
INSTITUT FÜR INFORMATIK
Algorithmische Bioinformatik

Universitätsstr. 1 D–40225 Düsseldorf

Solving Dominating Set Using Answer Set
Programming

My Ky Huynh

Bachelorarbeit Beginn der Arbeit: 04. November 2019
Abgabe der Arbeit: 04. Februar 2020
Gutachter: Prof. Dr. Gunnar Klau

Prof. Dr. Michael Leuschel

Erklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig verfasst habe. Ich
habe dazu keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

Düsseldorf, den 04. Februar 2020
My Ky Huynh

Abstract

Maximizing photosynthetic gains is one of the plant’s many objectives. In this thesis, we
present an optimal model for a leaf’s venation pattern based on the minimum number of
cells that have to turn into vein cells to supply the entire leaf with water and nutrients.
The model focuses on the number of vein cells alone and consequently disregards a lot
about the vascular system, like the vein hierarchy. To create our model we implement
different minimum dominating set variants from graph theory in Answer Set Program-
ming, a form of declarative programming. The most crucial one of these variants is the
k-hop connected dominating set which we use to simulate the vascular system. Our re-
sults show that Answer Set Programming, while able to compute our model, requires too
much solving time for larger inputs to be practical. Especially when compared to Integer
Linear Programming, an alternative method for implementing our model. However, the
comparison in this thesis is limited to just the k-hop component due to the unavailability
of an Integer Linear Programming implementation of our model with connectivity.

CONTENTS i

Contents

1 Introduction 1

2 Logic Programming 2

2.1 Theory . 2

2.2 Answer Set Programming . 4

2.3 Potassco . 6

3 Methods 6

4 Implementation 9

4.1 Alphabet . 9

4.2 Minimum Dominating Set . 10

4.3 Minimum Connected Dominating Set . 10

4.4 Minimum k-Hop Dominating Set . 11

4.5 Minimum k-Hop Connected Dominating Set 12

4.6 Canonical (k-Hop) Connected Dominating Set 12

4.7 Rooted Connected Dominating Set Variants 13

4.8 Potassco’s ASP tools . 14

5 Results 14

6 Discussion 23

7 Conclusions 25

8 Code 26

9 Acknowledgements 26

References 26

List of Figures 27

List of Tables 27

1

1 Introduction

Plants optimize their architecture to fulfil many different competing objectives [3]. One of
these objectives is to maximize photosynthesis production. However, in order for leaves
to perform photosynthesis, they need water and nutrients like nitrogen [15] supplied by
the vascular system. Leaf-veins consist of xylem cells supplying water from the leaf-
stalk into the leaf and phloem cells transporting sugar out of the leaf into the rest of
the plant [16]. In order to pass sugar from mesophyll cells, photosynthesis performing
cells, to the phloem, mesophyll cells cannot be more than a few cells away from the leaf-
veins [14, p. 469]. This means a leaf’s venation is crucial for its photosynthetic gains.
A way to maximize photosynthesis is to maximize the number of mesophyll cells and
minimize the number of vein cells to the smallest number required to supply the entire
leaf.

Figure 1: This picture shows a leaves whose venation pattern are clearly visible. This is
just a snippet of the actual picture1.

Here we describe a method for finding a leaf’s optimal venation patterns based on graph
theory by using Answer Set Programming (ASP), a form of declarative programming
based on logic programming [9]. For our results, we use the ASP tools clingo, gringo
and clasp from the Potsdam Answer Set Solving Collection called Potassco. To represent
a leaf we use a graph with nodes as leaf cells and edges as connections between a cell

1Source: https://commons.wikimedia.org/wiki/File:Plant_Leaf_Venation_DSCN9018_
28.jpg

https://commons.wikimedia.org/wiki/File:Plant_Leaf_Venation_DSCN9018_28.jpg
https://commons.wikimedia.org/wiki/File:Plant_Leaf_Venation_DSCN9018_28.jpg

2 2 LOGIC PROGRAMMING

and its neighbours. For the sake of convenience the vein hierarchy [16] is disregarded.
To find suitable venation patterns, we use variants of the minimum dominating set and
gradually modify them until we are able to replicate a pattern resembling a leaf’s vena-
tion. A dominating set is a subset of nodes such that every node not in the subset has a
neighbour that is in the subset. However, finding a minimum dominating set and many
of its variants is NP-hard [6]. The goal of this thesis is to find optimal venation patterns
with a minimal number of vein cells by implementing the dominating set and its variants
in ASP.

A different method to solve this would be Integer Linear Programming (ILP). Compar-
ing some of our results with those of an ILP solution shows that while ASP is not as fast
as ILP for larger inputs, it might still be a passable alternative due to its versatile and
simple language making it easy to modify programs. Due to the unavailability of a con-
nected solution for ILP, we only compare the dominating set and the k-hop dominating
set solutions with each other.

The rest of this thesis is structured in the following way. First, we introduce some basic
theory on logic programming and ASP as well as the ASP tools used in this thesis in Sec-
tion 2. Next in Section 3 we define the methods applied to determine the venation pattern
of a leaf which include k-transitive closure and dominating set. Section 4 demonstrates
how to implement those methods in ASP. In Section 5 we look at experimental results
followed by a discussion on the effectiveness and limitations of the ASP solution as well
as some problems and on how our ASP solution competes against one using ILP (Section
6). Finally, we conclude this thesis in Section 7.

2 Logic Programming

Logic Programming is based on first-order logic. Furthermore, one of the main ideas
behind logic programming is an algorithm that consists of two components. A logic
part describing what the problem is and a control part stating how it is supposed to be
solved. This separation allows programmers to only have to specify the logic component
while the logic programming system executes the control part [13]. The first part of this
section establishes some semantics on logic programming necessary to understand ASP.
However, since the first part only establishes the necessities for understanding ASP some
parts about logic programming might be left out. Also, the definitions used here are taken
from [4, 11, 13], but might be slightly modified to make them more understandable. The
second part is dedicated to ASP itself. The third part describes how Potassco tools work.

2.1 Theory

This subsection defines all logic programming terms necessary to understand the basics
of ASP in the next subsection and the implementations in Section 4. However, this sub-
section does not contain a complete guide on logic programming. For more information
on logic programming see [13].

An alphabet, also called first order language, consists of variables, constants, function

2.1 Theory 3

symbols, predicate symbols, connectives, quantifiers and punctuation symbols. For this
subsection we denote variables with var1, ..., varn, constants with const1, ..., constn, func-
tion symbols with f1, ..., fn and predicates with pre1, ..., pren. Quantifiers are ∃ meaning
exists and ∀ meaning for all. We use ∧ as conjunction and ∨ as disjunction. An im-
plication is denoted with ← where A ← B means B implies A. A term is a constant, a
variable or a function symbol with terms as arguments, also called a functional term, e.g.,
f(t1, ..., tn) with t1, ..., tn as terms. Similarly to a functional term, an atom is a predicate
with terms as arguments, e.g., pre(t1, ..., tn) with t1, ..., tn as terms. Additionally, a ground
atom is an atom without variables and functions as a propositional variable. This means
it is either true or false. A literal is either an atom or a negated atom.

Most of the formal definitions for the above-mentioned terms can be found in [13] al-
though specifications like the grounding or particular expressions can be found in [4].
The definitions below come from [4] and a few from [11].

