Department of Computer
. Heinrich Hein
Science hhu Universitat
Diisseldorf B

Algorithmic Bioinformatics

Universitatsstr. 1 D-40225 Diisseldorf

Using anticlustering to maximize diversity
and dispersion: Comparing exact and
heuristic approaches

Martin Breuer

Bachelor Thesis
Submission: 20.08.2020
Supervisor: Univ.-Prof. Dr. G. Klau

Second Assessor: Dr. M. Papenberg

Abstract

The problem of partitioning a pool of elements arises with different goals. We
deal with different approaches to anticluster these elements. This means we seek
groups that are similar to each other, and not the elements within those groups. We
analyze the bicriterion iterated local search (BILS) heuristic, which combines two ob-
jective functions for anticlustering, namely diversity and dispersion. Diversity is the
sum of pairwise dissimilarities of all elements within a group. Dispersion is the min-
imal pairwise dissimilarity between two elements, which exists within one group
of a partition. The BILS heuristic seeks solutions, that are Pareto efficient regard-
ing both objectives. Using a heuristic is necessary, as we show NP-hardness of both
mentioned objectives. We go into the advantages and limitations of this heuristic.
Further, we compare the BILS heuristic with the exchange method, another heuristic
approach. The exchange method focuses on the contrary only on one objective, that
can be specified. The BILS heuristic performs better in terms of computation and
solution quality for small instances. Finally, we evaluate the quality of solutions of
the BILS heuristic with exact solutions. For small instances, solutions are optimal or
near-optimal.

Contents
1 Introduction

2 Problem Formalization
2.1 Preliminaries e
2.2 Feasible Anticlustering Solutions

2.3 ObjectiveFunctions
3 Complexity
4 Test Data

5 Bicriterion Heuristic
5.1 Multiobjective Anticlustering
5.2 Multistart Bicriterion Pairwise Interchange Heuristic
5.3 Bicriterion Iterated Local Search
54 ImplementationDetails.
5.5 Limitations of the BILS Heuristic

5.6 BILS on 1-Dimensionial Instances

6 Exchange Method
6.1 Comparing Exchange Method and BILS Heuristic

7 Exact Solution Methods
7.1 Pareto Set Via Complete Enumeration
7.2 Relation of Diversity and Dispersion in an Exact ParetoSet
7.3 Integer Linear Programming
731 DiversityILP
732 DispersionILP L.

8 Discussion
References

A Source Code

Q. &~ N N

10
11
13
14

16
16

18
18
18
19
19

22

23

24

1 INTRODUCTION 1

1 Introduction

The problem of partitioning a pool of elements arises with different goals. Often, it is
useful to have a partition with homogenous and well-separated groups. This means el-
ements within the same group should be as similar as possible (low intra-group dissim-
ilarity), whereas elements from different groups should be as different as possible (high
inter-group dissimilarity). These properties are representative of a clustering problem.
To solve problems of this kind, there already exists a variety of algorithms [15]. Cluster-
ing methods differ with regard to their respective objective functions, which define how
intra-group dissimilarity and inter-group dissimilarity are measured.

Sometimes, the opposite of clustering is required. For this thesis, we look for a partition,
in which the groups are similar, but not the elements within the groups. Thus, high intra-
group dissimilarity and low inter-group dissimilarity are the goals of what we refer to as
anticlustering, a term independently coined by Spéth [12] and Valev [13]. Anticlustering
has a variety of use cases in different areas. Creating groups out of students, assigning
stimulus objects to subgroups, and consumers to focus groups are anticlustering prob-
lems arising in psychology [3]. Apart from the psychological background, anticlustering
is used for sub-typing of viruses, the analysis of microarray data, large-scale integration
in circuitry and the location of facilities [3].

As well as for clustering, there are different objective functions for anticlustering. In this
thesis, we will focus on two objective functions, called diversity and dispersion. Diver-
sity is the sum of all dissimilarities between pairs of elements in the same group. It is a
measure of total dissimilarity [3]. An anticlustering example, in which maximizing di-
versity is useful, is the formation of groups in an academic context. The problem consists
of a number of groups and a number of students, where each student is determined by
gender, age, current grades, etc. as possible attributes. Dividing students into groups
such that the groups are similar and each group provides a good representation of the
classroom population is desirable [5]. Forming similar groups of equal size is equiva-
lent to maximizing the total dissimilarity [6]. So we seek a partition of the students, that
maximizes the sum of all dissimilarities between pairs of students in the same group.

The second objective function is dispersion. Dispersion is the minimum difference be-
tween two elements within one cluster. We interpret this as the worst-case pairwise
dissimilarity across all groups [3]. An anticlustering application, in which maximizing
dispersion is useful, is the creation of multiple versions of an exam from a given pool of
questions. Suppose a teacher has prepared questions from different topics and wants to
determine the general knowledge of their students. When they assign the questions to
different versions of their exam, focussing on dispersion leads to exams, with a lower risk
of two similar questions contained in one exam. Just one exam with two similar questions
lets this exam become less informative about the knowledge of the affected students.

The problem of finding a partition with a maximum value in diversity or dispersion is
NP-hard, when considering the underlying decision problem. For this reason, we mainly
examine the bicriterion iterated local search heuristic by Brusco et al. [3], which can ap-
proximate optimal solutions for both of these problems. In fact, this heuristic considers
the optimization of diversity and dispersion at the same time. We further investigate the
limitations of this heuristic and compare it to the exchange method, another heuristic

2 PROBLEM FORMALIZATION 2

approach. At the end, we evaluate our results in comparison with optimal solutions.

2 Problem Formalization

2.1 Preliminaries

In this section, we describe the concepts used in this thesis. For illustration, we use a
simple example with 6 different shaped rectangles, which we want to anticluster. Firstly,
we describe the required data. We assume that there is an IV x M information matrix and
the number of subsets K given for every anticlustering problem. Each row in this matrix
represents one of the N elements (e.g., the different rectangles in Table 1) and each of the
M columns corresponds to a numeric attribute (e.g., length and width of a rectangle in
Table 1). Thus, there are M attributes assigned to every element. The N elements need to
be partitioned into K subsets. We use k& € {1,..., K} as an index of a subset. A partition
of the N elements is indicated by © = {c1, ..., cx }, where ¢, contains a subset of all given
elements. The set IT contains all possible partitions.

rectangle length width

1 6cm 5cm
2 2cm 2cm
3 3cm 3cm
4 lcm 6cm
5 5cm 4cm
6 4cm lcm

Table 1: N x M information matrix of the rectangles.

