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Abstract

RNA sequencing uses high throughput techniques for transcriptome profiling. An important part
of RNA sequencing is the analysis of read counts per gene to find differentially expressed genes
across samples. This thesis presents an extended version of an existing Snakemake pipeline to
find differentially expressed genes based on count data from RNA sequencing. The extended
Snakemake pipeline focuses on providing reasonable output for multiple conditions at once, while
maintaining user-friendliness, as well as adding new options to choose from.
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1 Introduction

In the field of transcriptomics, RNA sequencing and differential expression analysis are om-
nipresent. RNA sequencing is used to get insight into transcriptomes, whereas differential ex-
pression analysis is used to identify genes with distinct expression differences under conditions.
A condition is a difference between samples, e.g. drug treatment in medicine where the patients
are either treated with a drug or not treated with a drug, as well as mutations in genomics where
an organism can be a wild type or a specific mutation. Because most tools for these technologies
only exist for less than one decade, it is more important than ever to be able to see how conditions
impact gene expression. Nevertheless, in practice, it is often not straightforward to perform such
analysis due to the sheer amount of tools available and background knowledge needed. Therefore,
we present a more user-friendly Snakemake pipeline, by extending an existing pipeline [14].

1.1 Contribution

The existing pipeline allows users to do basic differential expression analysis. But has restrictions,
such as only being able to perform analysis on one condition at a time or providing the user with
a minimal amount of plots. We address those restrictions by extending the pipeline in a way that
allows us to create a wider variety of plots, as well as taking care of comparison for multiple condi-
tions and the need to specify formulas, from the formula interface of the R language, which would
typically need background knowledge. Further, we decided to add a broad range of advanced op-
tions and to keep the options the existing pipeline had to offer for more experienced users, for the
sake of convenience. Another important reason to extend the existing pipeline besides being open
source, was the reproducibility it provides using the Conda system [1] as it allows for predefined
environments and packages, as well as using Snakemake [13] for structuring and managing the
pipeline. To provide examples throughout this thesis and give a more detailed explanation of the
output this pipeline generates, we used the following published dataset [7] from the GEO database
[4] for an example run. This dataset focuses on the identification of differentially expressed genes
in the mammary glands of mice, throughout various development stages and different cells.



2 Background information

We use this section to focus on introducing information needed to understand later parts of our
thesis.

2.1 Biological background

To be able to understand the data this pipeline is working on, we present a short breakdown of
RNA sequencing.

2.1.1 RNA sequencing

RNA sequencing is a procedure that allows us to get insight into the transcriptome of a cell, and
thus the ability to see different expression between genes under specific conditions. We can split
this procedure into 3 steps, starting with the creation of a RNA sequencing library, then moving
on to sequencing and lastly analysis of the data. In the first step, RNA is extracted from biotic ma-
terial, the mRNA (messenger RNA) is passed on, reverse transcribed into cDNA (complementary
DNA) and then sequencing adaptors are ligated to the ends. Finally, the cDNA is amplified with
PCR (Polymerase Chain Reaction) or in vitro transcription. This first step can be seen in Figure 1
below.

Figure 1: Library preparation of RNA sequencing procedure

The first part of the sequencing step is then performed by high-throughput sequencing platforms
using techniques, such as next-generation sequencing to generate sequencing reads. These se-
quencing reads are then stored in files, such as the fastq files that we use as input in the pipeline.
Afterwards, the reads are mapped to a reference genome, resulting in counts, i.e. the number of
reads that overlap at specific positions in the genome.

Finally, we can use the read counts to analyse differences between genes, such as differential
expression analysis.



Reference Genome

Reads

...ACCGTAATAGGGCA...

 CTGCAATAGGGC

Figure 2: Mapping reads to a reference genome

2.2 Statistical background

We use this part of the thesis to introduce our readers to basic statistical concepts to understand
the output this pipeline generates, as well as techniques and input for the advanced methods the
pipeline has to offer.