Definition 1. A normal logic program is a finite set of rules in form of h ← a1, ..., ai,∼
ai+1, ...,∼ an with atoms h, a1, ..., ai, ai+1, ..., an. Every rule consists of

• a head with head(r) = h and

• a body with body(r) = {a1, ..., ai} ∪ {∼ ai+1, ...,∼ an} with body(r)+ = {a1, ..., ai}
and body(r)− = {ai+1, ..., an}

A rule with an empty body h ←, shortened h, is a fact meaning it is true. Rules can also
be called clauses.

For a logic program P the set of all terms which can be formed from constants and func-
tion symbols is called the Herbrand Universe of P , denoted as HU(P). On the other hand,
the set of all ground atoms which can be formed from predicates and terms is called the
Herbrand Base of P , denoted as HB(P). A Herbrand interpretation I is a subset of HB(P)
over HU(P). Intuitively, I denotes which ground atoms are true in a given instance. A
ground instance of a rule r is obtained by substituting all variables in r with elements of
HU(P). All possible ground instances of r are denoted with grnd(r) and the grounding
of logic program P is grnd(P) = ∪r∈P grnd(r) [4].

Definition 2 (Negation as failure). Let program P contain a rule r with ∼ a ∈ body(r). If
a cannot be proven true then ∼ a is true.

Definition 3. The Interpretation I is a model of

• a ground rule h ← b1, ..., bm,∼ bm+1, ...,∼ bn if either body+(r) 6⊆ I or (h ∪
body−(r)) ∩ I 6= ∅ (denoted as I |= r)

• a rule r if I |= r′ for every r′ ∈ grnd(r) (denoted as I |= r)

• a program P if I |= r for r ∈ P (denoted as I |= P).

A |= B denotes A being a model of B.

4 2 LOGIC PROGRAMMING

Definition 4. The reduct of a program P with respect to an interpretation M, denoted as
PM is obtained by removing all rules with ∼ a in the body for each a ∈M and removing
all literals ∼ a from all other rules. This means if a ∈ M then every rule with ∼ a has to
be false. Since for a /∈ M ∼ a is assumed to be true, M can be seen as an assumption of
which negated literals are true or false [4].

Definition 5 (Stable model semantic for ground programs). An interpretation M of a
program P is a stable model of P , if PM does not contradict M , meaning M is the minimal
model of P , denoted as M = LM(PM).

Definition 6 (Stable model semantic for programs with variables). An interpretation M
is a stable model of a given program P , if M is a stable model of grnd(P).
This means M is a stable model of P if M is a stable model of grounded rules of P .

There are three extensions of normal logic programs that are crucial in ASP [4]. As before
the definitions are taken from [4]. First, the strong negation denoted with −. A strong
negation is−a only true if a can be proven false which is a contrast to the default negation
∼which uses negation as failure. Secondly, a disjunction in the head of a rule h1(X)∨ ...∨
hn(X) ← l1(X), ..., lm(X) declares that either h1(X) to hn(X) could be true. Lastly, the
integrity constraint whose definition is as follows:

Definition 7 (Integrity constraints). A integrity constraint is a rule with an empty head of
the form ← l1, ..., ln with the literals l1, ..., ln. It is equal to a rule of the form false ←∼
false, l1, ..., ln where false is a propositional atom.

It means there must not be a model where all literals of the integrity constraint are true. A
logic program that uses strong negation is called an extended logic program (ELP) whereas
a logic program using disjunctions and strong negation is called an extended disjunctive
logic program (EDLP). To take strong negations and disjunctions into consideration, the
definition of a model needs to be slightly modified.

Definition 8 (Models for ELPs and EDLPs). An interpretation I is a model of

• a ground rule a1 ∨ ... ∨ ak ← b1, ...bm,∼ c1, ...,∼ cn if either {b1, ..., bn} 6⊆ I or
{a1, ..., ak,∼ c1, ...,∼ cn} ∩ I 6= ∅ (denoted as I |= C),

• a rule, if I denotes r′ for every r′ ∈ grnd(r) (denoted I |= r)

• a program P, if I |= r for every rule r in C

Note that a1, ..., ak, b1, ..., bm, c1, ..., cn are atoms or strongly negated atoms.

In the next section, we introduce a few rules specifically used in ASP.

2.2 Answer Set Programming

Answer Set Programming focuses on NP-hard search problems [12] and enables solving
all search problems in a uniform way [9]. A logic program P represents an instance

2.2 Answer Set Programming 5

of a problem I where the models of P are solutions for I . An ASP solver computes
models of P and outputs a solution for I [4]. Furthermore, ASP operates on a generate
and test methodology with optional optimization [9]. First, solution candidates are (non-
deterministically) generated. Then the rules test candidates and eliminate those who
break them [4]. Optionally, a optimized solution can be found [9]. Logic programs in
ASP can also be divided into two classes, problem encoding and problem instance. The
problem encoding contains the specification and rules of a problem meaning it describes
the problem while the problem instance is a concrete instance of the problem which we
want to solve [4].

In order to understand the implementation, there are a few more rules and constraints
which we need to illustrate. The following definitions are taken from [2].

Definition 9 (Choice rule). A choice rule is a rule in form of {a1, ..., am} ← am+1, ..., an
with a1, ..., an as literals stating that, if the body is true then either ai or ∼ ai is true for all
ai, 1 ≤ i ≤ n.

Definition 10 (Cardinality constraint). A cardinality constraint is a rule in form of
L {a1, ..., am} U that means at least L atoms in the choice rule have to be true and at
most U atoms can be true. We also denote the cardinality rule with U ≥ {a1, ..., am} ≥ L
or L ≤ {a1, ..., am} ≤ U in the implementation.

For predicates, the cardinality constraint can be extended, e.g., L {a(X) : p(X,Y)} U
meaning for every Y there are at least L and at most U values of X such that a(X)
is true. ASP also implements aggregates like count, sum, maximum and minimum, e.g.,
#count{X : node(X)} > 0 meaning the number of nodes must be greater 0 [2]. ASP
solvers are typically divided into two levels. First, the grounding step which grounds all
rules in a given program P such that P ′ ⊆ grnd(P) has the same answer sets as P . Sec-
ondly, Model Search which computes the answer sets of the grounded program P ′ [4].

To sum it up, the first phase of ASP solving process is a modelling phase in which the
problem and its instances are modelled into logic programs, followed by the grounding
phase which eliminates all first-order variables and outputs a propositional program.
The solver then solves the propositional program and outputs a model as a solution [9].

Figure 2: This picture describes the ASP solving process, source: [9]

In the following section, we take a look at clingo, Potassco’s ASP Solver.

6 3 METHODS

2.3 Potassco

For our results, we use the ASP tools clingo, gringo and clasp from Potassco.

Potassco’s grounder gringo grounds the input and simplifies the rules by eliminating true
components [9]. Besides grounding, gringo can also integrate the scripting languages
lua and python. Moreover, the input language of gringo implements the optimization
statements #maximize and #minimze to allow the search of an optimal answer set [7].