In the following, we use a graph structure to refer to the anticlustering problem. Let
G = (V, E) be an undirected graph with vertex set ' = {vy,...,un}, representing the
elements of the problem. For simplification, we will refer to a vertex v; by using only a
positional index i = 1, ..., N henceforth. In our example, each rectangle is represented by
a vertex. We visualize the rectangles as points on a coordinate system with length on the
x-axis and width on the y-axis in Figure 1.

2 PROBLEM FORMALIZATION

width

length

0 1 2

3

4

5

6

Figure 1: Rectangles represented as vertices in a graph.

An anticlustering problem is called M-dimensional Euclidean if the vertices are points
of the M-dimensional Euclidean space, and the edges are all straight lines between those
points [2]. There are other ways of distance measuring [3], but we only use Euclidean
distances in this thesis. Thus, we refer to the weight d;; of an edge 1, j as the distance
between the vertices 7 and j, where the distance measures the dissimilarity between two
vertices. The N x N matrix D is the distance matrix containing all weights of the edges.

1
0.00
5.00
3.61
5.10
1.41
4.47

S Ut W N

2
5.00
0.00
1.41
4.12
3.61
2.24

3
3.61
1.41
0.00
3.60
2.24
2.24

4
5.10
4.12
3.60
0.00
4.48
5.83

5
1.41
3.61
2.24
4.48
0.00
3.16

6
4.47
2.24
2.24
5.83
3.16
0.00

Figure 2: N x N distance matrix of the rectangles in cm.

2 PROBLEM FORMALIZATION 4

2.2 Feasible Anticlustering Solutions

An anticlustering partition is considered feasible if it satisfies the two following restric-
tions:

K
UCZ' =V (1)
i=1

ciNej=0,Yi,j€{l,...K},i#j)

Restriction (1) ensures that every element is contained in at least one of the clusters. Re-
striction (2) on the other hand requires pairwise disjoint clusters. Thus, no pair of two
clusters can contain the same element.

Because many anticluster-applications desire clusters of equal size [11], we give an ad-
ditional third restriction for our purposes.

lcil = l¢jl,Vi,j € {1,..., K} ®)

Assuming that the number of elements N is a multiple of the number of clusters K,
restriction (3) ensures that every cluster contains % elements. The case that N is not
divisible by K would lead to groups differing by one in their size and is not covered in
this thesis.

We use the term feasible solutions for partitions that satisfy all of the three restrictions.
Figure 3 shows a feasible anticlustering partition m, = {{1, 3,4}, {2, 5,6} } for our rectan-
gle example.

width

length

0 1 2 3 4 5 6

Figure 3: Feasible solution ;.

3 COMPLEXITY 5

2.3 Objective Functions

In this thesis, we will focus on two objective functions, called diversity and dispersion.
An objective function f : II — RT associates a positive real number f({cy,...,cx }) with
each partition. An anticlustering problem may be defined as follows: Find a feasible par-
tition 7* such that f(7*) = max{f(m)|Vr € II}.

The objective function diversity measures the sum of within-group distances. We com-
pute the diversity value as the sum of {51, ..., Sk }, where S, is the sum of all the weights
of the edges whose endpoints are both vertices in cluster cj:

K
diversity(m) = Z Z d;j (4)

k=1 i,j€ck
i<j

The diversity of the feasible partition 7, from Figure 3 is computed in the following way:
diversity(m,;) = (d1,3 + dia + dza) + (d25 + d26 + ds6)-

While diversity-anticlustering considers all edges within all clusters, dispersion consid-
ers only one edge. It is the minimum distance, that appears within one of all clusters. We
compute the dispersion value as min{ M, ..., M }, where Mj, is the minimum distance of
an edge whose endpoints are vertices in cluster cy;:

dispersion(m) = min min d;; 5
P (m) ke{l,..K} igjecy ®)
1<J

The dispersion of the feasible partition 7, from Figure 3 is computed in the following
way: dispersion(m,) = min(min(di 3,d1 4,ds.4), min(das, das, dse)) = dog.

3 Complexity

In this thesis, we discuss heuristics and exact solution methods. Heuristics on the one
hand only approximate a solution and thus, do not always find an optimal solution. The
exact solution methods on the other hand find an optimal solution, but require exponen-
tial running time for the calculation of this problem. That is because finding the partition
with the maximum diversity value is an NP-hard problem for K > 2 subsets and an arbi-
trary M-dimensional Euclidean problem [6]. Thus, they are impractical for big problem
instances.

Further, we show that finding a partition with a maximum dispersion value, is also an
NP-hard problem. We do this by showing that the corresponding decision problem is
NP-complete. The decision version, which we refer to as MaxDP, is defined as follows:

Given are an instance (D, K) of a partitioning problem and a value A. Is there a partition
of the N items into K equally-sized parts such that dispersion > A?

MaxDP is in NP because one can non-deterministically guess the cluster assignments
and then check in polynomial time whether the minimum distance between any two

3 COMPLEXITY 6

elements, that are in the same cluster, is larger than or equal to A.

To show NP-hardness, we reduce the decision version of a known NP-complete prob-
lem to MaxDP. One problem, that we know to be NP-hard is a clustering prob-
lem. We define clustering problems similar to anticlustering problems, but we seek
a partition with the minimum objective value. Find a feasible partition 7* such that
f(m*) = min{ f(7) | Yz € II}. The specific problem we want to use has the following ob-
jective function:

f(m) pe X ;2;; j (6)
<]

We compute the value of this function as max{Aj, ..., Ax}, where A, is the maximum
distance of an edge whose endpoints are vertices in cluster c.

