
Heinrich-Heine-Universität Düsseldorf
Department of Computer Science

Algorithmic Bioinformatics

Optimisation problems for the
reinforcement of

telecommunication networks

Adrian Prinz

Master’s Thesis

Submission: September 16, 2022
Supervisor: Prof. Dr. Gunnar W. Klau
Second Accessor: Dr. Rolf Bardeli

ii

Acknowledgements

I would like to thank my supervisors Prof. Gunnar W. Klau and Dr. Rolf Bardeli for
their guidance and advice inside and outside our regular meetings from the beginning
to the end of the thesis. Furthermore, I would like to thank Dr. Richard Schmied,
who was often able to help me with his expertise. Without them, this thesis would
not have been possible.
I would like to thank Vodafone GmbH for their cooperation. Lastly I thank Philipp
Spohr and all the students of the Algorithmic Bioinformatics department for the
regular discussions and tips.
Computational infrastructure and support were provided by the Centre for Infor-
mation and Media Technology at Heinrich-Heine-University Düsseldorf.

iii

Declaration

I hereby confirm that this thesis is my own work, and that I have only used the
sources and materials specified in my thesis.

Düsseldorf, September 14, 2022

Adrian Prinz

iv

Abstract

This thesis presents two new combinatorial optimisation problems that can be used
to model the expansion of a coaxial telecommunications network using fibre optic
cables. In these capacitated network design problems, it is necessary to install
fibre optic cables in order to route enough traffic from different access points to the
customers. The first problem deals with routing traffic from the access points to
so-called amplifier points. Each amplifier point is already connected to the existing
coaxial cable network. However, some amplifier points require more traffic than can
be routed to them via coaxial cable. The goal of this problem is to reinforce the
already existing coaxial cable network with fibre optic cables so that there is enough
capacity in the network to sufficiently supply all amplifier points. For this reason,
the problem is called Local Access Network Reinforcement problem for amplifier
points (LAN-Forcea). The second problem deals with the supply of traffic to the
customers. The customers must be connected to the amplifier points via existing
coaxial cables or via new fibre optic cables. Unlike the LAN-Forcea problem, not
every customer has to be connected to the network. A customer is connected to
the network if its demand for traffic can be satisfied. It gives a profit depending on
whether it is connected to the network by fibre or by coax. The problem is called
the Local Access Network Reinforcement problem for households (LAN-Forceh).
We prove the NP-completeness of the two problems and propose different methods
to solve them. We first reduce the instances without losing the optimal solution
in order to speed up the overall solution process. We develop two different integer
linear programs to solve the problems. Furthermore, we describe a heuristic for both
problems in order to quickly find approximate results.
We perform computational experiments on real-world graphs from Vodafone GmbH.
For smaller and densely populated instances we often find an optimal solution. For
large instances, we are able to find approximate solutions, which were on average
between 3 and 12 percent worse than the respective exact results.

CONTENTS v

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Problem statements . 3
2.2 Terms and notation . 8