The actual solver, clasp, was originally designed and optimized for conflict-driven ASP
solving [10]. Like other ASP solvers, clasp implements optimization via branch-and-
bound search. First clasp searches for a model. Then clasp tries to solve the satisfiability
problem of whether there is a model with a lower cost until this problem becomes un-
satisfiable. This makes the last model found before the unsatisfiability was established
the optimal model [8]. In addition to this, clasp version 3 can also use core guided opti-
mization techniques usually used to solve Maximum Satisfiability (MaxSAT) problems.
In unsatisfiability optimization, the solver tries to solve the problem and extracts an un-
satisfiable core, if the problem is not satisfiable. A subset of clauses (rules) of the original
problem, whose conjunction is still unsatisfiable, is an unsatisfiable core. All soft clauses
of the extracted cores are then relaxed, so that the solver can arbitrarily satisfy one of
them. A set of clauses of a given program, for which we want to find a subset maximiz-
ing the amount of satisfied clauses, is called soft clauses. The solver repeats this process
until either a model is found or no more unsatisfiability cores can be extracted. In the first
case, the first model found is the optimal model. In the second case, if no more unsatisfi-
ability cores can be extracted then the problem is unsatisfiable. [1]. Due to clasp’s multi-
threaded architecture both optimization techniques can be combined. Furthermore, clasp
also has the option of enumerating optimal models [8].

Clingo combines both gringo and clasp in a single system supporting all features and
options of gringo and clasp [9].

The following section illustrates the methods used to implement the simulation of a leaf’s
venation pattern.

3 Methods

We represent a leaf as a whole by using a simple undirected graph G = (V,E). The nodes
in V represent the leaf’s cells, without distinguishing between cell type. The edges rep-
resent connections of cells linked to each other through plasmodesmata. As previously
mentioned we use the dominating set and its variants to stepwise create venation pat-
terns for a given leaf.
The dominating set binds non-vein-cells to vein cells since non-vein-cells need to be close
to vein cells [14, p. 469].

Definition 11 (Dominating Set). A dominating set for G is a subset D ⊆ V such that all
nodes v ∈ V \D are adjacent to a node w ∈ D. Examples are shown in figure 3.

From here on out D portrays the vein cells of a leaf for all coming definitions. Let k be
a positive integer. Since veins are not random points in leaves, but connecting threads

7

(a) Dominating Set (b) Minimum Dominating Set (c) Minimum Connected Dominating Set

Figure 3: These are dominating set examples where the dominating nodes are marked
with the color green.

running through leaves, the vein cells have to be connected. Otherwise, the water com-
ing from the leafstalk would not be able to reach the vein-cells. We use the connected
dominating set to not only have the non-vein-cells be dependent on vein-cells but also to
ensure that the vein cells are connected.

Definition 12 (Connected Dominating Set). A connected dominating set D is a dominat-
ing set for G such that for a subgraph induced by D there is a path from every node v ∈ D
to every other node w ∈ D.

Mesophyll cells can be up to three or four cells away from the vascular system [14, p. 469].
The k-hop dominating set allows for k−1 intermediate nodes between a dominating node
and a node not in the dominating set.

Definition 13 (k-Hop Dominating Set). A k-hop dominating set for G is a subset D ⊆ V
such that all nodes v ∈ V \D are at most k nodes away from a node w ∈ D.

A 1-hop dominating set is equivalent to a dominating set since 0 intermediate nodes are
allowed for k = 1.

Definition 14 (k-transitive closure). The graph G′ = (V,E′) is a k-transitive closure of
G = (V,E) if for every path P of the length 2 ≤ d ≤ k in G the graph G′ has an edge from
every node in the path to every other in the path.

Remark. The above mentioned k-transitive closure definition only applies for undirected
graphs. For k = 1 one would usually create an edge from a node to itself, but this case is
disregarded which is why d must be at least 2.

Examples for k-transitive closures with different k can be seen in figure 4.

The next step is to combine the connectivity of vein cells and the mesophyll cells’ ability
to be a few cells away from the veins [14, p. 469]. This portrays the vascular system more

8 3 METHODS

Normal Graph 2-transitiveclosure 3-transitive closure 4-transitive closure

Figure 4: This figure is an example of k-transitive closures of a graph. The green edges
display the additional edges for k = 2. The purple edges are the additional edges for
k = 3 and the orange edges are for k = 4.

realistically by allowing both the connectivity of vein cells and a certain distance between
vein cells and other types of cells.

Definition 15 (k-Hop Connected Dominating Set). A k-hop connected dominating set is
a k-hop dominating set for G such that for a subgraph induced by D there is a path from
every node v ∈ D to every other node w ∈ D.

To prevent solutions consisting of mirrored patterns, we define a type of canonical dom-
inating set to eliminate symmetry. For symmetrical examples see figure 5.

Figure 5: Mirrored patterns we want to avoid or minimize

Definition 16 (Canonical Connected Dominating Set). A canonical connected domi-
nating set D is a connected dominating set such that every path between two nodes
vh, vj ∈ D comply with the following rule: For every path between startnode vh and
endnode vj let the intermediate nodes be vi with h < i < j.

9

Definition 17 (Canonical k-Hop Connected Dominating Set). A canonical k-hop con-
nected dominating set D is a k-hop connected dominating set such that every path be-
tween two nodes vh, vj ∈ D comply with the following rule: For every path between
startnode vh and endnode vj let the intermediate nodes be vi with h < i < j.

The vascular system is connected to the leafstalk which in turn connects the leaf to the rest
of the plant [16]. To depict the vascular system correctly, all possible venation patterns
should have one node representing the leafstalk which they are all linked to.

Definition 18 (Rooted k-Hop Connected Dominating Set). A rooted k-hop connected
dominating set is a k-hop connected dominating which is also connected to the root node
r ∈ D.

Remark. Analogous definitions for other connected variants which are to be rooted.

In the next section, we will implement these methods in ASP to obtain suitable models
for venation patterns.

4 Implementation

Now, we describe the implementation of the methods from the previous section in ASP.
To do so we first introduce an alphabet for our logic program. Then we implement the
variants of the dominating set in ASP pseudocode and elaborate on what the pseudocode
does.

4.1 Alphabet

The alphabet used for the implementation is as follows:
We denote variables with upper case characters, e.g., X, and constants with lower case
characters, e.g., x. In order to represent the graph as a problem instance we have the
predicate symbols node, edge, reach, connected, transitive and dom which can form the atoms
node(_), edge(_,_), reach(_), connected(_,_), transitive(_,_) and dom(_) with _ as placeholder
for variables, constants or integers. A dot "." signifies the end of the rule. We denote not
as the default negation with negation as failure.

The terms node(_) and edge(_,_) are used to represent the input graph. For every node
in the graph, there is a fact node(x) with x as a unique identifier for the node in the
problem instance. For every edge, the fact edge(x, y) represents the edge with x and y
as the unique identifiers of the node in the graph sharing the edge. The example below
shows a problem instance for an undirected rectangle graph.

node (1) . node (2) . node (3) . node (4) .
edge (1 , 2) . edge (2 , 3) . edge (3 , 4) . edge (4 , 1) .
edge (2 , 1) . edge (3 , 2) . edge (4 , 3) . edge (1 , 4) .

Note that to represent an undirected edge in ASP, we have to use two directed edges.

10 4 IMPLEMENTATION

The term dom(_), short for dominating, signifies that there is a dominating node with the
identifier _. We explain the rest of the predicates as they appear.

We use the aggregate #count{_} for counting and the aggregate #minimize{_} for opti-
mization. In addition to that, we introduce the aggregate #choose{_} which was specifi-
cally created for the pseudocode and means that we pick exactly one element of a set that
has to be true. We choose to introduce this aggregate in case a different grounder than
gringo is used and the aggregate used in gringo might not exist in other grounders.

4.2 Minimum Dominating Set

The pseudocode in algorithm 1 is for the minimum dominating set implementation.

Algorithm 1: Minimum Dominating Set

1 {dom(X) : node(X)}.
2 #count{dom(X) : edge(X,Y)} ≥ 1← not dom(Y), node(Y).
3 #minimize{#count{dom(X)}}.

