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Abstract

In this thesis, we try to find optimal venation patterns of leaves so that
the photosynthetic output can be maximized. One of the venation patterns
objectives is to build a transporting system, which acts as a nutrient provider
for photosynthesis producing cells and as a transporter of sugars created by
photosynthesis. Therefore, we have to minimize the number of vein cells
and maximize the number of photosynthesis producing non-vein cells to get
a maximized photosynthetic output. If we ignore other venation pattern
influencing aspects, we can represent the venation pattern through variations
of the Connected Dominating Set problem. We solved this using Constraint
Programming and compared it to solutions using Answer Set Programming
and Integer Linear Programming. In comparison, ILP and ASP were able to
solve the Dominating Set variants much faster.
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1 Introduction

Plants try to optimize their architecture to fulfil several objectives, e.g., max-
imizing the photosynthetic output. The overall plant architecture tends to
have a nearly Pareto optimal trade-off between minimizing cost and maxim-
izing performance (efficiency), by minimizing total branch length and nutri-
ent transport distances. This gained them a selective fitness advantage over
other architectures [6]. The premise of this work is, that the leaf architecture
follows the overall plant’s architectures Pareto optimality between maxim-
izing efficiency and minimizing cost (investment), by minimizing total vein
length [11]. The goal of this thesis is to use Constraint Programming (CP) to
find optimal leaf venation patterns and compare the results and runtime to
the solutions of ILP [14] and ASP [13]. This work focuses on minimizing the
number of connected venation cells and maximizing the number of mesophyll
cells in a leaf and thereby increase photosynthesis. Other factors influencing
the architecture, e.g., temperature, are not taken into account.

There are three main tissues found in plant leaves: the mesophyll, the epi-
dermis and the vascular tissue. Each one of those is composed of layers of
cells. The leaf vascular is located on the inside of the mesophyll, which is
surrounded by the epidermis tissue [7, p.325]. Leaf veins consist of vascular
tissue, which itself has two main tissues: the xylem which distributes water
and other nutrients upward and the phloem which transports sugars down-
ward through the plant [8, p.211-217]. The mesophyll cells, where most of the
photosynthesis occurs, get provided with nutrients from the vascular system
and use the vascular system for transporting sugars created by photosyn-
thesis [9, p.166-167]. That is why they need to be near the leaf veins [10, 6,
p.469].

Mathematically, the venation of a leaf can be represented through Dom-
inating Set variants. Therefore we have to represent the leaf as a graph with
leaf cells as vertices and plasmodesmata connections between the leaf cells
as edges. A dominating set is a subset of vertices so that every vertex not
in this subset is adjacent to at least one vertex in it [15, p.1]. As we try to
minimize the number of venation cells, we also need to minimize the number
of vertices part of the dominating set and due to the vein cell’s need of being
connected, a Minimum Connected Dominating Set (Min-CDS) variant would
fit well. The Min-CDS is like the Dominating Set problem (DS) NP-hard [15,
p.3].

The next section deals with MiniZinc, as well as defining constraint prob-
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lem specifications. Then, in Section 3, we discuss which Dominating Set
variants are suitable to represent a leaf’s venation pattern and how to imple-
ment them. The last two sections contain the results on several undirected
graphs, with a discussion about differences to the ASP’s and ILP’s results
and conclusions.
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2 Preliminaries

Described in the next two subsections are first the basic concepts of Con-
straint Programming, to understand the implementations in the methods
chapter and secondly, an explanation of how MiniZinc, a language for spe-
cifying constraint optimization and decision problems, works.

2.1 Constraint Programming

Constraint Programming is used to solve combinatorial search problems and
is based on logic programming. A constraint problem consists of variables,
which are associated with domains and constraints. Domains are sets of
values, that a given variable can take and constraints are predicate logical
formulas [1], that define limitations on values that variables or combinations
of variables can be assigned to. If a constraint problem has the task to
find one or all solutions, whether a solution exists or a partial instantiation
can be extended to a full solution, then it is called a constraint satisfaction
problem (CSP). Adding an objective function turns a CSP into a constraint
optimization problem (COP) [2]. A solution for a constraint problem does
not extend the limitations, set by the domain of each variable. It also sat-
isfies the associated constraints. If a solution does not exist, the problem is
unsatisfiable [3].

2.2 MiniZinc

MiniZinc is a medium-level declarative modelling language for modelling con-
straint satisfaction or optimization problems. It comes with several pre-
defined constraints, but also lets users formulate their own constraints and
functions with the existential and universal quantifiers, sums over index sets
and logical connectives. MiniZinc transforms a MiniZinc model with a be-
longing data model to a FlatZinc (a low-level solver input language) model,
which consist of variable declarations and constraint definitions. Addition-
ally, if faced with an optimization problem, the FlatZinc model contains an
objective function. There is no standard modelling language for CP problems
and usually, every solver has its own. However, because a solver only has
to provide a FlatZinc front-end, MiniZinc is very appealing for developers
that plan on using or comparing several solvers [5]. What also simplifies
interfacing with MiniZinc for solvers is that, while translating a MiniZinc to
a FlatZinc model, MiniZinc only produces the types of variables and con-
straints that are supported by the solver [4]. MiniZinc does not come with
a default solver, instead, it relies on external solvers solely. The mainly util-
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ized solver used in this thesis was the CP-SAT solver from Google OR-Tools.
OR-Tools is software for solving combinatorial optimization problems that
include solvers for constraint programming, linear and mixed-integer pro-
gramming, vehicle routing and graph algorithms. Other CP solvers worth
mentioning are Chuffed and Gecode.
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3 Methods

In this chapter we describe the Dominating Set variants and how to imple-
ment and call the models of those in MiniZinc. We want to get all solutions,
where the number of vertices part of the dominating set for each variant is
minimal.
We represent the leaf as undirected graph G = (V,E) with leaf cells as ver-
tices V and plasmodesmata connections between the leaf cells as edges E.
Because mesophyll cells depend on the transport functions of the vein cells,
we can represent the venation as dominating set D. This is a variable Boolean
array of length |V |, From, To and DE are arrays of length |E|, with From
and To being integer arrays that hold the incoming or outgoing node for each
edge and DE being a variable boolean array that represents the edges of the
dominating set. The root node of V is called r.