2.2.1 p-value

A p-value is a form of quantifying the probability of obtaining a difference as extreme as the one
observed under the assumption, that the null hypothesis is true. Therefore we conclude, that a small
p-value, i.e. less or equal to a given significance level α, indicates to reject the null hypothesis
and otherwise to accept it. E.g. a significance level of α = 0.05 is common in research, but the
significance level can be set in this pipeline. There are also ways to correct for p-values, which
represent wrong numbers caused by statistical or other biases. These corrected p-values are also
known as adjusted p-values.

2.2.2 Null hypothesis

The null hypothesis is used in science as a hypothesis to represent the point of view, that there is
no significant effect present in an experiment. In this case, the null hypothesis is that there are no
differences between the read counts of different conditions for a gene. The results in the form of
p-values this pipeline generates are all created under this null hypothesis.

2.2.3 False Discovery Rate

The False Discovery Rate provides us with the ability to sort out false positives. A false positive
indicates that a significant result is true when in reality is not. False positives can be explained by
assuming that p-values under the null hypothesis should be uniformly distributed, and thus some of
the p-values under the significance level are wrongly viewed as significant. To give an example: If
we compare samples under a condition, such as treated and untreated, we might have of genes that
differ due to the treatment between the samples, those genes will likely show up as small p-values
in research, see 3a. When comparing the other genes, which were not affected by the treatment we
get p-values which are going to be uniformly distributed, because there might be genes that are not
overlapping even if they were untreated, see 3b. This is problematic because now there are several



false positives under our significance level, see brown in 4. For this reason, False Discovery Rate
is used. The original procedure to control for False Discovery Rate at a significance level α was
first described by Yoav Benjamini and Yosef Hochberg [2]. The procedure will result in adjusted
p-values where false positives are higher than the significance level, i.e. we get a smaller number
of observed p-values (because of the adjusted p-values) under the significance level.

(a) genes that differentiate (b) genes that do not differentiate

Figure 3: Examples for False Discovery Rate

Figure 4: Both 3a and 3b combined



2.2.4 Linear regression

Linear regression allows to model the relationship between dependent and independent variables
by fitting a data model in the model coefficients. We define a linear regression model as following:

Yi = β0 +β1Xi,1 +β2Xi,2 + . . .+βpXi,p + εi and i = 1, . . . ,n (1)

Where Y is the dependent variable, X are vectors of independent variables, β0 being the intercept
term and β the coefficients. Further, p refers to the number of independent variables and εi are
i.i.d. (independent and identically distributed) errors.

2.2.5 Formula

The R programming language provides us with a formula interface. A formula can be seen as
syntax that allows us to indicate which columns should be used when fitting statistical models.
The syntax can be described as follows:

Operator Example Meaning

+ +condition Include condition

- -condition Exclude condition

: conditionA:conditionB Interaction between both conditions

* conditionA*conditionB Short for:conditionA+conditionB+conditionA:conditionB

ˆ (conditionA+conditionB)ˆ2 Short for: (conditionA+conditionB)*(conditioA+conditionB)

I() I(conditionA+conditionB) Function to use brackets in arithmetic way

1 condition-1 Removes the intercept term

0 condition+0 Specifies the model to have no intercept

Table 1: Formula operators

Every single formula can be written either a ~ b or ~b, where a ~ b refers to modelling a as a
function of b and ~b just refers to b being a independent variable. For this thesis, we will only fo-
cus on the use of right-sided formulas such as ~b, because it is the only valid input for our pipeline.

To give a small example of how we use formulas in our pipeline, imagine we have a dataset as
input with two columns condition and status. In case we want to compare the effects of condition
our formula would have the following design ~condition. Further, if we want to compare multiple
conditions, i.e. both conditions in our example we would use a formula like ~condition+status.
Lastly, we can also compare interactions across conditions, i.e. ~condition*status. For each of
these formulas several different possible contrasts to choose from are created by the pipeline,
later in our example run, we present some of the contrasts as a result of different formulas
specified. This should give a better understanding of how formulas are used in combination with
the pipeline.