The choice rule in the first line states that a node is either dominating or not meaning
every node could be in the dominating set. This way we generate subsets of nodes which
are potential dominating sets. The second line declares that if a node is not in the dom-
inating set then at least one of its edges has a dominating node on the other end. Ad-
ditionally, the second line is equal to← not dominating(Y), node(Y), {dominating(X) :
edge(X,Y)} < 1 meaning there must not be the case where a node not in the dominating
set does not share an edge with at least one dominating node. Intuitively, this means a
node not in the dominating set has at least one dominating neighbour. The last line is the
optimization statement specifying that we want to minimize the number of dom(X) that
are true meaning we want to minimize the number of dominating nodes needed for the
dominating set.

4.3 Minimum Connected Dominating Set

The implementation for the minimum connected dominating set shown in algorithm 2 is
an extension of the minimum dominating set shown in algorithm 1.

Algorithm 2: Minimum Connected Dominating Set

1 {dom(X) : node(X)}.
2 #count{dom(X) : edge(X,Y)} ≥ 1← not dom(Y), node(Y).
3 {connected(X,Y) : edge(X,Y), dom(Y)}← dom(X).
4 {connected(X,Y) : edge(X,Y), dom(X)} ≤ 1← dom(Y).
5 reached(X)← X = #choose{Y:dominating(Y)}.
6 reached(Y)← connected(X,Y), reached(X).
7 ← dominating(Z), not reached(Z).
8 #minimize{#count{dom(X)}}.

4.4 Minimum k-Hop Dominating Set 11

The first two lines work the same way as for the minimum dominating set, as does the
last line. The new lines from 3-7 add connectivity and is a barely modified version of
the Hamilton cycle encoding taken from a Potassco tutorial [17]. Line 3 states that if X is
dominating then all outgoing edges of dom(X) connecting X with another dominating
node Y are named connected. So does line 4 with the addition that we only allow at
most one incoming edge per dominating node to limit the number of possible models.
Moreover, we have now created a subgraph comprised of only dominating nodes and
arbitrarily chosen edges between dominating nodes. In line 5 we choose an arbitrary
startnode then in line 6 we try to recursively reach all other dominating nodes by marking
dominating nodes connected to already reached nodes as reached. Line 7 declares that
there must not be a dominating node that is not reached. If there is a dominating node
that is not reached then generated set is not connected.

4.4 Minimum k-Hop Dominating Set

We do some preprocessing for the k-hop dominating set by performing a k-transitive
closure on the original input graph and use the resulting graph G′ that has additional
edges as a new input graph. As a consequence, we can reuse the encoding of the mini-
mum dominating set for the minimum k-hop dominating set. The algorithm used for the
k-transitive closure is shown in algorithm 3:

Algorithm 3: k-transitive closure

1 tansitiveGraph := a copy of the inputGraph;
2 k := k-hop number;
3 for all nodes in inputGraph do
4 cnode = current node;
5 currentNeighbours := list of cnode’s neighbours;
6 for i← 0 to (k − 1) do
7 newNeighbours := empty list;
8 for all n in currentNeighbours do
9 newNeighbours := neighbours of n;

10 for j in newNeighbours do
11 if newGraph does not have undirected edge cnode,j and cnode 6= j then
12 add an undirected edge between cnode,j;
13 end
14 end
15 currentNeighbours := newNeighbours + currentNeighbours;
16 end
17 end
18 end

First, we create a copy of our input graph to which we will add the transitive edges. We
choose a node, denoted as cnode, and save its neighbours in a list called neighbours. Then
for every node in neighbours we take a look at its neighbours, called newNeighbours, and
see if every node in newNeighbours shares an edge with our chosen node, cnode. If not

12 4 IMPLEMENTATION

add an edge between them unless cnode = j because we do not want an edge from cnode
to itself. These are the nodes that are two nodes away from cnode. After adding edges
between cnode and all nodes which were previously two nodes away, we add newNeigh-
bours to currentNeighbours. This process is done k − 1 times. In doing so we walk all
possible paths of the length k which has cnode as startnode. We do this for every node in
the input graph to obtain a k-transitive closure.

4.5 Minimum k-Hop Connected Dominating Set

For the k-hop connected dominating set the preprocessing is slightly different. In ad-
dition to adding edges, we mark these additional edges with the predicate transitive
to distinguish them from the original edges. If we add the additional edges with the
predicate edge then the solver also uses these additional edges instead of only using
the original edges to reach dominating nodes during the connectivity test. This can
cause the subgraph induced by the dominating set to not be connected. As a result,
we need to slightly modify the encoding of the connected dominating set solution.

Algorithm 4: Minimum k-Hop Connected Dominating Set

1 {dom(X) : node(X)}.
2 #count{dom(X) : edge(X,Y) ∨ dom(X) : transitive(X,Y)} ≥ 1← not dom(Y),

node(Y).
3 {connected(X,Y) : edge(X,Y), dom(Y)}← dom(X).
4 {connected(X,Y) : edge(X,Y), dom(X)} ≤ 1← dom(Y).
5 reached(X)← X = #choose{Y:dominating(Y)}.
6 reached(Y)← connected(X,Y), reached(X).
7 ← dominating(Z), not reached(Z).
8 #minimize{#count{dom(X)}}.

In the choice rule in line 2, we add transitive(X,Y) to signify that a node not in the
dominating set must share at least one original edge or one transitive edge with a node
in the dominating set.

4.6 Canonical (k-Hop) Connected Dominating Set

Symmetry can cause a lot of problems in combinatorial optimization due to un-
necessarily exploring search regions more than once [5]. To break some of the
symmetry in our solution we use in Section 3 described canonical dominating set.

4.7 Rooted Connected Dominating Set Variants 13

Algorithm 5: Minimum k-Hop Connected Dominating Set

1 {dom(X) : node(X)}.
2 #count{dom(X) : edge(X,Y)} ≥ 1← not dom(Y), node(Y).
3 {connected(X,Y) : edge(X,Y), dom(Y), X < Y }← dom(X).
4 {connected(X,Y) : edge(X,Y), dom(X), X < Y } ≤ 1← dom(Y).
5 reached(X)← X = #choose{Y:dominating(Y)}.
6 reached(Y)← connected(X,Y), reached(X).
7 ← dominating(Z), not reached(Z).
8 #minimize{#count{dom(X)}}.

As described in Definition 16, we only accept edges that go from nodes with smaller
identifying numbers to greater ones during the connectivity test. In order to do so, we
add the condition X < Y in the two choice rules in lines 3 and 4, so that X < Y applies
for every connected(X,Y). This method has both advantages and disadvantages which
are touch upon in the results and discussion sections. For the canonical k-hop connected
dominating set, we need to add ∨dom(X) : transitive(X,Y) in Line 2, like we did for the
k-hop connected dominating set. Note that the way we number the node is decisive of
what kind of symmetry we are breaking.

4.7 Rooted Connected Dominating Set Variants

There are several techniques to root the connected dominating set variants. For
our implementation, we add root(X) with X as the identifier of the cho-
sen root node as a fact in the problem instance. After that the code needs
to be slightly modified, e.g., a modification for the connected dominating set:

Algorithm 6: Minimum Connected Dominating Set

1 {dom(X) : node(X)}.
2 #count{dom(X) : edge(X,Y)} ≥ 1← not dom(Y), node(Y).
3 {connected(X,Y) : edge(X,Y), dom(Y)}← dom(X).
4 {connected(X,Y) : edge(X,Y), dom(X)} ≤ 1← dom(Y).
5 reached(X)← root(X).
6 reached(Y)← connected(X,Y), reached(X).
7 ← dominating(Z), not reached(Z).
8 #minimize{#count{dom(X)}}.