Definition 1 (Dominating Set):

A dominating set is a subset of vertices D ⊆ V so that every vertex v ∈ V \D
is adjacent to at least one vertex in D.

∀v ∈ V \D : ∃w ∈ D : (v, w) ∈ E

One possible formulation of the equivalent Dominating Set constraint in Min-
iZinc is shown in Algorithm 1:

Algorithm 1 Dominating Set Constraint

1: for v ∈ V with D[v] == false do
2: count(e ∈ E : (v == From[e] ∨ v == To[e]) ∧ (D[To[e]] == True ∨

D[From[e]] == True)) > 0
3: end for

This formulation constraints every node v ∈ N to have at least one edge
e : ∃w ∈ V : (v, w) ∈ E where w ∨ v are part of the dominating set D.

Definition 2 (Rooted Connected Dominating Set):

Vein cells need to be connected to all other vein cells and to the rest of
the plant to build a working transport system. In consequence, all nodes
of the dominating set also need to be connected and one node has to be a
root node that is connected to the petiole (otherwise the transport system
can not transport nutrients up and down the plant). A rooted connected
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dominating set is a dominating set D, where ∀v, w ∈ D : ∃ path from v
to w and the root vertex r ∈ V is part of the dominating set D. The
constraints of Algorithm 2 and Algorithm 3 could be added to a model, to
ensure connectivity and rootedness:

Algorithm 2 Rooted Constraint

1: ∃v ∈ D : v == r

If this constraint is added to a Dominating Set model, it constrains the
root node r to also be a node of the dominating set D[r] == True.

Algorithm 3 Connected and DE Constraint

1: for e ∈ E with From[e] ∈ D ∧ To[e] ∈ D do
2: DE[e] == True

3: end for
4: connected (From,To, D,DE)

For creating the Minimum Connected Dominating Set model, we im-
plement a constraint that gives every edge e ∈ DE a boolean value, de-
pending on whether the two nodes of each edge are part of the dominat-
ing set (v, w) = e : D[v] == True ∧ D[w] == True. Then we use the
graph constraint ‘connected’ from MiniZinc to ensure that the subgraph
G′ ⊆ G : G′ = (D,DE) is connected. The Minimum Rooted Connected
Dominating Set model shown in Algorithm 4, makes use of MiniZinc’s global
predicate ‘reachable.mzn’, instead of combining the rooted and connected
constraints.

Algorithm 4 Reachable and DE Constraint

1: for e ∈ E with From[e] ∈ D ∧ To[e] ∈ D do
2: DE[e] == True

3: end for
4: reachable (From,To, r,D,DE)

The ‘reachable’ predicate takes a graph G, a root node r and the subgraph
S ⊆ G induced by the dominating set. Then it makes sure, that every node
v ∈ S is reachable from the root node.
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Definition 3 (Canonical Connected Dominating Set Vari-
ants):

If we change the DE constraint and use the directed counterparts of ‘con-
nected’/‘reachable’ of our Connected Dominating Set variants like shown in
Algorithm 5 or Algorithm 6, we can find solutions for otherwise too large
input graphs.

Algorithm 5 Connected and DE Symmetry Breaking Constraint

1: for e ∈ E with From[e] ∈ D ∧ To[e] ∈ D ∧ From[e] < To[e] do
2: DE[e] == True

3: end for
4: for e1 ∈ E with DE[e1] == True do
5: 6 ∃e2 ∈ E with From[e2] == To[e1] ∧DE[e2] == True : From[e1] >

To[e2]
6: end for
7: dconnected (From,To, D,DE)

Algorithm 6 Rooted Connected and DE Symmetry Breaking Constraints

1: for e ∈ E with From[e] ∈ D ∧ To[e] ∈ D ∧ From[e] < To[e] do
2: DE[e] == True

3: end for
4: for e1 ∈ E with DE[e1] == True do
5: 6 ∃e2 ∈ E with From[e2] == To[e1] ∧DE[e2] == True : From[e1] >

To[e2]
6: end for
7: dreachable (From,To, r,D,DE)

Using ‘dconnected’/‘dreachable’, the connected/reachable predicate for
directed graphs, allows us to add a symmetry breaking constraint that en-
sures us that there can not be two edges (v1, w1), (v2, w2) ∈ DE where
w1 == v2 ∧ w2 < v1. By doing this we ignore all mirror-symmetric solu-
tions and therefore get a result much faster.

Definition 4 (k-Hop Dominating Set Variants):

Because it suffices the mesophyll cells if a vein cell is not directly adjacent,
but only a few cells away, the k-hop Dominating Set is even more suitable to
represent the venation pattern. A k-hop dominating set is a dominating set,
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where every vertex v ∈ V \D has a path p to a vertex w ∈ D with length l,
l ≤ k.

∀v ∈ V \D : ∃w ∈ D : |p(v, w)| ≤ k

A k-hop constraint can be realized by preprocessing a k-transitive closure,
as shown in Algorithm 7, on the input graph and then call a Dominating Set
variant model with the modified graph. For every model that contains the
connected constraint, an additional model is needed, where we also add the
original graph G as a parameter.

