1101/gr.241745.118
https://doi.org/10.1101/gr.241745.118
https://doi.org/10.3389/fgene.2018.00306
https://doi.org/10.1126/sciadv.aao0665
https://doi.org/https://doi.org/10.3390/cells10020196
https://doi.org/https://doi.org/10.3390/cells10020196
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1038/nbt.4060
https://doi.org/10.1038/nbt.4060
https://doi.org/10.1093/bioinformatics/btab004
https://doi.org/10.1093/bioinformatics/btab004
https://doi.org/10.1186/s13059-020-02157-2
https://doi.org/10.1186/s13059-020-02157-2
https://doi.org/10.1126/science.abj6965
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btz443

[13] Jasmijn A. Baaijens, Leen Stougie, and Alexander Schönhuth. “Strain-Aware Assembly

of Genomes from MixedSamples Using Flow Variation Graphs.” In: RECOMB 2020 -

24th International Conferenceon Research in Computational Molecular Biology (2020),

pp. 221 –222. DOI: 10.1007/978-3-030-45257-5_14.

[14] Romeo Rizzi, Alexandru I. Tomescu, and Veli Mäkinen. “On the complexity of Minimum

Path Cover with Subpath Constraints for multi-assembly.” In: BMC Bioinformatics 15 (S5

2014). DOI: 10.1186/1471-2105-15-S9-S5.

[15] Ryan R. Wick et al. “Bandage: interactive visualization of de novo genome assemblies.”

In: Bioinformatics 31 (20 2015). DOI: 10.1093/bioinformatics/btv383.

[16] Heng Li. “Minimap2: pairwise alignment for nucleotide sequences.” In: Bioinformatics

34 (18 2018), pp. 3094 –3100. DOI: 10.1093/bioinformatics/bty191.

[17] James T. Robinson et al. “Integrative Genomics Viewer.” In: Nature Biotechnology 29 (1

2011), pp. 24 –26. DOI: 10.1038/nbt.1754.

[18] Heng Li et al. “The Sequence Alignment/Map format and SAMtools.” In: Bioinformatics

25 (16 2009), pp. 2078 –2079. DOI: 10.1093/bioinformatics/btp352.

[19] Heng Li. “Minimap and miniasm: fast mapping and de novo assembly for noisy long se-

quences.” In: Genome Biology 32 (14 2016), pp. 2103 –2110. DOI: 10.1093/bioinformatics/

btw152.

[20] Jordan M. Eizenga et al. “Walk-Preserving Transformation of Overlapped Sequence

Graphs into Blunt Sequence Graphs with GetBlunted.” In: Conecting with Computability.

CiE 2021. (2021), pp. 169–177. DOI: 10.1007/978-3-030-80049-9_15.

[21] Heng Li, Xiaowen Feng, and Chong Chu. “The design and construction of reference

pangenome graphs with minigraph.” In: Genome Biology 21 (265 2020). DOI: 10.1186/

s13059-020-02168-z.

[22] S. B. Needleman and C. D. Wunsch. “A general method applicable to the search for

similarities in the amino acid sequence of two proteins.” In: Journal of Molecular Biology

48 (3 1970), pp. 443 –453. DOI: 10.1016/0022-2836(70)90057-4.

[23] Kun-Mao Chao, William R. Pearson, and Webb Miller. “Aligning two sequences within

a specified diagonal band.” In: Bioinformatics 8 (5 1992), pp. 481 –487. DOI: 10.1093/

bioinformatics/8.5.481.

[24] Esko Ukkonen. “Algorithms for approximate string matching.” In: Information and Con-

trol 64.1 – 3 (1985), pp. 100 –118. DOI: 10.1016/S0019-9958(85)80046-2.