Since we know the root node, we can start the connectivity search at the root node (line 5
in the example above). This saves some time since we do not have to arbitrarily choose a
random node to start the search. The root node is also automatically a dominating node
since connected is only between nodes in the dominating set. In all the other connected
variants the line "reached(X)← X = #choose{Y : dominating(Y)}" needs to be replace
with "reached(X)← root(X)" to root them.

14 5 RESULTS

4.8 Potassco’s ASP tools

Potassco’s ASP tools gringo, clasp and clingo are available on github1. The clingo pack-
age includes gringo and clasp. Recommended is installing Anaconda or Miniconda and
download clingo with the following command in the Anacanda command:

conda i n s t a l l −c potassco c l i n g o

This thesis uses the specific versions gringo 5.4.0, clasp 3.3.5 and clingo 5.4.0. Problem
class and problem instance are written like normal text files and have the file extension
".lp". Let class.lp represent the problem class and instance.lp the problem instance. All
experimental results used with clingo’s parallel compete mode with T threads, the first
command. The second command prints all optimal solutions. Both commands use the
–quiet option meaning we do not want clingo to print the progess just the solutions.
Printing the progress adds to the overall runtime.

c l i n g o c l a s s . lp i n s t a n c e . lp −−quie t −−p a r a l l e l−mode=T
c l i n g o c l a s s . lp i n s t a n c e . lp −−quie t −−p a r a l l e l−mode=T −−opt−mode=optN

Next, we will take a look at our results.

5 Results

This section shows our runtime results for the different dominating set variants. First, we
describe the graphs used for our tests:

Figure 6 shows the three smallest graphs used.

1https://github.com/potassco/clingo/releases/

https://github.com/potassco/clingo/releases/

15

(a) small leaf

(b) left-right leaf (c) middle leaf

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

42

41

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

0

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Figure 6: The three smallest graphs used for the results

The first graph (a), called small-leaf, has 15 nodes and is only used since its small size
makes it easy to see whether the results are correct or not. The other two graphs share
the same structure, both having 62 nodes. Their difference lies in the numbering of their
nodes. For the numbering, we categorize the nodes into levels determined by the shortest
path between the node and the root node. For example, the root node has the level 0, if a
node is 3 nodes away from the root node then it is on level 3. A node that is 3 nodes away
has two intermediate nodes between it and the root node. In the graph (b), denoted as
left-right-leaf, the root node has the number 0. The nodes on the next level are numbered
from left to right with the next greater integer. This process is done for all levels. (c),
named middle-leaf, numbers its nodes as follows. The node in the middle has the smallest
integer of the level. Then we number the nodes on the right with the next greater integer.
When there are no more nodes left on the right side we return to the middle and repeat
the same process for the nodes on the left of the middle. We test these two isomorph
graphs to show the impact that the numbering has on the canonical solutions. The graph
structure of left-right-leaf and middle-leaf is taken from an example graph from [18]. The
remaining graphs are inspired by left-right-leaf and middle-leaf.

The next two graphs, as shown in figure 7 are slightly bigger:

16 5 RESULTS

(e) ripped leaf(d) bigger leaf

Figure 7: A slightly bigger test graph and an unconnected one

The graph (d), called bigger-leaf, has 9 nodes more than left-right-leaf. It is also numbered
from left to right. (e), denoted as ripped-leaf, has also 71 nodes, but has edges missing
such that it is not connected since we also test whether and how fast the connected im-
plementations detect that a graph is disconnected.

The last two graphs in figure 8 are the biggest graph used for testing. The graph (f) on
the left, called maple, is inspired by a maple leaf while the one on the right called (g)
asymmetric is inspired by an asymmetrical alocasia leaf which has the petiole connected
on the underside of the leaf meaning the root is not on the edge of the graph, but rather
somewhere closer to the middle. We number maple’s nodes from left to right. On the other
hand, we number asymmetric also with the level system, but since the root is somewhere
in the middle of the leaf (see the orange dot in figure 8) we start numbering each level at
the top, 12 o’clock and then proceed clockwise. Maple has 118 nodes and asymmetric has
378.

17

0

(f) maple

(g) asymmetric

Figure 8: The two biggest test graphs: (f) maple and (g) asymmetric

The result tables are structured as follows, in the first column we have the names of the
test graphs used. The second column contains the number of threads used to solve the
problem. Then we have a column named "Time single" which states the time needed to
find a single optimal model followed by column "Time all" stating the time needed to
find all optimal solutions. Both times are given in seconds. The next column shows the
minimal amount of nodes needed for an optimal solution. Lastly, the "Models" column
shows the number of optimal models that our implementation can find. Note that these
are all optimal solutions, but some of them happen to reoccur due to how we implement
finding connectivity. We discuss this more in the discussion section. If we cannot find a
single optimal solution within 20 minutes and 24 cores or 4 cores for the non-connected
solutions, we cancelled the solving process. This means the column for the optimal so-
lution contains bounds for the optimum. The bounds are denoted with "[L;U]" which
means there are no models with the lower bound L and there is at least one model found
for the upper bound U. We also did not try to find all optimal solutions since we already
failed at finding one meaning the number of optimal models is unknown. Optionally, if
we can compare our ASP solution with an ILP solution then there is a column between
name and threads which specifies whether the results are from the ASP or ILP solution.
The ILP results are directly under the ASP results. For the comparison with ILP, we only
use maximal 4 threads for both ASP and ILP. Note that there are no tests for finding all
possible solutions in ILP since it is not built into the ILP solution given to us. The k-hop
dominating set solution in ILP was given to us by Professor Gunnar Klau though we
removed some lines which printed what edges were added since this seemed to add to

18 5 RESULTS

the programs runtime. Now we take a look at the results starting with the minimum
dominating set in ASP and ILP as shown in table 1.

Solution in Threads Time single Time all Optimum Models
(a) small-leaf ASP 1 0.000 0.000 4 47

ILP 1 0.0 - 4 -
(b) left-right-leaf ASP 2 0.007 0.018 12 1091

ILP 4 0.016 - 12 -
(c) middle-leaf ASP 2 0.007 0.024 12 1091

ILP 4 0.016 - 12 -
(d) bigger-leaf ASP 2 0.007 0.010 13 43

ILP 4 0.031 - 13 -
(e) ripped-leaf ASP 2 0.007 0.011 14 441

ILP 4 0.016 - 14 -
(f) maple ASP 2 0.031 0.016 20 1

ILP 4 0.016s - 20 -
(g) asymmetric ASP 4 1252.886 - [59;75] -

ILP 4 17.009 - 62 -

Table 1: Minimum Dominating Set Results for ASP and ILP

As we can see in table 1, our ASP solution can compete with the ILP solution for the
dominating set for the first 6 test graphs. Both of them need less than 50 milliseconds
for solving the minimum dominating set. With the exception of small-leaf, ILP even uses
two threads more than ASP. The reason why we have a different thread number for the
ILP and ASP results is because we want to compare the fastest way of solving for both
solutions. During our tests more threads for small inputs sometimes required more time
in ASP than less threads for the same input. Also, the ILP solution decides for itself
how many threads it wants to use. The ASP solution is faster than the ILP solution for
the first five graphs although since the differences are only a few milliseconds we can
overlook them. However, ILP is faster than ASP for bigger input graphs since ILP can
solve asymmetric within 17 seconds while ASP cannot solve asymmetric within 20 minutes.
For the 2-hop dominating set, the result are slightly different as shown in table 2.