Algorithm 7 k-Transitive Closure

Input: G = (V,E), E ′ = E, T = (V,E ′), k = k-hop number

1: for v ∈ V do
2: currentNeighbours = neighbours of v
3: for i from 0 to k − 1 do
4: for n ∈ currentNeighbours do
5: newNeighbours = neighbours of n
6: for w ∈ newNeighbours do
7: if v 6= w ∧ (v, w) 6∈ E ′ then
8: add (v, w) to E ′

9: end if
10: end for
11: currentNeighbours += newNeighbours
12: end for
13: end for
14: end for

At first we make a copy T of the input graph G, with T = (V,E ′). Then
we iterate through every neighbours neighbour w of a node v and add an edge
(v, w) to E ′, when (v, w) 6∈ E ′ and v 6= w. Then we append the neighbours
neighbourhood to the neighbourhood of v. We repeat this k times for every
node v ∈ V and by doing so turn T into a k-transitive closure of G.

Definition 5 (Solving):

As MiniZinc only supports to return all solutions to a CSP, to solve a model
we temporarily add the minimizing function: minimize

∑
D, which trans-

forms our CSP into a COP. Solving this gives us the first optimal solution
D′ for the model. Now to get all optimal solutions we use the first optimal
solution to add a constraint to our CSP model:

∑
D ==

∑
D′ and solve it
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by finding all solutions.

In summary, an optimal venation pattern is connected, rooted and can have
a distance of a few cells to photosynthesis producing cells. Therefore our
final method to solve the problem is the Minimum k-hop Rooted Connected
Dominating Set.
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4 Results

This section shows our results for the different Minimum Dominating Set
variants. Further, it contains short descriptions of the characteristics of our
test leaves. Subsequently, we discuss those results. More detailed descrip-
tions of the test leaves can be found here [13, 14]. All test were performed
using a notebook with an Intel (R) Core (TM) i7–7500U CPU @ 2.70GHz
2.90 Ghz and 16.0 GB of RAM under Windows 10.1909.

The leaf (a)small-leaf is the smallest instance and has 15 nodes. The leaves
(b)left-right-leaf and (c)middle-leaf have both 62 nodes but differ in the num-
bering of those. Instances (d)bigger-leaf and (e)rippedleaf have 71 nodes, but
while bigger-leaf follows the numbering structure of left-right-leaf, rippedleaf
has edges missing, so that it is not connected. The two biggest graphs are
(f)maple and (g)asymmetric. They have 118 and 378 nodes. Maple is also
numbered from left to right and asymmetric is numbered completely differ-
ent, because it has its root node close to the middle and not as the others on
the bottom of the leaf.

The first column of our result tables contains the names of the test leaves.
The columns containing the runtimes in seconds to find a single optimal
solution and all optimal solutions, are called ‘Time single’ and ‘Time all’.
The column ‘Threads’ states the number of threads that have been used,
‘Optimum’ is the minimum number of nodes that are part of the dominating
set for an optimal solution and ‘Models’ is the number of optimal solutions
found. If there is no solution found in 20 minutes using at most 24 threads (4
for non-connected models), the ‘Optimum’ column contains the upper bound
u and lower bound l found like this ‘[l;u]’ or ‘UNSAT’ if the model is unsatis-
fiable. For CP, if a solution could not be found in under 20 minutes, we tested
it again, by calling the MiniZinc model directly from the command line and
printing out intermediate solutions. Those results are marked as CP* and
show us the upper bounds. CP* contains the time in which the upper bound
was found in ‘Time single’ and the overall running time in ‘Time all’. The
final column ‘Solution in’ states if the solution was found using ASP, ILP or
CP.

Table 1 shows the results for the Minimum Dominating Set. We can see,
that CP performs slower than ILP and faster than ASP on the asymmetric
leaf. Besides that leaf, CP requires more time than ILP and ASP and can
only find all optimal solutions for the smallest instance small-leaf.
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Solution in Threads Time single Time all Optimum Models

(a) small-leaf ASP 1 0.000 0.000 4 47
ILP 1 0.0 − 4 −
CP 1 0.359 1.015 4 47

(b) left-right-leaf ASP 2 0.007 0.018 12 1091
ILP 4 0.016 − 12 −
CP 1 0.586 − 12 Unknown

(c) middle-leaf ASP 2 0.007 0.024 12 1091
ILP 4 0.016 − 12 −
CP 1 0.531 − 12 Unknown

(d) bigger-leaf ASP 2 0.007 0.010 13 43
ILP 4 0.031 − 13 −
CP 2 0.5 − 13 Unknown

(e) rippedleaf ASP 2 0.007 0.011 14 441
ILP 4 0.016 − 14 −
CP 1 0.437 − 14 Unknown

(f) maple ASP 2 0.031 0.016 20 1
ILP 4 0.016 − 20 −
CP 2 0.548 − 20 Unknown

(g) asymmetric ASP 4 1252.886 − [59; 75] −
ILP 4 17.009 − 62 −
CP 3 599.573 − 62 Unknown

Table 1: Minimum Dominating Set.

There are minor differences for the Minimum 2-hop Dominating Set results,
as can be seen in Table 2. For small-leaf, left-right-leaf and middle-leaf the
number of optimal solutions decreased a lot. This causes ASP and CP to
find all solutions faster. Contrary to this, bigger-leaf and rippedleaf increase
their number of optimal solutions and therefore ASP requires more time to
find them all. CP can find all optimal solutions for bigger-leaf on 1 thread
faster than for the Minimum Dominating Set on 2 threads. ILP solves the
problem for rippedleaf in the same time, but now using 1 instead of 4 threads.
To find one optimal solution for the graphs required more time, except ILP
on middle-leaf and bigger-leaf, ASP on middle-leaf and CP on middle-leaf.
ASP, ILP and CP were able to find one optimal solution for asymmetric a
lot faster.