We refer to the decision version of this problem as MinMMC (minimum-maximum-
maximum clustering). The goal is to decide whether there is a partition of N items into
K subsets, such that f > A for a given instance (D, K) of a partitioning problem and a
value A. For this problem, the subsets do not need to be from equal size, but they must
contain at least one element.

Given an instance of MinMMC, we now transform it into an instance of the MaxDP-
problem in polynomial time. Let K - N x K - N be the distance matrix D’ with entries d;;
defined as follows:

—d;; ifl<i<j<N
dl; = { ’ @)

max(d;;)1<i<j<n otherwise.

In other words, we multiply the distance matrix D by —1 and add (K — 1)N vertices. All
edges connected to these vertices have the maximum distance. These additional nodes
do not change the dispersion, as they have either a greater or equal distance to all other
elements in a cluster compared to the minimum distance in the cluster. They just act
as "padding material", such that all clusters have the same amount of elements. An al-
gorithm for MaxDP can thus be used to solve MinMMC, showing the NP-hardness of
MaxDP.

MinMMC is NP-hard for K > 3 and an M-dimensional Euclidean instance with M > 2
[2]. If the elements from a given instance have only one attribute or need to be partitioned
in less than three groups, there are algorithms, that can compute the optimal solution in
polynomial time [2]. Our proof is therefore only valid for K > 3 and M > 2. Whether
the algorithms for MinMMC in the mentioned cases are also useable for MaxDP requires
further investigation.

4 TEST DATA 7

4 Test Data

In the following sections, we use test data with the following properties: Every test set
consists of a number of elements N and a number of groups K. We specify this infor-
mation, that defines the instance size, in every context it is used. Every element in the
test data has 3 attributes t1, t2 and ¢3. These are uniformly distributed numbers, with
t € 10,100, t2 € [0,50] and ¢35 € [0, 10].

All tests are run on a computer with an Intel® Core™i5-5300U CPU (Intel Corporation,
Santa Clara, CA, USA) at 2.3 GHz with 8 GB of RAM.

5 Bicriterion Heuristic

5.1 Multiobjective Anticlustering

In this section, we introduce the bicriterion iterated local search (BILS) heuristic by Br-
usco et al. [3]. Firstly, we discuss multi-objective anticlustering. The BILS heuristic falls
into this category, as it considers the optimization of diversity and dispersion at the same
time. In general, there are no solutions for multiobjective problems that are optimal ac-
cording to all considered objectives. For example, it is unclear, whether a partition 7
with diversity(m) = 1 and dispersion(m;) = 4 is better or worse than a partition 7, with
diversity(ma) = 2 and dispersion(m2) = 3.

One approach is to combine all objectives to one function, such that optimal solution
verification is possible. But this requires applications, for which the exact priority of
each objective is known. For the case of diversity and dispersion, Brusco et al. [3] have
established a bicriterion combinatorial optimization model. In the following, we refer to
it as bicriterion. The bicriterion Z(7) defines w; and wy as the priority-weightings for
diversity(m) and dispersion(r) as follows:

Z () = w diversity(m) + wa dispersion ()

with wy, we € [0,1] and w; + we =1

Since two anticlustering objectives are combined, the goal is to find the partition 7, that
maximizes Z (7). In this context, fixed values (knowledge of exact priorities) for w; and
wy allow us the identification of optimal solutions regarding the bicriterion. Often these
values are not fixed. Thus, we aim for a set of partitions, that is better than all other
possible partitions. To compare partitions we use the definition of Pareto efficiency. For
multiobjective anticlustering with ¢ considered objectives O = {o1, ...0,} Pareto efficiency
is defined as a set containing only undominated partitions. Partition 7, dominates 7 if
and only if

or(m1) > oy(ma)Vt € {1,...,q}

and for at least one i € {1,...,¢} the strict inequality o;(m;) > 0;(m2) holds. Thus, a

5 BICRITERION HEURISTIC 8

partition is contained in the Pareto efficient set, that considers diversity and dispersion
has to satisfy one of the following conditions:

diversity(my) > diversity(ma) A dispersion(m1) > dispersion(ms)

diversity(my) > diversity(me) A dispersion(m1) > dispersion(ms)

Although the BILS heuristic calculates the Pareto efficient set and not a single optimal
solution, it uses the bicriterion with fixed values to detect local maxima and evaluate
these according to the dominance relation.

5.2 Multistart Bicriterion Pairwise Interchange Heuristic

The BILS heuristic is divided into two parts. The first part is a multiple restart bicriterion
pairwise interchange (MBPI) heuristic, which is useable as a stand-alone program. This
heuristic approximates the Pareto efficient set for a multiobjective anticlustering problem,
that considers diversity and dispersion. The required input is

e adistance matrix D, that contains all distances between the IV elements, or an N x M
information-matrix with the attributes of the elements, from which the distance
matrix is derivable

e the number of groups K, to which the elements get assigned to. K is only valid, if
the number of elements N is divisible by K

e the number of restarts R, which is decisive for the running time. More restarts lead
to an improvement of the approximated solution

e (optional) a list W of priority-weightings w for diversity. The entries of this list
determine if the focus of the search lays on diversity or dispersion. An entry w; = 1
means a focus solely on diversity, while an entry w; = 0 means a focus solely on
dispersion. Multiple entries in this list allow splitting the focus of the search. The
standard is W = {.0000001,.00001,.0001,.001,.01,.1,.5,.99,.999,.999999}, which
we use in all our tests.