3 Proof of NP-completeness 9
3.1 PC-LAN . 10
3.2 LAN-Forcea . 11
3.3 LAN-Forceh . 12

4 LAN-Forcea 13
4.1 Focus on net cascades . 14
4.2 Reduction techniques . 18
4.3 Optimisation . 28
4.4 Heuristic . 33

5 LAN-Forceh 37
5.1 Reduction techniques . 37
5.2 Optimisation . 38
5.3 Heuristic . 39

6 Results 40
6.1 LAN-Forcea . 41
6.2 LAN-Forceh . 52

7 Outlook 57

8 Conclusions 58

List of Figures 59

CONTENTS vi

List of Tables 59

A SCF model for PC-LAN 62

B SCF model for LAN-Forceh 63

C Dual Ascent example 64

D Modified Dijkstra algorithm 67

1 INTRODUCTION 1

1 Introduction

In today’s world, it is important to be connected and up to date with others. The
world is globalising, both in the private and public sector, individuals want to be
informed and communicate. For this, a connection to the internet, as well as a
telephone and TV connection is indispensable. In order to take advantage of the
internet, telephone and TV, the private customers and companies receiving it must
be connected to a cable network provided by telecommunications companies.
The data stream is routed from various access points via cables to so-called amplifier
points. These amplifier points forward the data stream to the individual customers,
who may be business buildings or private households. The cable network used for
the supply consists of different types of cable. While in the past mainly the more
inefficient coaxial cable consisting of copper was used, today’s efforts to expand the
network with more efficient fibre optic cables are significant. This process is called
fibre rollout. Telecommunication companies are interested in a cost-efficient solution
so that profit-paying customers are connected to the network as cheaply as possible.
The planning of such a network is highly complex and contains various problems on
graphs, see for example Bley et al. [1], Grötschel et al. [2], Voß et al. [3].
In telecommunications infrastructure planning, the goal is to optimally design the
fibre rollout for single planning units. The planning units are counties, cities or
whole municipalities. We can represent the planning units as a graph consisting of
vertices and edges. We represent the access points, amplifier points, customers and
street intersections (through which cables can be laid) as vertices and the cables
connecting the different components of the network as edges of the graph.
This thesis deals with the optimal reinforcement of an existing coaxial cable infras-
tructure with fibre optic cables. The two types of cable differ in cost of cable laying
and capacity. The capacity determines how much data can be routed over the cable
and thus implies how many customers can be supplied via the respective cable. Each
customer has its own demand, which corresponds to the number of flats or offices
in the building to be supplied. The profit of connecting a building to the network
depends on the demand.
For the optimal planning of the fibre roll-out, the Prize-collecting Local Access Net-
work problem (PC-LAN) has already been defined in the literature [4]. The objective
of the PC-LAN problem is to perform the most profitable cable laying by balancing
the cost of cable laying against the profit of the connected customers. At each edge
of the graph it is possible to choose one of many cables, which all differ in cost
and capacity. A customer only pays the profit if it is connected to the network via
cable and its demand is satisfied. If the cost of the network connection exceeds the
customer’s profit, the customer does not necessarily have to be connected to the
network. However, there is a so-called overbuilding risk, which states that a certain
percentage of all customers must be connected to the network. If the telecommu-
nications companies do not take care to connect this percentage of all customers

1 INTRODUCTION 2

to their own network, there is a risk that these customers will be served by rival
companies and thus market power will diminish.
In this thesis we divide the process of supplying customers into two subproblems.
This division into two problems makes sense in order to be able to formulate different
optimisation functions and to deal with special specifications. The goal of the first
problem is to provide all amplifier points with sufficient traffic. In the second prob-
lem, we will connect the customers to the amplifier points as profitably as possible.
We call the first problem Local Access Network Reinforcement problem for amplifier
points (LAN-Forcea) and the second problem Local Access Network Reinforcement
problem for households (LAN-Forceh). While LAN-Forcea is a special case of the
PC-LAN problem LAN-Forceh is only a variant. Both problems are NP-complete.
Figure 1 shows an example input graph for both problems, together with a solution.

(a) Input LAN-Forcea (b) Solution LAN-Forcea

(c) Input LAN-Forceh (d) Solution LAN-Forceh

Figure 1: Input and solution of the problems LAN-Forcea and LAN-Forceh. In the LAN-Forcea
we reinforce the existing blue coax network with pink fibre cables. For this, we connect all red
amplifier points whose demand is not satisfied by the coax network to the yellow fibre access points
via fibre cables.
The goal of the LAN-Forceh problem is to connect the green households as profitably as possible
via fibre and coaxial cable to the red amplifier points.