Solution in Threads Time single Time all Optimum Models

(a) small-leaf ASP 1 0.000 0.000 1 1
ILP 1 0.0 − 1 −
CP 1 0.375 0.75 1 1

(b) left-right-leaf ASP 2 0.012 0.014 5 6
ILP 4 0.062 − 5 −
CP 1 0.672 2.937 5 6

(c) middle-leaf ASP 2 0.014 0.013 5 6
ILP 4 0.016 − 5 −
CP 2 0.516 3.405 5 6

(d) bigger-leaf ASP 2 0.015 0.021 6 1177
ILP 4 0.016 − 6 −
CP 1 0.562 146.902 6 1177

(e) rippedleaf ASP 2 0.013 0.057 7 20500
ILP 1 0.016 − 7 −
CP 1 0.531 − 7 −

(f) maple ASP 2 0.016 0.031 9 806
ILP 4 0.031 − 9 −
CP 2 0.818 − 9 Unknown

(g) asymmetric ASP 4 264.726 1231.504 25 2020+
ILP 4 0.577 − 25 −
CP 2 26.495 − 25 Unknown

Table 2: Minimum 2-hop Dominating Set.

The results for the Minimum 3-hop Dominating Set are displayed in Table 3.
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Compared with the Dominating Set variants from Table 1 and Table 2, CP
finds all optimal solutions now faster and is only not able to find all optimal
solutions for asymmetric. ASP’s runtime increased slightly for finding all
solutions except for rippedleaf. Solving also takes longer for ASP now, con-
trary to ILP, where solving gets faster for every graph or stays the same but
uses fewer threads. For CP, solving takes almost the same time as for the
2-hop Dominating Set. Only asymmetric was solved noticeably faster.

Solution in Threads Time single Time all Optimum Models

(a) small-leaf ASP 1 0.000 0.000 1 7
ILP 1 0.0 − 1 −
CP 1 0.37 0.786 1 7

(b) left-right-leaf ASP 2 0.019 0.021 3 18
ILP 4 0.016 − 3 −
CP 1 0.639 1.52 3 18

(c) middle-leaf ASP 2 0.020 0.020 3 18
ILP 4 0.016 − 3 −
CP 1 0.655 1.536 3 18

(d) bigger-leaf ASP 2 0.023 0.039 4 2659
ILP 1 0.016 − 4 −
CP 1 0.671 56.214 4 2659

(e) rippedleaf ASP 2 0.019 0.020 4 81
ILP 1 0.0 − 4 −
CP 1 0.671 4.249 4 81

(f) maple ASP 2 0.031 0.047 5 569
ILP 4 0.0 − 5 −
CP 1 1.382 347.513 5 569

(g) asymmetric ASP 4 1320.739 − [13; 17] Unknown
ILP 4 0.188 − 14 −
CP 4 8.184 − 14 Unknown

Table 3: Minimum 3-hop Dominating Set.

Now in Table 4, we have a look at the first connected variant: the Minimum
Connected Dominating Set. Compared to the Minimum Dominating Set
from Table 1, the runtimes increase drastically. CP is only able to solve
small-leaf in under 20 minutes and states, that there only exist 5 optimal
solutions, while ASP finds 24. Besides for rippedleaf, which is unsatisfiable,
ASP’s runtime increased a lot.

Solution in Threads Time single Time all Optimum Models

(a) small-leaf ASP 2 0.006 0.005 5 24
CP 1 0.703 19.574 5 5

(b) left-right-leaf ASP 4 18.445 141.970 21 20088
CP 4 1251.863 − Unknown Unknown

CP* 1 268.31 − [; 21] −
(c) middle-leaf ASP 4 313.022 678.339 21 20088

CP 1 1264.8562 − Unknown Unknown
CP* 1 59.93 3600 [; 21] −

(d) bigger-leaf ASP 24 561.827 4135.029 24 69482
CP 1 1222.320 − Unknown Unknown

CP* 24 66.65 3600 [; 24] −
(e) rippedleaf ASP 1 0.012 − UNSAT 0

CP 1 1582.000 − Unknown −
CP* 1 − 3600 Unknown Unknown

(f) maple ASP 24 1202.277 − [33; 40] Unknown
CP 4 1213.421 − Unknown Unknown

CP* 24 54.58 3600 [; 39] −
(g) asymmetric ASP 4 1379.182 − [28; 145] Unknown

CP 4 1258.207 − Unknown Unknown
CP* 24 3426.46 3600 [; 134] −

Table 4: Minimum Connected Dominating Set.
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The canonical connected method decreases the number of optimal solutions,
which leads to a reduced runtime, as can be seen in Table 5. Again CP
is only able to get all optimal solutions for small-leaf and the number of
those is different from the one ASP finds. With the exception of rippedleaf
and asymmetric, the runtimes for solving and finding all optimal solutions of
ASP got much faster. It even gets all solutions for maple in under 20 seconds,
when before, it was not solvable with the non-canonical connected method
in 20 minutes. Although CP could not find all optimal solutions, it took less
time for solving and it detects the unsatisfiability of rippedleaf. Now it solves
all test graphs in under 10 seconds, excluding asymmetric, where an optimal
solution could not be found in 20 minutes. Also remarkable is, that the
canonical method for CP states that a minimum dominating set for maple
contains 40 nodes, while ASP states that it contains 41. Important to notice
is that the canonical connected method does not return the optimal solution
for every graph. We see this if we look at middle-leaf, which has 21 nodes
with the connected, but 22 with the canonical connected method. Because
middle-leaf only differs in node numeration from left-right-leaf (where the
canonical method gets the correct optimum), we can assume that specific
node numerations cause symmetry breaking to limit the search space too
much.