As before ASP seems to require less time than ILP for all graphs except small-leaf, ripped-
leaf and asymmetric, but again the differences are only a few milliseconds. However, the
2-hop dominating set was able to solve asymmetric in less than five minutes although the
number of optimal solutions is not solvable within 20 minutes. The ILP solution is much
faster requiring less than a second. The ILP solution can also solve ripped-leaf with only
one thread.

19

Solution in Threads Time single Time all Optimum Models
(a) small-leaf ASP 1 0.000 0.000 1 1

ILP 1 0.0 - 1 -
(b) left-right-leaf ASP 2 0.012 0.014 5 6

ILP 4 0.062 - 5 -
(c) middle-leaf ASP 2 0.014 0.013 5 6

ILP 4 0.016 - 5 -
(d) bigger-leaf ASP 2 0.015 0.021 6 1177

ILP 4 0.016 - 6 -
(e) ripped-leaf ASP 2 0.013 0.057 7 20500

ILP 1 0.016 - 7 -
(f) maple ASP 2 0.016 0.031 9 806

ILP 4 0.031 - 9 -
(g) asymmetric ASP 4 264.726 1231.504 25 2020+

ILP 4 0.577 - 25 -

Table 2: Minimum 2-hop Dominating Set Results for ASP and ILP

Solution in Threads Time single Time all Optimum Models
(a) small-leaf ASP 1 0.000 0.000 1 7

ILP 1 0.0 - 1 -
(b) left-right-leaf ASP 2 0.019 0.021 3 18

ILP 4 0.016 - 3 -
(c) middle-leaf ASP 2 0.020 0.020 3 18

ILP 4 0.016 - 3 -
(d) bigger-leaf ASP 2 0.023 0.039 4 2659

ILP 1 0.016 - 4 -
(e) ripped-leaf ASP 2 0.019 0.020 4 81

ILP 1 0.0 - 4 -
(f) maple ASP 2 0.031 0.047 5 569

ILP 4 0.0 - 5 -
(g) asymmetric ASP 4 1320.739 - [13;17] Unknown

ILP 4 0.188 - 14 -

Table 3: Minimum 3-hop Dominating Set Results for ASP and ILP

For the 3-hop dominating set results in table 3, ILP is faster than ASP for all test graphs
except small-leaf where they have the same runtime. Additionally, the 3-hop dominating
set solution is not able to solve asymmetric within 20 minutes in contrast to the 2-hop
dominating set. The ILP solution is able to solve the 3-hop dominating set in less than a
second.

Next, we take a look at the connected variants beginning with the minimum connected
dominating set in table 4. The first row of table 4 shows that small-leaf is quite easy to
solve needing less than 10 milliseconds for finding one and finding all solutions. How-
ever, our implementation needs more than twice as much time for solving middle-leaf than

20 5 RESULTS

Threads Time single Time all Optimum Models
(a) small-leaf 2 0.006 0.005 5 24
(b) left-right-leaf 4 18.445 141.970 21 20088

4 *54.968 - 21 -
(c) middle-leaf 4 313.022 678.339 21 20088

4 *156.962 - 21 -
(d) bigger-leaf 24 561.827 4135.029 24 69482
(e) ripped-leaf 1 0.012 - UNSAT 0
(f) maple 24 1202.277 - [33;40] Unknown
(g) asymmetric 24 1379.182 - [28;145] Unknown

Table 4: Minimum Connected Dominating Set Results

it does for left-right-leaf despite both having the same structure and results in optimum
and number of models. This is neither an outlier nor a result of limiting the number of
incoming edges during the connectivity test in our implementation since it happens re-
peatedly during testing. The results marked with the symbol * show the results without
limiting the number of incoming edges. The unconstrained results have no results for
finding all optimal models since the program did not finish after 3 hours for middle-leaf.
The table also shows that our connected dominating set implementation does not scale
well since it needs 24 threads and over 500 seconds for solving bigger-leaf which has only
9 nodes more than left-right-leaf. Finding all optimal solutions for bigger-leaf even takes
over 1 hour. This is the only time we did not cancel around the 20 minute mark. On the
other hand, it almost immediately recognizes that ripped-leaf is not solvable on account
of being a disconnected graph without needing more than one thread. This is true for all
remaining tables, so we do not mention ripped-leaf again. Our implementation neither
comes close to solving maple nor asymmetric within 20 minutes even with 24 threads.

In addition to this, the number of optimal models is incredibly high which is like previ-
ously mentioned due to how we implement the connectivity test. A method to reduce
both the time and the number of models found is with the help of the canonical connected
dominating set solution.

Threads Time single Time all Optimum Models
(a) small-leaf 2 0.004 0.004 5 7
(b) left-right-leaf 4 0.047 0.197 21 117
(c) middle-leaf 4 0.103 0.424 22 1152
(d) bigger-leaf 4 0.112 0.221 24 156
(e) ripped-leaf 1 0.011 - UNSAT 0
(f) maple 4 6.807 19.777 41 374848
(g) asymmetric 24 1200.975 - [72;134] Unknown

Table 5: Minimum Canonical Connected Dominating Set Results

As shown in table 5 the canonical connected dominating set is significantly faster when
compared to the results in table 4. Both left-right-leaf and middle-leaf ’s runtime was re-
duced to under 1 second, but middle-leaf still needs about twice as long as left-right-leaf.
Furthermore, bigger-leaf can be solved in less than a second with only 4 threads. Maple

21

is also solvable with 4 threads needing only 7 seconds for a single optimal solution and
around 20 seconds for all optimal solutions. Asymmetric is still not solvable for a single so-
lution within 20 minutes, but the canonical connected solution finds better bounds faster
than the normal connected solution. Small-leaf has no significant change in runtime, but
the canonical connected dominating set reduces the number of models from 24 to 7. This
seems to be the case for all test leaves since the number of models from middle-leaf and left-
right-leaf also went down from 20088 to 1152 and 117 respectively. Moreover, bigger-leaf ’s
optimal model count lessens from 69482 to 156. These are good results, but comparing
table 5 with table 4 we see that the optimums are not correct, e.g., the optimal solution
of middle-leaf is 22 for the canonical connected dominating set instead of the correct 21.
Also, table 5 shows that maple’s optimal solution has 41 nodes even though the normal
connected dominating set implementation found a solution with 40 nodes as shown in
table 4. This means, due to its strong dependency on how the graph is numbered, the
canonical connected dominating set solutions are not exact, but approximations of mini-
mum solutions.

Now, we take a look at the results of the k-hop connected for k = 2 in table 6 and k = 3
in table 7.

Threads Time single Time all Optimum Models
(a) small-leaf 2 0.006 0.006 1 1

(b) left-right-leaf 4 0.621 2.111 12 118
(c) middle-leaf 4 1.054 3.698 12 118
(e) ripped-leaf 1 0.018 - UNSAT 0
(d) bigger-leaf 4 17.451 29.086 13 4

(f) maple 24 1205.141 - [19;24] Unknown
(g) asymmetric 24 1356.188 - [20;95] Unknown

Table 6: Minimum 2-hop Connected Dominating Set Results

The 2-hop connected dominating set implementation solves the graphs quite fast without
the need for canonical symmetry breaking. While our solution cannot solve maple and
asymmetric within 20 minutes with 24 threads, the bounds for the optimal solution are
much better than compared to table 4. Small-leaf, left-right-leaf and middle-leaf only need
up to a second to find one optimal solution and up to four seconds to find all optimal
solutions. Whereas the connected dominating set solution struggles to solve bigger-leaf
with 24 cores, the 2-hop connected dominating set solution only needs up to 30 seconds fo
find all optimal solutions with only 4 cores. The 3-hop connected dominating set solution
solves the test graphs even faster as seen in table 7.