The algorithm proceeds as follows. First, it initializes an empty Pareto set P. Then,
for every restart, priority-weights are decided by picking a diversity weight w; with
equal probability from W and computing the corresponding weight for dispersion as
wy = 1 — wy. Also, a random feasible partition 7 is generated by creating K different
group labels, with % occurrences each, which are randomly assigned to the elements.
Now the bicriterion value of 7 is computed with the chosen weights. Via local search
we determine the closest local maximum to 7 (based on the bicriterion with the used
weights). This is accomplished by pairwise exchanging the group assignments of
each element with each other element. If one of those exchanges improves the current
bicriterion value, this exchange remains in 7. Otherwise, this exchange is undone. If
at least one exchange improved the bicriterion value of = during the search process,
the search process starts again with this new, changed 7. For all examined partitions,

5 BICRITERION HEURISTIC 9

including those whose exchange was undone, P is updated. This means if an examined
partition is not dominated by any partition included in the current Pareto set, it is added.
Furthermore, a partition 7/ € P, that is dominated by the newly added partition, is
excluded from P. The algorithm repeats R times with a new selection of priority-weights
and a newly generated partition. At the end P, which has been updated in R iterations,
is returned. In the following, we give pseudocode for the MBPI heuristic.

function MBPI(D, K, R, W)
P=90
for r=1to Rdo
pick a random weight w; € W
W9 = 1— w1
initialize random partition 7 = {c1, ...,cx }
Z* = widiversity(m) + wadispersion ()
exchanged = True > start of local search component
while exchanged = True do
exchanged = False
for n=1to N —1do
for j =i+ 1to N do

setk:i € ¢y > k and [are set on the group-
setl:jeq > indices of the goups of i and j
if k # [then

o = cx U {7 H\{i}

a = U{if\{j}

update P with current =

Z = widiversity(m) + wadispersion(m)
if Z > Z* then

Z*=7
exchanged = True
else

cr = o U{i\{j}
a = U{jH\{i}
end if
end if
end for
end for
end while > end of local search component
end for
return P
end function

5 BICRITERION HEURISTIC 10

5.3 Bicriterion Iterated Local Search

Multistart local search heuristics commonly fail to identify globally optimal (or even
near-globally optimal) solutions as problem size increases [9] [10]. This fact also applies
to iterated local search (ILS), but an ILS approach performs significantly better in com-
parison to a multistart approach [10]. Instead of generating a random feasible solution,
an ILS approach uses an existing solution, changes it to some degree, and starts a lo-
cal search. It is advantageuos to use an approximated solution as the existing solution
[10] [3]. Thus, the BILS heuristic approximates a Pareto set with the MBPI heuristic as
the first step. It requires the same input as the MBPI heuristic and an optional range fac-
tor & = [£1,&2], decisive for the rate of change. The standard values are & = 0.05 and
& = 0.10. A change of an existing partition with the use of £ works as follows. For every
pair of elements from different groups, their group assignment is exchanged with a prob-
ability between &; and & (for example is the standard exchange rate 5-10%). The exact
percentage is picked as a random uniform number in the range of [{,{2]. So for every
restart, we pick a random partition 7 € P (initially P is obtained from MBPI) and change
itby use of £. After these changes on 7, we use the local search component from the MBPI
heuristic to find a local maximum according to 7. Again we use all examined partitions
to update P as we have seen in the MBPI heuristic. Half of the entered restarts R/2 are
used for an initial approximation of the Pareto set computed by the MBPI heuristic and
the remaining R/2 restarts are used for the iterative local search. Thus, at least 2 restarts
are required and the number of restarts has to be even. A restart of the MBPI heuristic
takes slightly less computation time because used partitions do not have to be perturbed
first. As well as the MBPI heuristic the BILS heuristic returns P as the resulting Pareto
set. In the following, we give pseudocode for the BILS heuristic.

5 BICRITERION HEURISTIC 11

function BILS(D, K, R, W, &1, &)
run MBPI with R/2 restarts and let P be the approximated Pareto set
for r=1to R/2do
pick a random weight w; € W
w9 =1 — W1
pick a random neighborhood size ¢ in range [{1, &2]
pick a random partition 7 from P
for n=1to N —1do
for j=i+1to N do
setk :i € ¢
setl:j €
if k # [then
pick a uniform random number p in range [1, 2]
if p < ¢ then
ek = cp U {7\ {i}
a = U{i}\{j}
end if
end if
end for
end for
local search(D, w1, wa,) > local search component from MBPI
end for
return P
end function

5.4 Implementation Details

A majority of the computing time in the BILS heuristic is needed to evaluate all bicriterion
values. For this, the heuristic computes diversity and dispersion for every examined
partition. Without external information about a partition, both of these computations
consider all edges of an anticlustering instance. Thus, for the partition, that is randomly
chosen at each restart, these computations are unavoidable. All other examined partitions
differ only by one pairwise exchange in comparison to the partition examined directly
before. So the information we use to compute the bicriterion for a new partition 7, is the
bicriterion value of the previously examined partition 7, as well as the elements x and y
involved in the pairwise exchange. We assume z is assigned to group c, and y is assigned
to group ¢, in partition 7, and are exchanged in partition 7,. Then the computation of
diversity is as follows:

diversity(my,) = diversity(mp) — Z dig — Z diy + Z diy + Z diz

1€ECy 1€cy 1€ECy 1€Cy

We use the old diversity value and subtract all edge-weights from edges who have = € ¢,
ory € ¢y as one endpoint and a vertex in the same group as the other endpoint. Then, we
add all edge-weights of x € ¢, and y € ¢, analogous. Instead of considering all edges of
the anticlustering instance, we now only look at edges connected to two of the elements.

5 BICRITERION HEURISTIC 12

For our computation of dispersion, we consider two questions. Firstly we examine the
partition before the exchange and ask: Does one of the edges connected to = or y have the
distance dispersion(m,)? We refer to this statement as Before. After the pairwise exchange,
we ask: Does one of the edges connected to x or y have the distance dispersion(m,) or
a smaller distance? We refer to this statement as After. To satisfy After, the equation
dispersion(my,) < dispersion(m,) must hold. Moreover, all newly considered edges are
connected to x and y. Thus, if After is true, we receive the new dispersion value, while
investigating this question. Regarding both questions there are four different cases to
examine for the computation:

1. Before and After are both false
x and y were not responsible for the dispersion value in the exchange process, lead-
ing to dispersion(my,) = dispersion(m).

2. Before is false and After is true
We find the new value dispersion(m,) in an edge from z or y to the other elements
in their groups, after the exchange, because After is true.

3. Before is true and After is false
In this case, we need to consider all edges of the anticlustering instance. Before-
hand, x and y were responsible for the dispersion value. As they were not re-
sponsible for the value after the exchange, every edge within a cluster could be
responsible for the new dispersion value.