[25] Quiang-Sheng Hua et al. “Exact Algorithms for Set Multicover and Multiset Multicover

Problems.” In: International Symposium on Algorithms and Computation (2009), pp. 34–

44. DOI: 10.1007/978-3-642-10631-6_6.

57

https://doi.org/10.1007/978-3-030-45257-5_14
https://doi.org/10.1186/1471-2105-15-S9-S5
https://doi.org/10.1093/bioinformatics/btv383
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1038/nbt.1754
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1007/978-3-030-80049-9_15
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1093/bioinformatics/8.5.481
https://doi.org/10.1093/bioinformatics/8.5.481
https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1007/978-3-642-10631-6_6

[26] Richard M. Karp. “Reducibility among Combinatorial Problems.” In: Complexity of Com-

puter Computations. The IBM Research Symposia Series. (1972), pp. 85–103. DOI: https:

//doi.org/10.1007/978-1-4684-2001-2_9.

[27] Veli Mäkinen et al. Genome-Scale Algorithm Design. Biological Sequence Analysis in the

Era of High-Throughput Sequencing. 1st. Cambridge University Press, 2015. ISBN: 978-

1-107-07853-6.

[28] Vladimir I. Levenshtein. “Binary Codes Capable of Correcting Deletions, Insertions and

Reversals.” In: Soviet Physics Doklady 10 (8 1966), pp. 707 –710.

[29] Udi Manber and Gene Myers. “Suffix Arrays: A New Method for On-Line String Searches.”

In: SIAM Journal on Computing 22 (5 1993), pp. 935 –948. DOI: 10.1137/0222058.

[30] Ge Nong, Sen Zhang, and Wai Hong Chan. “Linear Suffix Array Construction by Almost

Pure Induced-Sorting.” In: 2009 Data Compression Conference (2009). DOI: 10.1109/

DCC.2009.42.

[31] Fei Shi. “Suffix arrays for multiple strings: A method for on-line multiple string searches.”

In: Concurrency and Parallelism, Programming, Networking, and Security. ASIAN 1996

(1996), pp. 11 –22. DOI: 10.1007/BFb0027775.

[32] Toru Kasai et al. “Linear-Time Longest-Common-Prefix Computation in Suffix Arrays

and Its Applications.” In: Combinatorial Pattern Matching. CPM 2001. (2001), pp. 181

–192. DOI: /10.1007/3-540-48194-X_17.

[33] Paniz Abedin, M. Oguzhan Külekci, and Shama V. Thankachan. “A Survey on Shortest

Unique Substring Queries.” In: Algorithms 13 (9 2020). DOI: 10.3390/a13090224.

[34] John Ellson et al. “Graphviz and dynagraph - static and dynamic graph drawing tools.”

In: Graph Drawing Software. Springer-Verlag, 2003, pp. 127–148. DOI: 10.1007/978-

3-642-18638-7_6.

[35] Karen H. Miga and Ting Wang. “The Need for a Human Pangenome Reference Se-

quence.” In: Annual Review of Genomics and Human Genetics 22 (2021), pp. 81–102.

DOI: 10.1146/annurev-genom-120120-081921.

58

https://doi.org/https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/0222058
https://doi.org/10.1109/DCC.2009.42
https://doi.org/10.1109/DCC.2009.42
https://doi.org/10.1007/BFb0027775
https://doi.org//10.1007/3-540-48194-X_17
https://doi.org/10.3390/a13090224
https://doi.org/10.1007/978-3-642-18638-7_6
https://doi.org/10.1007/978-3-642-18638-7_6
https://doi.org/10.1146/annurev-genom-120120-081921

	Introduction
	Overview
	Background & related work
	Telomere-to-Telomere Consortium reference genome
	Related assembly methods

	Limitations of the model

	Method
	External tools
	MBG
	GraphAligner

	Preprocessing
	Repeat selection model
	Hardness proof
	Output comparison
	Output checking

	Results
	Reconstruction of rDNA repeats from CHM13
	Preprocessing and parameter settings
	ILP performance
	Visualization of unexplained coverage on the graph
	Repeat copies

	Comparison to the T2T Consortium's Reconstruction
	Repeat copies from T2T-CHM13
	Edit distance-based comparison
	Analysis and comparison through shortest identifiers

	Reconstruction of rDNA repeats from HPRC samples

	Discussion
	Evaluation of Results
	Future Work

	Conclusion
	Literature