Solution in Threads Time single Time all Optimum Models

(a) small-leaf ASP 2 0.004 0.004 5 7
CP 1 0.686 3.609 5 4

(b) left-right-leaf ASP 4 0.047 0.197 21 117
CP 1 3.841 − 21 Unknown

(c) middle-leaf ASP 4 0.103 0.424 22 1152
CP 1 3.477 − 22 Unknown

(d) bigger-leaf ASP 4 0.112 0.221 24 156
CP 1 4.212 − 24 Unknown

(e) rippedleaf ASP 1 0.011 − UNSAT 0
CP 2 1.75 − UNSAT 0

(f) maple ASP 4 6.807 19.777 41 374848
CP 1 7.853 − 40 Unknown

(g) asymmetric ASP 4 1200.975 − [72; 134] Unknown
CP 1 1261.083 − Unknown Unknown

CP* 1 284.45 3600 [; 133] −

Table 5: Minimum Canonical Connected Dominating Set.

Solutions for the Minimum 2-hop Connected Dominating Set problem are
listed in Table 6. Although the 2-hop Connected Dominating Set method
reduces the maximum solving runtime of ASP on left-right-leaf, middle-leaf
and bigger-leaf from under 10 minutes to under 20 seconds, CP can only solve
small-leaf, middle-leaf and left-right-leaf. ASP also can not solve asymmetric
and maple, but gets tighter bounds compared to the non-k-hop method. The
only other remarkable difference to the CP runtimes from Table 4 is that now
due to a from 5 to 1 reduced amount of optimal solutions, the runtime for
finding all solutions on small-leaf also reduces from under 20 to 1.5 seconds.
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Solution in Threads Time single Time all Optimum Models

(a) small-leaf ASP 2 0.006 0.006 1 1
CP 1 0.734 1.406 1 1

(b) left-right-leaf ASP 4 0.621 2.111 12 118
CP 1 225.972 − 12 Unknown

(c) middle-leaf ASP 4 1.054 3.698 12 118
CP 1 93.182 − 12 Unknown

(d) bigger-leaf ASP 4 17.451 29.086 13 4
CP 1 1302.454 − Unknown Unknown

CP* 1 147.73 3600 [; 13] −
(e) rippedleaf ASP 1 0.018 − UNSAT 0

CP 2 1319.521 − Unknown Unknown
CP* 1 − 3600 Unknown −

(f) maple ASP 24 1205.141 − [19; 24] Unknown
CP 1 1256.488 − Unknown Unknown

CP* 1 93.92 3600 [; 24] −
(g) asymmetric ASP 24 1356.188 − [20; 95] Unknown

CP 1 1286.573 − Unknown Unknown
CP* 1 2437.63 3600 [; 90] −

Table 6: Minimum 2-hop Connected Dominating Set.

As the 2-hop method got faster solutions than the non-k-hop method, this
also applies to the 3-hop compared with the 2-hop method. This can be
seen in Table 7. This time CP gets an optimal solution for small-leaf, left-
right-leaf and middle-leaf in under 4 seconds and one for bigger-leaf in under
9 seconds. ASP’s runtime further decreases on almost any test graph, but
asymmetric and maple still can not be solved in 20 minutes.

Solution in Threads Time single Time all Optimum Models

(a) small-leaf ASP 2 0.007 0.006 1 7
CP 1 0.901 2 1 7

(b) left-right-leaf ASP 4 0.099 0.171 7 124
CP 1 3.874 − 7 Unknown

(c) middle-leaf ASP 4 0.140 0.205 7 128
CP 1 3.609 − 7 Unknown

(d) bigger-leaf ASP 4 0.828 3.292 8 74
CP 1 8.889 − 8 Unknown

(e) rippedleaf ASP 1 0.021 − UNSAT 0
CP 1 1258.673 − Unknown Unknown

CP* 1 − 3600 Unknown −
(f) maple ASP 24 1413.329 − [15; 18] Unknown

CP 1 1212.473 − Unknown Unknown
CP* 1 191.27 3600 [; 17] −

(g) asymmetric ASP 24 1480.644 − [14; 63] Unknown
CP 1 1244.935 − Unknown Unknown

CP* 1 3090.99 3600 [; 66] −

Table 7: Minimum 3-hop Connected Dominating Set.

In Table 8, it is noticeable, that adding the k-hop constraint to the canon-
ical dominating set results in a further search space limitation and therefore
improves the runtimes slightly. ASP solves the 2-hop faster than the non-k-
hop dominating set, but it still is not fast enough to solve asymmetric in 20
minutes. Even though the bounds got tighter this time. A slight improve-
ment regarding runtime can also be noticed at the CP solutions, but not
enough to solve maple or asymmetric.
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Solution in Threads Time single Time all Optimum Models

(a) small-leaf ASP 2 0.005 0.005 1 1
CP 1 0.797 1.609 1 1

(b) left-right-leaf ASP 4 0.046 0.088 12 13
CP 1 3.468 − 12 Unknown

(c) middle-leaf ASP 4 0.026 0.049 13 13
CP 1 2.284 − 13 Unknown

(d) bigger-leaf ASP 4 0.084 0.101 13 1
CP 1 3.968 965.612 13 1

(e) rippedleaf ASP 1 0.015 − UNSAT 0
CP 2 1.234 − UNSAT 0

(f) maple ASP 4 3.796 17.017 25 9784
CP 1 6.934 − 25 Unknown

(g) asymmetric ASP 24 1273.791 − [44; 81] Unknown
CP 1 1446.638 − Unknown Unknown

CP* 1 455.09 3600 [; 74] −

Table 8: Minimum 2-hop Canonical Connected Dominating Set.

Table 9 contains the results for the Minimum 2-hop Rooted Connected Dom-
inating Set problem. These results imply, that the rootedness limits the
search space further except for middle-leaf. The runtimes of ASP improved
compared to those of Table 6, or in the case of the two graphs maple and
asymmetric, where ASP does not find a solution, the bounds get tighter.
Even CP is able to solve left-right-leaf, bigger-leaf and detect rippedleafs un-
satisfiability, additionally to solving small-leaf, which it was also able to in
Table 6.