4. Before and After are both true
Case 4 is analogous to case 2.

Only case 3. can possibly improve the dispersion value, but requires the most computa-
tion time. Using test data with 20, 30, 40, 50 and 100 elements and 10 groups, we deter-
mined the occurrence rate of this case. In Table 2 we can see, that an increased element
size leads to a smaller occurrence rate of Case 3. A cause for this is, that the probability of
the exchanged elements x and y being responsible for the dispersion value drops with an
increasing amount of elements. The cases 1., 2. and 3. require only the examination of the
edges connected to = and y. In comparison to considering all edges for the computation
of the bicriterion, the computation time has decreased significantly.

Elements Case 1. Case2. Case3. Case 4. Total Case3.in %
20 180 468 214235 17 601 78 746 491 050 3.58
30 445435 1306920 45645 215894 2013894 2.27
40 906 141 2845433 51242 337496 4140312 1.24
50 1313856 5387835 57992 483836 7243519 0.80
100 7453104 24457118 169006 1068157 33147385 0.51

Table 2: Case occurrence rates of the BILS heuristic with 1000 restarts and 10 groups.

5 BICRITERION HEURISTIC 13

5.5 Limitations of the BILS Heuristic

An ILS approach can become a state of the art algorithm for a specific problem if the
local search component and factor of perturbation (in the BILS heuristic this factor is &)
are correctly chosen. Nevertheless, an ILS approach is always a heuristic and thus, not
reliably able to find optimal solutions. Besides, the BILS heuristic has no approximation
factor. This means there is no guarantee, that a result has at least a fixed proportion of
the value of the optimal solution. Furthermore, the probability of finding a near-optimal
solution with an ILS approach decreases, as instance size increases [10]. In section 7 we
discuss, how the solutions of the BILS heuristic perform on average in comparison to
optimal solutions.

With an increase of the instance size, the computation time of the BILS heuristic also
increases. The number of feasible partitions grows exponentially with the number of
elements. To be specific, it is equal to the Stirling number of the second kind [3]. Therefore
there are in general more partitions, that improve a currently examined partition during
the local search. This leads to a more frequent use of the local search component during
one restart of the heuristic.

The computation time of the BILS heuristic does not solely depend on the instance size.
The users can affect the computation time by setting the number of restarts, which spec-
ifies the "thoroughness" of the search. We demonstrate the differences, by running the
BILS heuristic with 2, 10, 100, 1000, and 10000 restarts on test data. The test set consists
of 100 elements, which have to be divided into 10 groups. Figure 4 shows the diver-
sity and dispersion values of the resulting Pareto sets, by plotting each entry of these sets.

" 4
= i
| +
15- g
| |
" restarts
14 - sl
c " + 2
O | |
-Q 10
o} T o+
% 134 = 100
S + 1000
| |
10000
12-
11-
19340 19350 19360
diversity

Figure 4: BILS heuristic using different numbers of restarts.

5 BICRITERION HEURISTIC 14

In general, the solution of the BILS heuristic gets closer to the optimal solution, when
more restarts are used [3]. In Figure 4 you can see, that partitions of the Pareto set ob-
tained by the BILS heuristic with 2 restarts dominate partitions obtained with 10 restarts.
So the number of restarts provides only a higher probability of better solutions.

The average time of a single restart does not depend on the total number of restarts. A
restart requires time dependent on how distant an initial partition is to the next local
maximum and the size of the growing and shrinking Pareto set. A lower number of
restarts is crucial for reasonable computation time for bigger instances but comes with a
loss of solution quality.

5.6 BILS on 1-Dimensionial Instances

We face two problems using the BILS heuristic as instance size increases. The quality
of a resulting approximation decreases and the computation time increases. Another
special case are 1-dimensional instances (1-dimensional Euclidean problem). The BILS
heuristic is unsuitable for even small instances of this kind. The crux of this problem
is, that the heuristic returns, and more importantly works, with a Pareto containing a
large number of elements. The size of the Pareto set affects the computation time in the
updating process. Every newly examined partition is compared with all partitions in the
current Pareto set.

For an 1-dimensional Euclidean problem, most of the partitions in the corresponding
Pareto set are not unique. They share the same diversity and dispersion value with other
partitions. To better understand why the partitions are not unique in diversity, we look at
the example anticlustering problem in Figure 5. The problem consists of 4 elements and
2 groups. The elements have one attribute with an arbitrary value (w.l.o.g these values
are in ascending order of the vertex indices). For this example there are three feasible
partitions !, 72 and 73. Their groups are recognizeable by connected edges.

If we combine the edges of each partition by superimposing them, we observe that par-
tition 72 and 73 both have a combined edge from vertex 1 to vertex 4. In the process
of combining, we also notice, that for both of these partitions, their edges only overlap
in the area from vertex 2 to vertex 3. Thus, the combined edge distances of these parti-
tions are equal: dy 3 + d24 = di 4 + d2 3. Per definition of diversity, this is equivalent to
diversity(ma) = diversity(ms). This applies to arbitrary distances between the vertices in
Figure 5. With an increase of the problem size, partitions with the same diversity value
occurre more frequently. We evaluate 10 tests with 12 elements and 4 groups. For an
instance with these properties there exist 15400 feasible partitions. All unique diversity
values occurre 25 times on average. While this would not be problematic, the highest
diversity values tend to occurre more often. The maximum diversity value appears 576
times in all of the tests. Occurrence rates of other diversity values were not fixed in these
tests. We presume that the occurrences of the highest diversity value are a substantial
proportion for all 1-dimensional anticlustering instances.

To understand why dispersion values are not unique, we take a look at the definition of
dispersion. Dispersion is the minimal distance of an edge, which is within one group
of a partition. The number of different dispersion values is restricted to the number of

5 BICRITERION HEURISTIC 15

d1,2 d3 4
dy3
do 4
dy4
da3

Figure 5: Feasible partitions 7!, 72 and 73.