While the 3-hop connected solution is still not able to solve maple and asymmetric within
20 minutes, its bounds are better than those of the 2-hop connected solution in 6. Maple’s
bounds have only a difference of 3 rather then 5 and asymmetric’s bounds have a dif-
ference of 49 rather than 75. The 3-hop solution reduces the solving time of small-leaf,
left-right-leaf and middle-leaf to less than half a second even when searching for all opti-
mal solutions. For bigger-leaf, it needs less than a second for finding an optimal solution
and a few seconds to find all optimal solutions with 4 cores. However, it is odd that
middle-leaf and left-right-leaf have a different number of optimal solutions in table 7 even

22 5 RESULTS

Threads Time single Time all Optimum Models
(a) small-leaf 2 0.007 0.006 1 7

(b) left-right-leaf 4 0.099 0.171 7 124
(c) middle-leaf 4 0.140 0.205 7 128
(d) bigger-leaf 4 0.828 3.292 8 74
(e) ripped-leaf 1 0.021 - UNSAT 0

(f) maple 24 1413.329 - [15;18] Unknown
(g) asymmetric 24 1480.644 - [14;63] Unknown

Table 7: Minimum 3-hop Connected Dominating Set Results

though they have the same structure and the same number of optimal models in table 6.

For the canonical k-hop dominating set, rooted k-hop dominating set and rooted canon-
ical k-hop dominating set we use k = 2 for our results. The canonical 2-hop connected

Threads Time single Time all Optimum Models
(a) small-leaf 2 0.005 0.005 1 1

(b) left-right-leaf 4 0.046 0.088 12 13
(c) middle-leaf 4 0.026 0.049 13 70
(d) bigger-leaf 4 0.084 0.101 13 1
(e) ripped-leaf 1 0.015 - UNSAT 0

(f) maple 4 3.796 17.017 25 9784
(g) asymmetric 24 1273.791 - [44;81] Unknown

Table 8: Minimum Canonical 2-hop Connected Dominating Set Results

dominating set, as shown in table 8, has an even lower runtime than the 2-hop connected
dominating set solution in table 6. While not able to solve asymmetric, our result has bet-
ter bounds than those in table 6 with a difference from 37 instead of 75. However, like the
canonical connected dominating set solution, it is also an approximation. Middle-leaf has
an optimum of 13 even though there is a non-canonical solution with 12 nodes. Maple is
also solvable, but solution with fewer nodes can be found by the non-canonical solution
as shown in table 6 which finds a solution with 24 nodes.

Now we take a look at the rooted solution results starting with the non-canonical one.
Compared to the not rooted 2-hop connected dominating set results in table 6, the rooted

Threads Time single Time all Optimum Models
(a) small-leaf 2 0.006 0.006 3 2

(b) left-right-leaf 4 0.419 1.595 14 132
(c) middle-leaf 4 0.331 2.037 14 132
(d) bigger-leaf 4 0.677 1.538 15 4
(e) ripped-leaf 1 0.012 - UNSAT 0

(f) maple 24 1262.068 - [25;27] Unknown
(g) asymmetric 24 1187.724 - [21;89] Unknown

Table 9: Minimum Rooted 2-hop Connected Dominating Set Results

23

solution is slightly faster, reducing the runtime of left-right-leaf and middle-leaf to less
than half a second to find a single solution and only needing about 2 seconds to find all
optimal solutions. While these improvement are hardly noticeable, the improvement for
bigger-leaf, maple and asymmetric are much more apparent. Finding all optimal solutions
for bigger-leaf requires less than two seconds in comparison to the 30 seconds in table 6
and finding a single optimal solution requires less than a second instead of 17 seconds.
Moreover, both maple and asymmetric, while still not solvable within 20 minutes, have
better bounds than before. However, this comparison is to be taken with a grain of salt
due to the rooted version needing the root to be in the dominating set meaning there
might be more nodes in the rooted 2-hop connected dominating set than in the normal
connected version, which lowers the runtime. The canonical rooted 2-hop dominating
set results as shown in table 10 are also slightly faster than the non-canonical version
as shown in table 9. It also can solve maple with only 4 threads instead of 24 and has
even better bounds for asymmetric. However, like all other canonical versions before, the
minimum canonical rooted 2-hop dominating set is also an approximation as seen when
comparing the optimums of the canonical and non-canonical versions.

Threads Time single Time all Optimum Models
(a) small-leaf 2 0.005 0.005 3 1

(b) left-right-leaf 4 0.013 0.015 14 13
(c) middle-leaf 4 0.015 0.023 15 70
(d) bigger-leaf 4 0.016 0.017 15 1
(e) ripped-leaf 1 0.011 - UNSAT 0

(f) maple 4 0.187 0.307s 27 10272
(g) asymmetric 24 1365.163 - [53;83] Unknown

Table 10: Minimum Canonical Rooted 2-hop Connected Dominating Set Results

In conclusion, ASP can compete with ILP for the (k-hop) dominating set with small input
graphs. However, ILP can easily solve bigger input graphs that ASP struggles with. For
the (k-hop) connected variants ASP can solve the problem faster with greater k. While the
canonical connected versions can solve problems that the non-canonical versions struggle
with, they are not exact thus not completely reliable.

6 Discussion

The venation patterns created by our implementation are not perfect models for an opti-
mal leaf venation since they only present the number of cells which have to be replaced
with vein cells to supply the entire leaf and maximize the amount of photosynthesis per-
forming cells. The model completely disregards the vein hierarchy and among others that
the vascular system structure has also different tasks like protecting against damage [16].
Our model also disregards that plants try to minimize both the total branch/vein length
and the transport distance for nutrients in their architecture [3].

As seen in the results our ASP implementation is impractical for larger input graphs.
Especially when considering our comparison with the ILP solution for the simple k-hop
variants. The normal connected solution already struggles with middle-leaf needing over

24 6 DISCUSSION

5 minutes for solving even though middle leaf only has 62 nodes. Our canonical solu-
tions are faster, but not exact and are too dependent on how we number the nodes of a
graph. This means it is possible for the solver to determine that solving the canonical (k-
hop) dominating set for a connected graph is unsatisfiable because of the way the nodes
are numbered. Furthermore, while the left-right numbering for the canonical solution is
more correct, it creates a left heavy venation pattern for left-right-leaf and while middle-leaf
is an approximation and generally requires more solving time, it comes closer to the kind
of venation pattern we want to have, as figure 9 shows.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

0

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

middle leafleft-right-leaf

Figure 9: A Disadvantage of the canonical method

Moreover, the non-canonical connected version seems to be dependent on the node num-
bering since left-right-leaf requires less solving time than middle-leaf even though they
only differ in node numbering.

Our k-hop implementations generally seem to require less time with greater k, but since
mesophyll cells can only be a few cells away from the vascular system [14, p. 469] we
cannot simply increase k to find a faster solution. Especially if we want to know the
solution for a certain k.