Solution in Threads Time single Time all Optimum Models

(a) small-leaf ASP 2 0.006 0.006 3 2
CP 1 0.728 1.4 3 1
ILP − 0.007 − 3 −

(b) left-right-leaf ASP 4 0.419 1.595 14 132
CP 1 109.416 − 14 Unknown

(c) middle-leaf ASP 4 0.331 2.037 14 132
CP 1 1215.514 − Unknown Unknown

CP* 1 9.57 3600 [; 14] −
ILP − 7.006 − 14 −

(d) bigger-leaf ASP 4 0.677 1.538 15 4
CP 1 331.049 − 15 Unknown
ILP − 18.178 − 15 −

(e) rippedleaf ASP 1 0.012 − UNSAT 0
CP 4 1.405 − UNSAT 0

(f) maple ASP 24 1262.068 − [25; 27] Unknown
CP 1 1220.406 − Unknown Unknown

CP* 1 12.30 3600 [; 27] −
ILP − 1074.401 − [20, 26] −

(g) asymmetric ASP 24 1187.724 − [21; 89] Unknown
CP 1 1212.456 − Unknown Unknown

CP* 24 1759.51 3600 [; 82] −
ILP − 1065.585 − [38, 161] −

Table 9: Minimum 2-hop Rooted Connected Dominating Set.

Though not every solution is optimal, the Minimum 2-hop Rooted Canonical
Dominating Set results shown in Table 10, have much lower runtimes. Here
we can again confirm, that the canonical method does not give us the optimal
solution for every graph (middle-leaf has 15 nodes but optimal are 14) and
that CP is only able to compete with ASP on the biggest instances. CP solves
maple in about 7 seconds, while ASP needs about 1365 seconds. Because of
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the search space limitation caused by symmetry breaking, CP can find a
solution for every graph except asymmetric now.

Solution in Threads Time single Time all Optimum Models

(a) small-leaf ASP 2 0.005 0.005 3 1
CP 1 0.701 1.367 3 1

(b) left-right-leaf ASP 4 0.013 0.015 14 13
CP 1 3.291 − 14 Unknown

(c) middle-leaf ASP 4 0.015 0.023 15 70
CP 1 2.152 − 15 Unknown

(d) bigger-leaf ASP 4 0.016 0.017 15 1
CP 1 3.869 − 15 Unknown

(e) rippedleaf ASP 1 0.011 − UNSAT 0
CP 1 1.269 − UNSAT 0

(f) maple ASP 4 1365.163 0.307 27 10272
CP 1 6.702 − 27 Unknown

(g) asymmetric ASP 24 1365.163 − [53; 83] Unknown
CP 1 1259.791 − Unknown Unknown

CP* 24 761.43 3600 [; 74] −

Table 10: Minimum 2-hop Rooted Canonical Connected Dominating Set.

Like mentioned before, the non-optimal solutions we get when we use the
canonical methods on middle-leaf can be explained through node numera-
tion. In Figure 1, we see middle-leaf with a line dividing the leaf in two.
Every Node v ∈ V outermost to the line has only edges (v, w) ∈ E back to
the innermost so that w < v. This interferes with the canonical methods
because they ignore all edges (u1, u2) ∈ E, where u2 < u1. If we compare the
results for maple in Table 10 and Table 6, with the upper bounds in Table 9
and Table 8, we notice that the results do not fit the upper bounds. This
is probably because of an error in the maple data file. The right side of the
leaf lacks a connection between the nodes 115 and 116 and therefore it is not
mirror-symmetrical.

Figure 1: middle-leaf divided by a line.

In summary, CP is not able to solve Dominating Set variants with the same
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speed, that ILP and especially ASP can. Only on the biggest instances,
CP can be faster than ASP. The same holds for ILP, it even outperforms
CP on that heavily. Comparing the runtimes of Non-Connected and Con-
nected Dominating Set variants of CP, it stands out that the Connected
variants runtimes are higher than the Non-Connected ones. The numeration
of middle-leaf was the cause of the non-optimal solutions we got when we
used canonical methods. Another search space limitation is the increase-
ment of the k parameter or ensuring that the dominating set contains the
root node of the graph. As k increases, the runtimes get lower. But due to
the restriction, that mesophyll cells can only be a few cells away from the
next vein cell, we can not arbitrarily increase it. If we compare the results
of CP in Table 9 and Table 6, we see again a slight improvement of speed
caused by constraining the dominating set to contain the root node. But as
these two only cause minor search space limitations, it does not suffice to
find optimal solutions fast. The differences between the amount of optimal
connected solutions found by ASP and CP occurs because ASP counts re-
current solutions [13]. The upper bounds that CP finds, are very often the
optimal solution and were found relatively fast. This and that often CP could
not detect the unsatisfiability of a graph implies that CP does not have a
problem to get to a solution fast, but rather realizing in a feasible time that
a found solution is optimal.