N(N — 1) edges. To be more specific, it is restricted to the number of all unique edge
distances. In the following, we assume that all edge distances are unique. In this case,
some of these edges are excludable. For K groups, the group size of each group is £. So
in a partition there are always N((%) — 1) edges used. As the minimum distance of these
edges is the dispersion value, the N ((£) — 1) — 1 edges with the longest distances can not
be responsible for this. The test data with 12 elements and 4 groups has a problem graph
consisting of 12 vertices and 132 edges. 12((12) — 1) — 1 = 23 edges can dispersion value,
leading to 109 edges possibly responsible for this value.

Because of a high occurrence rate of the highest diversity value in different partitions, it
is likely, that the BILS heuristic finds a partition with this value multiple times. Also, the
number of different possible dispersion values is relatively low. Therefore, the occurrence
rate of partitions sharing the same value in diversity and dispersion is still high. The BILS
heuristic stores all those partitions in the Pareto set according to the definition of Pareto
efficiency. One possibility to avoid this problem is the usage of a stricter dominance
relation than the Pareto efficiency. If partitions with equal values dominate each other,
only one of them is stored in the Pareto set of the BILS heuristic. As mentioned in section
3, it is unclear, if this specific problem is NP-hard for dispersion or if efficient algorithms
for solving exist.

6 EXCHANGE METHOD 16

6 Exchange Method

In this section, we introduce the exchange method as another heuristic approach to our
problem and compare it to the BILS heuristic. The exchange procedure was originally
proposed by Weitz and Lakshminarayanan et al. [14]. This was later adapted to the ex-
change method by Papenberg et al. [11]. It is part of the anticlust package from Papenberg
and is available as an open source software extension for the programming language R.
This heuristic focusses solely on one objective, so we only return one optimal solution
instead of a Pareto set. It can be used to optimize any objective function quantifying
group similarity [11]. The approach is similar, but not the same, as one restart of the
MBPI heuristic. Firstly, we generate a feasible partition in the same manner as in the
MBPT heuristic. Then, we simulate pairwise exchanges for one of the elements of the par-
tition with all elements from other groups. We carry out one of the simulated exchanges,
that lead to the highest increase of the desired objective. It is possible, that no exchange
improves the current objective value. In this case, the partition stays unchanged. The
exchange method returns a partition as solution after this process is repeated for all ele-
ments.

6.1 Comparing Exchange Method and BILS Heuristic

To compare the exchange method with the BILS heuristic, we use 10 tests with 100 el-
ements and 10 groups. In these tests, the average computation time of the exchange
method with diversity as objective is approximately 1.61 seconds. A single restart of the
BILS heuristic has a computation time of 0.1 seconds. Since at least 2 restarts are required
to execute the BILS heuristic, we compare the exchange method with the 2-restart-BILS
heuristic. For the sake of simplicity, we refer to the partition with the highest diversity
value in the Pareto set obtained through the 2-restart-BILS heuristic, as BILS solution for
the rest of this section.

Although the 2-restart-BILS heuristic requires only an eighth of the computation time in
comparison to the exchange method, the 2-restart-BILS heuristic performs better. In the
tests, all diversity values of the BILS solutions are greater than the diversity values of
all exchange method solutions. On average the solutions of the exchange method have
a diversity value of 20171. The average diversity value of a BILS solution is 20196. We
demonstrate our test results by plotting one Pareto set and all solutions of the exchange
method in Figure 6. For the sake of clarity, we did not plot all Pareto sets. Each entry
of the Pareto set obtained through the BILS heuristic and each solution of the exchange
method is a single point with a diversity and dispersion value.

6 EXCHANGE METHOD 17

14-

L °
= []
12- o
g 10- °. heuristic:
‘®
° exchange method
Q []
2 e 2-restart-BILS
T 3.
6 -
4 L 1 1 1 1
20160 20170 20180 20190

diversity

Figure 6: Diversity and dispersion values of solutions obtained through both heuristics.

For further investigation, we repeated the tests for 50, 200 and 300 elements and visualize
the results in Table 3. In all tests, the 2-restart-BILS heuristic performs slightly better than
the exchange method. As problem size increases the computation time of the exchange
method increases faster than the computation time of 2-restart-BILS heuristic. We pre-
sume that this is generally the case and that there is a problem size at which the exchange
method is faster than the 2-restart-BILS heuristic.

computation time in seconds average diversity value

elements exchange method 2-restart-BILS exchange method 2-restart-BILS

50 0.19 0.02 4980 4 988
100 1.61 0.20 20171 20196
200 10.83 191 82 885 82935
300 41.46 11.05 198 907 199 003

Table 3: Computation time and average diversity values of both approaches.

As dispersion is, in this case, not the goal of the exchange method, we do not expect
to find high values in this objective among the solutions. Nonetheless, it is interesting,
that the average dispersion value of the solutions is at least 30% lower than the highest
dispersion value contained in the Pareto set. We conclude that the 2-restart-BILS heuristic
is, at least for a problem size with less than 300 elements, better suited for this problem.

7 EXACT SOLUTION METHODS 18

7 Exact Solution Methods

7.1 Pareto Set Via Complete Enumeration

The simplest approach to achieve an exact Pareto set is to examine all feasible partitions
via complete enumeration and save all partitions, that are not Pareto dominated by any
other partition. Unfortunately, the number of all feasible partitions is enormous for prac-
tical values of N and K [3]. Thus, the computation time of complete enumeration is too
high in praxis.

Running test anticlustering instances with 30 elements and 10 groups shows, that the
BILS heuristic reliably finds exact solutions for this problem size. For 20 test sets, the
BILS heuristic always returns the exact Pareto set by setting the number of restarts on
10000. The complete enumeration needs a computation time of nearly 7 hours to return
the exact Pareto set. We observe that the BILS heuristic is not reliable on tests with 40
elements and 10 groups, because all solutions resulting from the same given test data are
different. As computation time is too long, we do not use the complete enumeration on
this problem size.

7.2 Relation of Diversity and Dispersion in an Exact Pareto Set

We reuse the test results from the complete enumeration approach with 30 elements and
10 groups to take a closer look at the relation between diversity and dispersion on an
exact Pareto set.