2.2.6 Log2 Fold Change

Fold Change is a form of measurement for how much a quantity changes between initial and final
values. It can be calculated using the following formula, where A is the initial and B the final
value: B

A . Because we get fold changes between 0 and 1 for values where the initial value is bigger
than the final value, we use log2 to represent those small fold changes as negative values. This
is done, because it allows for better visualization between value ratios, rather than having values
with small fold changes converge to the limit 0. To put this into perspective with an example, if
we have a ratio of 2 between two gene counts and another ratio of 0.5 we would get the values
log2 2 = 1 and log2 0.5 =−1.

2.3 Differential expression analysis

Differential expression analysis allows us to find differences in gene expression between two or
more conditions across samples. As mentioned earlier, a condition refers to differences, such as
drug treatment as a condition with the effects treated or untreated or in our example later on, status
with the effects pregnant, lactate or virgin. This process is generally performed on counts created
through an aligner. To determine, if the counts for a gene show differences higher than expected
between conditions, tools such as DESeq2 are used to estimate these differences and as a result
estimate, the significance of differences found. In the case of this pipeline, we get a list of p-
values for all of the genes, as well as adjusted p-values that should correct for False Discovery
Rate. Throughout all ways to investigate RNA sequencing data, differential expression analysis is
a more simple yet powerful and common way.

3 Tools

In the following, we introduce the tools used to build the pipeline and to ensure reproducibility.

3.1 Snakemake

Snakemake [13] is a tool to create and manage workflows. Through several tasks so-called rules,
we can set up the order in which these tasks are executed by letting them depend on each other.
The resulting workflow is automated and the input is set dynamically. For this bachelor thesis, we
extend the number of rules and options in the existing Snakemake workflow.

3.2 Conda

Conda [1] is an open source system for environment and package management. It allows to find,
install and update multiple packages and save them in an environment as well as switching between
environments. Therefore, we use Conda to have a persistent environment for our pipeline and thus
ensure reproducibility.



3.3 STAR

STAR (Spliced Transcripts Alignment to a Reference)[3] is an open source software for RNA
sequence alignment. It allows us to align reads to a reference genome and outperforms other
aligners by a factor of > 50 in mapping speed. But it is memory consuming, and thus it is advised
to run on high performance clusters. We use it in our pipeline to align reads in fastq files to a
reference genome to get read counts for each of the genes in our sample.

3.4 DESeq2

DESeq2 [17] is a package for differential expression analysis of count data based on the R lan-
guage. It uses statistical methods to get better estimates and focuses on the analysis of expression
strength. Further, the DESeq2 package provides us with the functions and statistical backup to
explore the differences in gene expression between multiple conditions, i.e. the contrasts.

3.5 Cutadapt

Cutadapt [18] is a tool that allows error-tolerant adapter trimming before read mapping as well
as specifying the adapter sequence that should be trimmed. In fact we have Cutadapt as an op-
tional setting in our pipeline, to allow for trimming of adapter sequences for our high-throughput
sequencing reads.

3.6 RSeQC

RSeQC [20] is a package created for quality control of RNA sequencing experiments. It allows
multiple ways of quality control, such as sequence quality, read distribution over the genome struc-
ture and many others. Therefore, it provides users with output to ensure that the RNA sequencing
data is suitable for subsequent analysis.

3.7 IHW

IHW (Independent Hypothesis Weighting)[10] is a package to calculate adjusted p-values by run-
ning several statistical methods, such as False Discovery Rate. We use it as a way to control for
False Discovery Rate and display the results in plots.

3.8 MultiQC

MultiQC [6] is a tool to summarize the output of the RSeQC package and create a single report
from the data for readability.