Figure 2: Minimum 2-hop Rooted Connected Dominating Set examples

(a) small-leaf (b) left-right-leaf
(c) Random Graph with
50 nodes and a density of
0.1

Now we compare graphic representations of the k-hop Rooted Connected
Dominating Set results on random graphs, in Figure 3 and Figure 4. The
random graphs have a density of 0.1,0.5 or 0.9 and contain 50, 100, 250
or 500 nodes. The random graphs with 250 or more nodes and a density
of 0.5 or higher could not be tested with k = 3 because the preprocessing
of a 3-transitive closure could not be done, even when running for days.
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Surprisingly, CP got a dominating set with 2 nodes, while ASP and ILP
got one with 3 nodes on the random graph with 50 nodes and a density of
0.9. ASP and CP could not solve random graphs with 250 or 500 nodes and
a density of 0.1 or 0.5 in under 20 minutes, while ILP only struggled with
graphs that have 250 or 500 nodes and a density of 0.1. While increasing
the density results in higher runtimes for graphs with 50 or 100 nodes, the
opposite occurs, if a graph has 250 or 500 nodes. Then a density of 0.9 seems
to work best. This only holds for k = 1, as increasing the density seems to
increase the runtime if k = 2 or k = 3. Graphs with 250 nodes or more could
be solved more efficiently with k = 2 or k = 3.
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Figure 3: Minimum k-Hop Rooted Connected Dominating Set On Smaller
Random Graphs
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Figure 4: Minimum k-Hop Rooted Connected Dominating Set On Larger
Random Graphs

Next, we look at results for the Minimum k-hop Rooted Connected Dominat-

19



ing Set on GRID graphs in Table 11. A GRID graph is numbered differently
than the graphs before. Instead of giving every node v ∈ V a number n ∈ N,
every node gets an x-coordinate and a y-coordinate on a 2-dimensional co-
ordinate system. If two nodes v, w ∈ V : v = (x1, y1) ∧ w = (x2, y2) share
an edge: (x1 − x2)

2 + (y1 − y2)
2 = 1. Most strikingly, while ASP and ILP

solve the 1-hop rooted connected dominating set in about 92 and 774 seconds
for the quadratic graph GRID 8 8 and then improve much with increasing
k (ASP is fastest with k = 2 and a bit slower than that with k = 3, while
ILP gets faster with every k increasement), CP solves the 1-hop problem
faster (in about 6 seconds) and then only minorly improves with increasing
k. With this exception, ASP solves the GRID graphs the fastest. Besides
GRID 8 8 and GRID 16 4 with k = 1, ILP’s runtime lies between ASP’s and
CP’s. Another conspicuousness is that increasing k to 3 on the GRID 16 4
graph, results in a much higher runtime for CP and ILP, while ASP has a
better runtime than with k = 1.

Solution in k Time single Optimum

GRID 6 4 ASP 1 0.009 11
CP 1 0.811 11
ILP 1 0.054 11

GRID 6 4 ASP 2 0.011 7
CP 2 0.768 7
ILP 2 0.045 7

GRID 6 4 ASP 3 0.013 6
CP 3 0.789 6
ILP 3 0.056 6

GRID 8 8 ASP 1 92.739 26
CP 1 6.670 26
ILP 1 774.59 26

GRID 8 8 ASP 2 1.534 18
CP 2 6.436 18
ILP 2 81.971 18

GRID 8 8 ASP 3 1.747 15
CP 3 6.274 15
ILP 3 15.546 15

GRID 16 4 ASP 1 0.281 28
CP 1 9.316 28
ILP 1 42.569 28

GRID 16 4 ASP 2 0.014 17
CP 2 3.364 17
ILP 2 1.405 17

GRID 16 4 ASP 3 0.023 16
CP 3 42.861 16
ILP 3 7.973 16

GRID 18 2 ASP 1 0.010 18
CP 1 0.934 18
ILP 1 0.117 18

GRID 18 2 ASP 2 0.011 17
CP 2 0.940 17
ILP 2 0.148 17

GRID 18 2 ASP 3 0.013 16
CP 3 0.910 16
ILP 3 0.173 16

GRID 32 2 ASP 1 0.015 32
CP 1 3.547 32
ILP 1 0.262 32

GRID 32 2 ASP 2 0.015 31
CP 2 3.434 31
ILP 2 0.342 31

GRID 32 2 ASP 3 0.023 30
CP 3 3.206 30
ILP 3 0.287 30

Table 11: Minimum k-hop Rooted Connected Dominating Set on grid graphs.
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The random graphs revealed to us, that the density and the k parameter
have a major influence on the runtime. E.g., A graph with many nodes is
faster solvable, when it has a high density, while a small graph gets faster
results for lower density. The same holds for the k parameter. So on smaller
graphs, we get lower runtimes if k = 1 and on bigger graphs, we get higher
runtimes if k = 1. From the GRID graphs, we learned, that quadratic graphs
seem to be a bigger problem for ILP and ASP than for CP.

While our model follows the possible Pareto optimality of a leaf, it still
disregards a lot of other important aspects and functions of a leaf venation
pattern. Temperature [6], vein density [16] and the vein hierarchy are some
factors also affecting the venation pattern.
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5 Conclusions

Even though CP solves a few graphs faster, it seems to be not as fitting for
solving Connected Dominating Set problems as ILP and ASP are. CP has
a major focus on letting the user formulate his problem as easy as possible,
by using a close to mathematical formulation of it. This hides from them
the complexity involved, which makes it difficult to estimate the quality of
formulations. Accordingly, it could be useful to find out if different CP for-
mulations of this problem can perform better.

A more promising approach could be to find ASP solutions with added CP
compatibilities because ASP is more efficient if inductive definitions are in-
volved and could profit from CP’s better handling of integer variables [12].