Test Diversity Dispersion Test Diversity Dispersion

1 1733.69 17.96 1 1723.34 34.60

2 1648.70 23.45 2 1634.24 38.70

3 1476.22 28.37 3 1469.95 29.79

4 1417.87 28.63 4 1411.31 33.76

5 1577.47 19.16 5 1567.17 29.98

6 1481.63 25.09 6 1480.28 29.78

7 1718.60 17.75 7 1702.85 33.05

8 1520.68 16.96 8 1508.11 28.59

9 1354.44 21.42 9 1346.16 26.79

10 1543.58 29.27 10 1531.81 36.73
Table 4: Objective values of Table 5: Objective values of partitions with
partitions with the highest diversity the highest dispersion value, taking into ac-
value in the exact Pareto set. count all partitions that are within 1% of

the maximum diversity value of the corre-
sponding exact Pareto set.

We observe in Table 4 and 5, that trading off 1% of the maximum diversity value can
increase the dispersion value drastically. In this 1% range, we find partitions with an on
average 46% higher dispersion value compared to the partition with the highest diver-

7 EXACT SOLUTION METHODS 19

sity value. Test data with various values for N and K shows, that similar trade-offs are
possible for non-exact Pareto sets. In these tests, we also observe, that the partition with
the highest value in dispersion has, in the worst-case, only a 2% lower diversity value
compared to the maximum. If the focus of an application does not solely lie on diversity,
one may want to consider an exact Pareto set or an approximated Pareto set for a possible
trade-off.

7.3 Integer Linear Programming

Another approach to receive optimal solutions is integer linear programming (ILP). It
is a mathematical optimization model based on linear constraints and objectives. ILP
approaches often improve the computation time in comparison to a complete enumera-
tion [1] [8]. While complete enumeration would examine all solutions, ILP do not neces-
sarily need to check all solutions in the solution space. To what extend the solution space
can be restricted depends on the problem [4].

We need to choose suitable integer variables, with which we can formulate an ILP model
consisting of an objective function and constraints. An ILP model represents the objective
function as a linear function and the constraints as a system of linear inequalities [11]. An
ILP solver acts as a “black box” that is guaranteed to return an optimal solution [11].

7.3.1 Diversity ILP

In this section, we introduce an ILP model for the problem of finding the maximum
diversity. The ILP formulation was originally presented by Grotschel and Wakabayashi
et al. [8] and later extended by Papenberg and Klau et al. [11].

Firstly we need to explain the integer variables, we use for the ILP formulation. The
variables z;; encode whether two elements ¢ and j are connected by an edge and thus,
are in the same group:

1 ifviECk/\vjECk
i —
+ 0 otherwise

7 EXACT SOLUTION METHODS 20

To find the partition with the maximum diversity value using these integer variables, we
use the following ILP formulation:

max Z dijxij (9)
1<i<j<N

s.t. —Tjj + Xy + 2y <1, Vi<i<j<k<N, (10)
Tij — Tig + Tjp < 1, Vi<i<j<k<N, (11)

Tij + @i — Tk < 1, V1i<i<j<k<N, (12)

K K N
Z Tij + Z Thi = E —1, Vi € {1, ...,N}, (13)
1<i<j<N1 1<k<i<N1

zi; € {0,1},V1<i<j<N

The objective in (9) is to maximize the sum of pairwise distances for a given anticlustering
problem. Without any constraints, we would set every z;; = 1 by assigning all elements
to the same group. To ensure that the assignment is feasible, we use the constraints (10)
to (13). Constraints (10) to (12) guarantee that there are no conflict triples in the graph [8].
Put simply, there are no edges between elements from different groups. Constraint (13)
ensures equal group sizes by enforcing each element to have exactly % — 1 edges. The
objective in (9) in combination with the constraints maximizes the diversity.

For Table 6 we computed an optimal solution regarding diversity with the introduced
ILP. The test data consists of 50 elements and 10 groups. The compuatation exceeds 4
hours, so we do not investigate larger problem sizes. For this problem size BILS heuristic
finds solutions with nearly optimal diversity values in 200 seconds.

BILS heuristic diversity maximum diversity

4994.00 4995.64
4994.45
4993.78
4994.09
4994.21

Table 6: Diversity values obtained through the the BILS heuristic with 10000 restarts
compared to an exact solution obtained through the ILP

7 EXACT SOLUTION METHODS 21

7.3.2 Dispersion ILP

In this section, we discuss an ILP model for the problem of finding the maximum disper-
sion. Fernandez et al. have introduced an ILP model for a more specific problem [7]. We
adapt a more general approach of this model for our purposes.

Firstly we explain the variables, we use for our ILP model. The variables y;; encode
whether element i is contained in group c;:

1 ify; € Ck
ik = 14

Yk {0 otherwise 14
The variables z;j;, encode whether element 7 and j are contained in group cy:

1 ifv,EcpNv; Ec
Zijk—{ ’ B ¥ (15)

0 otherwise

To find the partition with the maximum dispersion value using these integer variables,
we use the following ILP formulation:

max MinDis (16)
s.t. >y =1, V1<i<N, (17)
1<K

N
> vk =— VI<k<K, (18)

K

1<N

MZ’H,DZSSdljzwk—{-M(l—Z”k), 1<i<j<N,1<EkE<K (19)
Yik + Yjk < 1+ Zij, 1<i<j<nl1<k<K (20)

MinDis € R, Yiks Zijk € {0,1},V1 <1<y < N

The objective in (16) is to maximize the variable MinDis, which represents the minimal
distance of an edge within one partition. Constraint (17) ensures, that every element
is assigned to exactly one group. Constraint (18) guarantees, that every group contains
exactly % elements. Constraint (19) ensures, that the variable MinDis is set on the shortest
edge, that is used in the partition. If z;;;, = 1, then the edge is used and MinDis < d;;z;ji
holds. If z;;, = 0, then MinDis < d;;2;;, + M holds. We set the variable M on the
maximum distance of all edges. Thus, this constraint does not affect MinDis if z;;, = 0.
We use constraint (20) to prevent, that z;;, = 0, while both y;;, = y; = 1. The objective in
(9) in combination with the constraints maximizes the dispersion.