4 Extending the pipeline

This part of the thesis focuses on explaining the reasoning behind extending the pipeline to its
current state and what has been extended, as well as an example run of our pipeline, particularly
explaining the input and output. To give a visual representation of how the pipeline works, we start
by showing the reduced DAG (directed acyclic graph) created by us for this pipeline, see Figure
5. Every vertex of the DAG represents several tools or scripts. Whereas all the directed edges
represent the order in which the vertices are called, i.e. vertices with outgoing edges distribute their
output to the respective successor. Thus, starting the pipeline at vertices with no incoming edges
and the other vertices are only executed when they got all the outputs from their predecessors.
The output is marked with a blue border. The red vertices refer to optional choices and the green
vertices refer to obligatory steps.

Figure 5: DAG of our pipeline



4.1 Contrasts

A contrast is used to define the different effects of one condition and pass them onto the pipeline for
evaluation. E.g. a condition could be status with the effects lactate, pregnant or virgin. Therefore,
all possible contrasts would be pregnant vs lactate, pregnant vs virgin and lactate vs virgin. We
would then pass them onto the pipeline to see if any genes under the condition status, and between
those contrasts are differentially expressed.

4.1.1 Limitations

For each gene there could be multiple conditions, that cause differential expression across sam-
ples. The original implementation could only test for one of those conditions at a time with the
constraint to specify contrasts and a design formula. More precisely the DESeq2 package we
use needs us to set such contrasts beforehand and can only create contrasts in combination with
a design formula that also has to be set beforehand. To remove this level of complexity for the
inexperienced user we implemented the following functionality. That is to say, there is no possible
way for us to know which conditions the user wants to test for a given set of samples and the sheer
amount of possible design formulas in regarding the samples’ conditions. Therefore, we opted
to create all possible contrasts for the user to choose from and as well taking care of the design
formulas needed.

4.1.2 Implementation

As just mentioned, we have to specify several contrasts and design formulas concerning the sam-
ples as the first step of our pipeline. To compute the contrasts we take the columns within the
sample file and prepare all possible contrasts for each column representing the condition and each
row representing an effect due to this condition, e.g. on our example run we would take status as
a condition and virgin, pregnant and lactate as the unique effects. Additionally, we create a new
imaginary column representing the combination of conditions, i.e. the combination of the given
columns and effects and prepare contrasts for this new column, we will refer to it as group. E.g.
column group with the unique effects basalvirgin, basalpregnant, basallactate, luminalvirgin and
so on. This preparation of contrasts is performed in the Snakefile, and therefore written in Python.
After preparation, we pass the contrasts on to DESeq2 to create 2 data sets with different design
formulas, based on our sample file, one for the original columns and another one for our group
column.

4.2 Plots

4.2.1 Mean SD Plot

The Mean SD Plot is part of the vsn [9] package. We used it to extend the pipeline, as it allows us
to plot the standard deviation of the transformed data, against the mean across all samples used.
Therefore, we can use the plot to verify variance stabilisation.
The red line in the plot represents the running median of the standard deviation and should be hori-
zontal with only a few fluctuations to ensure that there is no variance-mean dependency. Variance-



mean dependency would let us know that there is some sort of confounding and would not allow
for further meaningful expression analysis [5].

4.2.2 heatmap

The heatmap is part of the pheatmap [11] package. We chose to extend the pipeline by a heatmap of
the count matrix because it is another important step in quality assurance to find outliers in samples
that might be caused by anomalies. In particular, the added heatmap shows us the expression of the
20 most expressed genes of log2 normalized counts. The color range is ranging from the lowest
to the highest of the normalized values.

4.2.3 Dispersion Plot

Another diagnostic plot is the Dispersion Plot because we can see the result of the DESeq2 Esti-
mation of dispersion process, where the final gene estimates (blue) are shrunken towards the fitted
(red) estimates except for outliers. For this reason, we also chose to extend the pipeline by adding
this plot.

4.2.4 p-value histograms

Histograms of p-values are a common way to view data. We extended the pipeline with p-value
histograms for every contrast before using independent hypothesis weighting on them. This gives
us a first look at the original p-values (not the adjusted p-values) of our data and could hint in
favour of rejecting or not rejecting the null hypothesis.