Even though we were not able to solve all test leaves, we improved the
runtimes by adding symmetry breaking constraints. So, if one would try
to optimize this model, it would be beneficial to have only data files with
a node numbering, so that the canonical connected method does only find
optimal solutions. This would interfere with our intent to find all optimal
solutions, but that was only working for some graphs with low amounts of
solutions anyway.
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A Appendix

Solution in k Time single Optimum

GNM 50 122 CP 1 1.22 11
GNM 50 122 CP 2 1.635 5
GNM 50 122 CP 3 1.415 2
GNM 50 612 CP 1 1.924 4
GNM 50 612 CP 2 2.216 1
GNM 50 612 CP 3 2.209 1
GNM 50 1102 CP 1 2.778 2
GNM 50 1102 CP 2 2.944 1
GNM 50 1102 CP 3 2.964 1
GNM 100 495 CP 1 30.347 14
GNM 100 495 CP 2 4.394 4
GNM 100 495 CP 3 4.651 1
GNM 100 2475 CP 1 8.813 4
GNM 100 2475 CP 2 8.565 1
GNM 100 2475 CP 3 8.681 1
GNM 100 4455 CP 1 11.436 2
GNM 100 4455 CP 2 12.504 1
GNM 100 4455 CP 3 12.340 1
GNM 250 3112 CP 1 1109.712 Unknown

CP* 1 217.98 [; 19]
GNM 250 3112 CP 2 44.299 2
GNM 250 3112 CP 3 44.271 1
GNM 250 15562 CP 1 1246.502 Unknown

CP* 1 87.84 [; 5]
GNM 250 15562 CP 2 62.901 1
GNM 250 15562 CP 3 80.984 1
GNM 250 28012 CP 1 74.471 2
GNM 250 28012 CP 2 82.095 1
GNM 250 28012 CP 3 Missing Missing
GNM 500 12475 CP 1 1297.835 Unknown

CP* 1 279.96 [; 34]
GNM 500 12475 CP 2 273.657 2
GNM 500 12475 CP 3 276.346 1
GNM 500 62375 CP 1 1224.946 Unknown

CP* 1 190.70 [; 6]
GNM 500 62375 CP 2 337.665 1
GNM 500 62375 CP 3 Missing Missing
GNM 500 112275 CP 1 621.256 2
GNM 500 112275 CP 2 525.95 1
GNM 500 112275 CP 3 Missing Missing

Table 12: Minimum k-hop Rooted Connected Dominating Set on random
graphs using CP.
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Solution in k Time single Optimum

GNM 50 122 ASP 1 0.014 11
GNM 50 122 ASP 2 0.025 5
GNM 50 122 ASP 3 0.022 2
GNM 50 612 ASP 1 0.055 4
GNM 50 612 ASP 2 0.038 1
GNM 50 612 ASP 3 0.041 1
GNM 50 1102 ASP 1 0.052 3
GNM 50 1102 ASP 2 0.052 1
GNM 50 1102 ASP 3 0.051 1
GNM 100 495 ASP 1 32.451 14
GNM 100 495 ASP 2 0.084 4
GNM 100 495 ASP 3 0.082 1
GNM 100 2475 ASP 1 0.655 4
GNM 100 2475 ASP 2 0.151 1
GNM 100 2475 ASP 3 0.163 1
GNM 100 4455 ASP 1 0.253 2
GNM 100 4455 ASP 2 0.220 1
GNM 100 4455 ASP 3 0.227 1
GNM 250 3112 ASP 1 1017.204 [9; 23]
GNM 250 3112 ASP 2 0.521 2
GNM 250 3112 ASP 3 0.529 1
GNM 250 15562 ASP 1 1008.099 [4; 5]
GNM 250 15562 ASP 2 0.972 1
GNM 250 15562 ASP 3 0.967 1
GNM 250 28012 ASP 1 3.400 2
GNM 250 28012 ASP 2 1.453 1
GNM 250 28012 ASP 3 1.489 1
GNM 500 12475 ASP 1 1016.396 [7; 29]
GNM 500 12475 ASP 2 2.314 2
GNM 500 12475 ASP 3 2.297 1
GNM 500 62375 ASP 1 1006.141 [4; 6]
GNM 500 62375 ASP 2 4.218 1
GNM 500 62375 ASP 3 4.513 1
GNM 500 112275 ASP 1 8.705 2
GNM 500 112275 ASP 2 6.268 1
GNM 500 112275 ASP 3 6.490 1

Table 13: Minimum k-hop Rooted Connected Dominating Set on random
graphs using ASP.
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Solution in k Time single Optimum

GNM 50 122 ILP 1 0.035 11
GNM 50 122 ILP 2 0.038 11 (?)
GNM 50 122 ILP 3 0.017 2
GNM 50 612 ILP 1 0.018 4
GNM 50 612 ILP 2 0.002 1
GNM 50 612 ILP 3 0.003 1
GNM 50 1102 ILP 1 0.020 3
GNM 50 1102 ILP 2 0.012 1
GNM 50 1102 ILP 3 0.012 1
GNM 100 495 ILP 1 0.377 14
GNM 100 495 ILP 2 0.109 4
GNM 100 495 ILP 3 0.027 1
GNM 100 2475 ILP 1 0.045 4
GNM 100 2475 ILP 2 0.005 1
GNM 100 2475 ILP 3 0.007 1
GNM 100 4455 ILP 1 0.005 2
GNM 100 4455 ILP 2 0.004 1
GNM 100 4455 ILP 3 0.004 1
GNM 250 3112 ILP 1 1017.304 [15; 17]
GNM 250 3112 ILP 2 0.271 2
GNM 250 3112 ILP 3 0.142 1
GNM 250 15562 ILP 1 12.29 5
GNM 250 15562 ILP 2 0.258 1
GNM 250 15562 ILP 3 0.267 1
GNM 250 28012 ILP 1 0.025 2
GNM 250 28012 ILP 2 0.019 1
GNM 250 28012 ILP 3 0.023 1
GNM 500 12475 ILP 1 1004.921 [13; 21]
GNM 500 12475 ILP 2 1.124 2
GNM 500 12475 ILP 3 0.635 1
GNM 500 62375 ILP 1 178.496 5
GNM 500 62375 ILP 2 0.290 1
GNM 500 62375 ILP 3 0.545 1
GNM 500 112275 ILP 1 0.189 2
GNM 500 112275 ILP 2 0.148 1
GNM 500 112275 ILP 3 0.205 1

Table 14: Minimum k-hop Rooted Connected Dominating Set on random
graphs using ILP.
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