8 DISCUSSION 22

We evaluate this ILP on test data consisting of 50 elements and 10 groups. The compuata-
tion exceeds 3 hours, so we do not investigate larger problem sizes. The BILS heuristic,
with 10000 restarts, finds the optimal solution on such instances in about 200 seconds.
On all tests the Pareto set obtained through the BILS heuristic, has a partition with the
maximum dispersion.

8 Discussion

During this bachelor thesis, we implemented the BILS heuristic and evaluated it on sim-
ulated data. In contrast to other heuristics for anticlustering, it considers multiple ob-
jectives at the same time and returns not a single solution, but a list of possibly useful
solutions.

Before considering the BILS heuristic as an approach for an anticlustering problem, these
two cases should be taken into account.

o If elements should be divided into two groups and a high dispersion is desired,
there might exist an efficient, exact algorithm. Brucker et al. [2] introduced such
an algorithm for finding the maximum dispersion, without enforcing equal group
sizes for the anticlustering problem. Optimal solutions for one objective are benefi-
cial in order to determine a Pareto set, in which two objectives are considered. [3].

e If the elements of an anticlustering problem have only one attribute and a high
dispersion is desired, there also might exist an efficient, exact algorithm. Again
Brucker et al. [2] introduced such an algorithm, without enforcing equal group
sizes. In this case, the BILS heuristic should definitely not be used, as it finds too
many solutions, which affects the computation time drastically.

Except for these two specific cases, the BILS heuristic performs well. For small instances,
it achieves better solutions than the exchange method with a lower computation time,
which is adjustable through the number of restarts. Compared to exact solutions, the
BILS heuristic returns near-optimal solutions for problem sizes with 50 elements. In re-
gard to the problem size the computation time of the BILS heuristic increases faster than
the computation time of the exchange method. As the BILS heuristic is an iterated local
search approach, the probability of finding a near-optimal solution decreases, as problem
size increases [10]. Furthermore, this heuristic has no approximation factor and thus,
there is no guarantee on the quality of a solution. To better quantify the quality of solu-
tions one could test our algorithm on real data and compare it to the optimal solutions.

Regardless of the choice of the algorithm used for anticlusering, it is often beneficial to
investigate a Pareto set for a given problem. In general, a solution with the maximum
value in one objective is not what is desireable for a problem [3]. It is nearly always
possible to trade of a small amount of diversity for a huge amount of dispersion.

For further works on this subject, we suggest considering other anticlustering objectives,
in addition to those presented in this thesis and evaluation on real data.

REFERENCES 23

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Sebastian Bocker, Sebastian Briesemeister, and Gunnar W Klau. “Exact algorithms
for cluster editing: Evaluation and experiments”. In: Algorithmica 60.2 (2011),
pp- 316-334.

Peter Brucker. “On the complexity of clustering problems”. In: Optimization and
operations research. Springer, 1978, pp. 45-54.

Michael] Brusco,] Dennis Cradit, and Douglas Steinley. “Combining diversity and
dispersion criteria for anticlustering: A bicriterion approach”. In: British Journal of
Mathematical and Statistical Psychology (2019).

Pei-Hua Chen. “Should We Stop Developing Heuristics and Only Rely on Mixed
Integer Programming Solvers in Automated Test Assembly? A Rejoinder to van der
Linden and Li (2016)”. In: Applied psychological measurement 41.3 (2017), pp. 227-240.

Jacques Desrosiers, Nenad Mladenovi¢, and Daniel Villeneuve. “Design of bal-
anced MBA student teams”. In: Journal of the Operational Research Society 56.1 (2005),
pp- 60-66.

Thomas A Feo and Mallek Khellaf. “A class of bounded approximation algorithms
for graph partitioning”. In: Networks 20.2 (1990), pp. 181-195.

Elena Ferndndez, Jorg Kalcsics, and Stefan Nickel. “The maximum dispersion prob-
lem”. In: Omega 41.4 (2013), pp. 721-730.

Martin Grotschel and Yoshiko Wakabayashi. “A cutting plane algorithm for a clus-
tering problem”. In: Mathematical Programming 45.1-3 (1989), pp. 59-96.

David S Johnson and Lylle A McGeoch. “Local search in combinatorial optimiza-
tion”. In: The Traveling Salesman Problem: A Case Study in Local Optimization (1997),
pp- 215-310.

Helena R Lourenco, Olivier C Martin, and Thomas Stiitzle. “Iterated local search”.
In: Handbook of metaheuristics. Springer, 2003, pp. 320-353.

Martin Papenberg and Gunnar W Klau. “Using anticlustering to partition data sets
into equivalent parts”. In: Psychological methods ().

H Spith. “Anticlustering: maximizing the variance criterion”. In: Control and Cy-
bernetics 15.2 (1986), pp. 213-218.

Venceslav Valev. “Set partition principles”. In: Transactions of the Ninth Prague
Conference on Information Theory, Statistical Decision Functions, and Random Pro-
cesses,(Prague, 1982). 1983, p. 251.

RR Weitz and S Lakshminarayanan. “An empirical comparison of heuristic meth-
ods for creating maximally diverse groups”. In: Journal of the operational Research
Society 49.6 (1998), pp. 635-646.

Rui Xu and Don Wunsch. Clustering. Vol. 10. John Wiley & Sons, 2008.

A SOURCE CODE 24

A Source Code

The source code for this thesis is accessible at: https:/ /github.com/ManalLama/anticlust

	Introduction
	Problem Formalization
	Preliminaries
	Feasible Anticlustering Solutions
	Objective Functions

	Complexity
	Test Data
	Bicriterion Heuristic
	Multiobjective Anticlustering
	Multistart Bicriterion Pairwise Interchange Heuristic
	Bicriterion Iterated Local Search
	Implementation Details
	Limitations of the BILS Heuristic
	BILS on 1-Dimensionial Instances

	Exchange Method
	Comparing Exchange Method and BILS Heuristic

	Exact Solution Methods
	Pareto Set Via Complete Enumeration
	Relation of Diversity and Dispersion in an Exact Pareto Set
	Integer Linear Programming
	Diversity ILP
	Dispersion ILP

	Discussion
	References
	Source Code