4.2.5 Time Course Experiments

To provide a way to test for Time Course Experiments, we extended the pipeline with a possibility,
that we found in one of the DESeq2 vignettes. This approach offers to find genes that react in a
condition specific manner over time. In particular, we let DESeq2 perform a likelihood ratio test,
by specifying a reduced formula to remove the condition specific differences over time, which
should result in genes with low p-values as the ones that showed condition specific effects. Since
our example data did not include a condition offering time differences, the example in Figure 12
was created with the following data package [15]. The data is used to find differences of fission
yeast in response to oxidative stress at different times and between a wild type group and a group
with deletion of aft21.

4.2.6 IHW

For a more powerful way to control for False Discovery Rate and thus being able to conclude if
genes might have expressed differentially due to given conditions, we added the IHW (independent
hypothesis weighting) package from Bioconductor to the pipeline and followed an example in the
respective vignette on how to use it and how to interpret the received plots. It is an optional
setting in this pipeline. The IHW package calculates weights for all p-values to let them average



out at 1 and computes adjusted p-values by applying the Benjamini Hochberg procedure on all
weighted p-values, it also uses other techniques, such as splitting the hypothesis into different
covariates and then randomly splitting them into folds, to avoid overfitting the data. As a result,
we get two diagnostic plots. The first one represents the different weights for the folds across the
covariates, where genes with a high baseMean get higher weights than genes with low baseMeans.
A baseMean [16] refers to the mean of normalized counts, divided by size factors, across all
samples. And the second plot shows those folds on the unweighted p-values.

4.3 Further additions

4.3.1 Shrinkage

Shrinkage is a way to control for low gene counts that tend to be noisy, as a result of the strong vari-
ance of log2 Fold Change estimates (Empirical Bayes shrinkage for fold-change estimation [17]).
To address the problem, we added different shrinkage options to choose from in the pipeline. The
options for shrinkage are: normal (which can not be used for formulas with interaction terms, that
being said formulas including the : operator) and ashr for all formulas. Normal is the shrinkage
estimator provided by DESeq2 using an adaptive normal distribution and ashr is the shrinkage
estimator from the ashr package [19].

4.3.2 Transformation

Transformation is another option added to the pipeline and offers the ability to transform the count
data, i.e. replacing each value with a transformed value by using functions to compute the new
values. These functions are normal, rlog and vst. Normal uses log2 with a pseudo count of 1 on
the normalized counts, whereas rlog uses the regularized logarithm [17] and vst uses a variance
stabilizing transformation concept [8], but needs at least 1000 genes to work. Later on, we add
brackets to captions of the plot to let the reader know which transformation was used during
plotting.

4.3.3 Grouping

We added grouping to the pipeline, as it allows for more complex contrasts by taking multiple con-
ditions and creating one condition. The grouping options refer to the combination of all columns
and creating an imaginary column as explained earlier, but now can be set optional for an experi-
enced user that decides to use their formulas and choose specific contrasts. In particular, by using
grouping in this pipeline all conditions of the provided data, the columns, are combined into a
single condition, and contrasts can be specified for this new column.



5 Example run

For a visual representation of the plots, we now continue with an example run of the pipeline,
particularly explaining the input and output. We show all of the options available in the pipeline
in the following.

5.1 Data

The experiment we use in our example run, focuses on the differential expression of genes in
luminal and basal cells from mammary glands of virgin, 18.5 day pregnant and 2 day lactating
mice (Mus musculus), respectively. For reproducibility, the files were obtained from popular sites.
More precisely, the fastq files were obtained from https://www.ebi.ac.uk, the fasta file was obtained
from http://www.ensembl.org and the gtf file was obtained from https://www.ncbi.nlm.nih.gov.
To represent the data more coherently and to show how our sample sheet looks, please see Table
2.

Table 2: sample data

sample condition status
MCL1.DG basal virgin
MCL1.DH basal virgin
MCL1.DI basal pregnant
MCL1.DJ basal pregnant
MCL1.DK basal lactate
MCL1.DL basal lactate
MCL1.LA luminal virgin
MCL1.LB luminal virgin
MCL1.LC luminal pregnant
MCL1.LD luminal pregnant
MCL1.LE luminal lactate
MCL1.LF luminal lactate

5.2 Output

In the following, we will explain the output the pipeline created. For illustration purposes, we
include some of the plots generated by the pipeline run on the example data.