As previously mentioned, the number of optimal solutions are extremely high but con-
tain recurrences due to the way we implement our connectivity test. Since a choice rule
chooses which edge between two dominating nodes is used for the connectivity test the

25

solver can output two solutions with the same dominating set, but two different sets
of connected edges. Limiting the number of incoming edges reduces the number of re-
currences, but does not eliminate all of them. It is possible to declare all edges between
dominating nodes as connected nodes, but this method required more time during testing.

As mentioned in the results section, there are different ways of rooting the connected
dominating set variants. One way to root the connected dominating set is to simply
add dominating(x). with x as identifier of our chosen root node as a fact in our problem
instance. However, this does not remove the arbitrarily choosing of startnodes for the
connectivity search. Another way is to declare that for every problem instance, the root
node has always a certain identifier x, e.g., x = 0. This might become problematic though
if one wants to choose the numbering of oneself for some kind of other type symmetry
breaking, which is why we choose to do the rooting with the predicate root(x).

During the comparison with ILP, we choose to only use two threads for running the ASP
programs while ILP used different numbers of threads for different graphs and different
ks. We want to compare ASP and ILP when they are at their fastest. Additionally, solving
in ASP sometimes requires more time when using many threads for small inputs. Our
comparison of ILP and ASP results might be unfair since we did not use the same amount
of threads for both solutions, but both were under the same conditions with the exception
that we chose how many threads our ASP solution used while the ILP solution chooses
for itself how many threads it needs. Ultimately, ILP is the better solution for the (k-hop)
dominating set since it can solve larger inputs in contrast to ASP.

7 Conclusions

Our model finds the minimal amount of vein cells required to supply the entire leaf, but
it still disregards a lot about the structure of a leaf.

In addition to this, our ASP implementation, while functioning, is impractical, especially
when compared to ILP. Moreover, the canonical method used to reduce the runtime is
just an approximation with a lot of disadvantages seeing as it can exclude the types of
patterns we actually want as results.

The next step for the ASP solution is to try and find a better encoding for our model
since the encoding of an implementation strongly influences its runtime as mentioned
in the discussion. Moreover, finding an efficient way to number graph nodes is also
another goal since the numbering has a great influence on the runtime and the optimum
as shown in our results. Additionally, one could expand the model by minimizing the
branch lengths of the veins to make the model even more realistic and to see if more
constraints can reduce the solving time. Also, trying out different solvers or Potassco
tools are also an option.

On the other hand, implementing the complete model in ILP should be the current focus
since we do not know for certain how well it performs for the complete model. After
comparing the implementation of our complete model in ILP with our ASP solution we
can decide which solution we want to expand on to make the model more authentic.

26 REFERENCES

8 Code

The code for our implementation and our example graphs can be
found on https://gitlab.cs.uni-duesseldorf.de/van.mantgem/
dominating-set-using-asp. The link was last visited: 04.02.2020.

9 Acknowledgements

I would like to express my gratitude to Prof. Gunnar Klau for giving me the opportunity
to write this bachelor thesis. I would also like to thank Eline van Mantgem for giving me
advice, answering my questions and for the weekly meetings.

References

[1] B. Andres, B. Kaufmann, O. Matheis, and T. Schaub. Unsatisfiability-based opti-
mization in clasp. In Technical Communications of the 28th International Conference
on Logic Programming (ICLP’12). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2012.

[2] G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[3] A. Conn, U. V. Pedmale, J. Chory, and S. Navlakha. High-resolution laser scanning
reveals plant architectures that reflect universal network design principles. Cell sys-
tems, 5(1):53–62, 2017.

[4] T. Eiter, G. Ianni, and T. Krennwallner. Answer set programming: A primer. In
Reasoning Web International Summer School, pages 40–110. Springer, 2009.

[5] T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In International Con-
ference on Principles and Practice of Constraint Programming, pages 93–107. Springer,
2001.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of
NP-Completeness. Freeman, 1979.

[7] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski, J. Romero,
T. Schaub, and S. Thiele. Potassco user guide, version 2.2.0. URL:
https://github.com/potassco/guide/releases/, january 2019.

[8] M. Gebser, R. Kaminski, B. Kaufmann, J. Romero, and T. Schaub. Progress in clasp
series 3. In International Conference on Logic Programming and Nonmonotonic Reasoning,
pages 368–383. Springer, 2015.

[9] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and M. Schneider.
Potassco: The potsdam answer set solving collection. Ai Communications, 24(2):107–
124, 2011.

https://gitlab.cs.uni-duesseldorf.de/van.mantgem/dominating-set-using-asp
https://gitlab.cs.uni-duesseldorf.de/van.mantgem/dominating-set-using-asp

LIST OF FIGURES 27

[10] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven
answer set solver. In International Conference on Logic Programming and Nonmonotonic
Reasoning, pages 260–265. Springer, 2007.

[11] S. Hölldobler and L. Schweizer. Answer set programming and clasp-a tutorial. In
YSIP, pages 77–95, 2014.

[12] V. Lifschitz. Answer set programming. Springer International Publishing, 2019.

[13] J. W. Lloyd. Foundations of Logic Programming. Springer, 1987.

[14] P. S. Nobel. Physicochemical and Environmental Plant Physiology. Elsevier, 4. edition,
2009.

[15] J. M. Posada, R. Sievänen, C. Messier, J. Perttunen, E. Nikinmaa, and M. J. Lechow-
icz. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to
the maximization of net photosynthesis in acer saccharum: a modelling assessment.
Annals of botany, 110(3):731–741, 2012.

[16] L. Sack and C. Scoffoni. Leaf venation: structure, function, development, evolution,
ecology and applications in the past, present and future. New phytologist, 198(4):983–
1000, 2013.

[17] T. Schraub. Optimization in clasp 3, part one. https://www.youtube.com/
watch?v=23KyrdzHVOA.

[18] M. van Aalst. Optimality principles in leaf venation patterns. Master’s thesis, Hein-
rich Heine University Düsseldorf, October 2019.

List of Figures

1 Picture of leaf veins . 1

2 ASP solving process . 5

3 Dominating set examples . 7

4 k-transitive closure examples . 8

5 Mirrored pattern . 8

6 The three smallest graphs used for the results 15

7 Two more test graphs . 16

8 Two biggest test graphs . 17

9 A Disadvantage of the canonical method 24

List of Tables

1 Minimum Dominating Set Results for ASP and ILP 18

https://www.youtube.com/watch?v=23KyrdzHVOA
https://www.youtube.com/watch?v=23KyrdzHVOA

28 LIST OF TABLES

2 Minimum 2-hop Dominating Set Results for ASP and ILP 19

3 Minimum 3-hop Dominating Set Results for ASP and ILP 19

4 Minimum Connected Dominating Set Results 20

5 Minimum Canonical Connected Dominating Set Results 20

6 Minimum 2-hop Connected Dominating Set Results 21

7 Minimum 3-hop Connected Dominating Set Results 22

8 Minimum Canonical 2-hop Connected Dominating Set Results 22

9 Minimum Rooted 2-hop Connected Dominating Set Results 22

10 Minimum Canonical Rooted 2-hop Connected Dominating Set Results . . 23

	Introduction
	Logic Programming
	Theory
	Answer Set Programming
	Potassco

	Methods
	Implementation
	Alphabet
	Minimum Dominating Set
	Minimum Connected Dominating Set
	Minimum k-Hop Dominating Set
	Minimum k-Hop Connected Dominating Set
	Canonical (k-Hop) Connected Dominating Set
	Rooted Connected Dominating Set Variants
	Potassco's ASP tools

	Results
	Discussion
	Conclusions
	Code
	Acknowledgements
	References
	List of Figures
	List of Tables