5.2.1 MA plot

MA (M=Intensity Ratio and A=Average Intensity) plots have already been included in the existing
pipeline. They are used to represent how different the read counts of two groups are. Each of the
dots represents a gene. The red dots represent the genes with a (through DESeq2 adjusted) p-
value smaller than what we specified in our config, in this particular case we used the standard



0.1. Therefore, the grey dots represent genes with p-values higher than the significance level. The
x-axis is used to represent the mean of normalized counts, whereas the y-axis represents the log2
fold change. It is also important to note, that we provided DESeq2 with unnormalized counts
because DESeq2 normalized them on its own. We extended the pipeline with the option to use
shrinkage on MA plots to remove the noise caused by genes with low counts. Figure 6 shows MA
plots from our example run created through not grouped contrasts, i.e. basal vs luminal.

Figure 6: basal vs luminal



5.2.2 PCA

The PCA (Principal component analysis) plot has also been included in the existing pipeline and
allows users to create a PCA plot for each condition present, by using the PCA techniques of
dimensionality reduction where one condition would normally add one dimension. To simplify it,
this is done by clustering each correlation among all conditions and thus samples into a 2D-graph.
Highly correlated ones should cluster together. It is also important to note that the PC1-axis is more
important than the PC2-axis, i.e. differences along the PC1-axis can be seen as more important
than differences with the same distance along the PC2-axis. This is also seen in the percentage on
the axes, which displays for how much of the total variation each axis accounts, note that only the
two highest percentages are used in the dimension reduction, thus resulting in variances that do
not need to account for 100 percent. For the example run we receive the following PCA, showing
us that pregnant and lactating mice seemingly are more similar to each other, while virgin mice
differentiate the most compared with the others.

Figure 7: PCA for condition and status (with rlog transformation)



5.2.3 Mean SD Plot

The Mean SD Plot on the data in our example run can be seen in Figure 8.

Figure 8: meanSdPlot



5.2.4 heatmap

See Figure 9 for the heatmap on our example run, presenting the top 20 most expressed genes.

Figure 9: Heatmap of top 20 most expressed genes



5.2.5 Dispersion Plot

For an example, see Figure 10 created during our example run.

Figure 10: Dispersion Plot



5.2.6 p-value histogram

In the following, we provide an example p-value histogram received with the virgin vs pregnant
contrast in our example run, see Figure 11.

Figure 11: p-value histogram for virgin vs pregnant



5.2.7 Time Course Experiment

The example in Figure 12 was created with the following data package [15], to find differences of
fission yeast in response to oxidative stress at different times and between a wild type group and a
group with deletion of aft21. Please note, that we did not use all samples and just subset the data
for the differences in the first 60 minutes.
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Figure 12: heatmap for Time Course Experiment



5.2.8 IHW

As a reminder, the first plot represents the different weights for the folds across the covariates,
where genes with a high baseMean get higher weights than genes with low baseMeans. And the
second plot shows the folds on the unweighted p-values. For the two plots on the contrast basal vs
luminal, see Figure 13.

(a) Estimated weights (b) asd

Figure 13: Decision boundaries for unweighted p-values



5.2.9 MultiQC and RSeQC plots

The plots created in RSeQC are all used for quality control. MultiQC then summarizes all of the
RSeQC plots into one plot for each different part of the quality controls. In the following, we will
give a breakdown of the plots:
Figure 14a shows how many alignment positions have exact duplicates.
Figure 14b shows the amount of GC (guanine-cytosine) content with respect to the number of
reads.
Figure 14c shows how the reads have been or have not been mapped in regard to the samples, by
using the STAR Aligner.
Figure 14d shows how the gene counts in regard to the samples, by using the STAR Aligner.
Figure 14e shows how the reads are mapped over the genome features.
Figure 14f shows the percentage of reads and read pairs that match the strandedness of overlapping
transcripts. It can be used to infer whether RNA-seq library preps are stranded.
Figure 14g shows the compared, detected splice junctions to a reference gene model. An RNA
read can be spliced 2 or more times, each time is called a splicing event.
Figure 14h shows the number of known splicing junctions that are observed in each dataset. If
sequencing depth is sufficient, all (annotated) splice junctions should be rediscovered, resulting
in a curve that reaches a plateau. Missing low abundance splice junctions can affect downstream
analysis.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14: MultiQC plots for RSeQC and STAR results



5.2.10 Shrinkage

The shrinkage option only applies to the results created from DESeq2. In our example run those
results are given by the MA plot. To give an example of shrinkage using the ashr option and the
same contrasts as used in the MA plot with normal shrinkage, see Figure 15.

Figure 15: basal vs luminal

5.2.11 Formulas and Contrasts

As mentioned earlier, we now give examples for formulas and the resulting contrasts that could be
specified on the example data.
If we want to create contrasts for the status column we would choose a formula, such as ~sta-
tus. As a result of this, we can now set contrasts between the unique effects of the column,
i.e. virgin vs pregnant, virgin vs lactate and pregnant vs lactate. Further, if we want con-
trasts for multiple conditions we could use a formula, such as ~status*condition or equally ~sta-
tus+condition+status:condition. Possible contrasts would be the ones we just saw, i.e. virgin vs
pregnant, virgin vs lactate and pregnant vs lactate, as well as additionally the contrasts for the
condition column, i.e. basal vs luminal. Further, possible contrasts should now be available be-
cause of the interaction term status:condition, but in reality, the interaction terms now result in a



string of condition and effect from the interactions, i.e. conditionbasal.statusvirgin would be such
a name. We decided against the use of names and can use the grouping option for such a case.
When using the grouping options, we now are able to get the same interaction, i.e. basalvirgin vs
luminalvirgin instead of conditionbasal.statusvirgin.



6 Discussion and Outlook

6.1 Limitations for experienced users

While we extended the pipeline with a wide variety of options for an inexperienced user, there
are still plenty of options for experienced users, that we did not implement. In fact, the DESeq2
package provides many more parameters an experienced user might want to use to do more ad-
vanced analysis or create other forms of output. Conversely, the challenging part with extending
the pipeline further by adding options for experienced users is to reach the point, where we need
to separate between the usefulness of adding parameter options to a pipeline because a greatly
experienced user might decide not to utilize the pipeline at all.

6.2 Limitations on plots

As of now, we mainly focus on plots as a way for quality assessment, whereas it can be inter-
esting to have more plots, such as volcano plots to see differential expression across samples or
others for independent hypothesis weighting. In conclusion, there are many more plots that can be
implemented for the purpose of illustrating results.

6.3 Limitations on the input

The current pipeline is limited to the use of providing a gtf file for annotations, while most anno-
tation files are only available as gff or gff3 files. Therefore, another addition would be to provide
a script to check and convert the annotations into the gtf format, if necessary. Further, STAR does
not necessarily need annotation files, and therefore there should be an option to be able to omit
them.

6.4 Other high throughput sequencing input

The DESeq2 paper [17] states, that the used statistical methods are also applicable for other com-
parative HTS assays, i.e. ChIP (chromatin immunoprecipitation) sequencing, chromosome con-
formation capture, or counting observed taxa in metagenomic studies. Therefore, the scope of the
current pipeline could be extended in a way, to use the existing tools and packages and adding
others to take care of other comparative HTS assays and allowing to choose between them.

7 Source Code

The source code for this pipeline can be found here and is currently going through the progress of
a PR (Pull Request): DOI for the pipeline [12].
Direct link to the release:
https://github.com/Jukre111/rna-seq-star-deseq2/releases/tag/v1.1
The link was last visited on March 11, 2020.

https://github.com/Jukre111/rna-seq-star-deseq2/releases/tag/v1.1
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