For the LAN-Forcea we assign a demand to each amplifier point. The demand of an
amplifier point corresponds to the cumulative demand of all customers connected
to the respective amplifier points in the course of the LAN-Forceh problem. In
contrast to the PC-LAN problem, there are only exactly two cable types, coaxial
cable and fibre optic cable, whereby only exactly one of the two types can be used at

2 PRELIMINARIES 3

each edge. Since the demand of all amplifier points has to be satisfied mandatorily,
LAN-Forcea, unlike PC-LAN, is not prize-collecting and there is no overbuilding
risk. The amplifier points are already connected to the respective access points by
coaxial cables, but the demand of the amplifier points can exceed the capacity of
the coaxial cables, so that a fibre roll-out is necessary.
For LAN-Forceh we assume that the demand of all amplifier points is already satisfied
by applying LAN-Forcea. The objective of LAN-Forceh is to maximise the total
profit by connecting actual customers to the respective amplifier points. The profit
is composed of the cost of laying cables and the profit of connecting the customers
to the network. Customers pay a profit based on the type of connection. Since
a fibre connection is more reliable and faster, the profit paid by customers for a
fibre connection is greater than for a coaxial connection. As already described for
LAN-Forcea, we only distinguish between two cable types. Since the objective is
to maximise the total profit, the problem is prize-collecting. However, unlike the
PC-LAN problem, there is no overbuilding risk.
Our contributions: In this thesis, we define the two problems LAN-Forcea and
LAN-Forceh. In Chapter 3 we prove the NP-completeness of the problems PC-
LAN, LAN-Forcea and LAN-Forceh. We focus in Chapter 4 on the solution of
LAN-Forcea. For this, we describe how we can divide a given planning unit into
smaller graphs and how we subsequently delete vertices and edges of these graphs
using reduction techniques. Furthermore, we explain two Integer Linear Programs
(ILPs) for optimally solving the reduced LAN-Forcea instances and find a heuristic
that approximates an optimal solution. In Chapter 5 we deal in detail with the
LAN-Forceh problem. We adapt the reduction techniques we have found, ILPs and
the heuristic for LAN-Forcea to LAN-Forceh. We then test our methods on real
instances provided by Vodafone GmbH.

2 Preliminaries

2.1 Problem statements

In the following we define the most important problems for this thesis. This is the
PC-LAN problem already known from the literature, introduced by Ljubić et al.
in [4]. Then we define the problems LAN-Forcea and LAN-Forceh, which are new to
our knowledge.

2.1.1 PC-LAN

Let G = (V, E) be an undirected graph, where V represents the vertex set and E the
edge set. A specific vertex r ∈ V serves as the root vertex. We associate each vertex

2 PRELIMINARIES 4

v ∈ V \ {r} with a demand dv and a profit pv. We can divide the vertices into two
disjoint sets K ⊂ V, I ⊂ V with K ∩ I = ∅ and K ∪ I = V \ {r}. The vertex set I
represents street intersections, the vertex set K represents potential customers. We
assign to each vertex v ∈ I a demand and a profit of 0, we refer to these vertices as
intersection vertices throughout the report. All vertices v ∈ K, on the other hand,
are assigned a positive demand dv > 0 and a positive profit pv > 0. We call these
vertices customer vertices. A customer only pays profit pk if he is connected to an
access point and his demand dk is satisfied.
Each edge e ∈ E is associated with a number of modules Ne = {n1, n2, . . . , n|Ne|},
where each module ni = (ue,ni

, ce,ni
) consists of the capacity ue,ni

and the cost
ce,ni

. Without loss of generality, we can assume that the modules are sorted such
that ue,ni

≤ ue,ni+1 . The individual modules represent the different types of cables
that can be used to connect the potential customers to the network. There is an
additional condition that we have to collect a minimum customer prize p0. It is a
percentage α of the total possible profit, generated by including all customers to the
solution, that is p0 = α

∑
k∈K pk. This condition is called overbuilding risk.

r

30

60

70

= {(30, 3), (50, 20)}

= {(10, 3), (30, 7)}

(a) Input PC-LAN

r

30

60

70

= {(30, 3), (50, 20)}

= {(10, 3), (30, 7)}

(30, 3)

(50, 20)

(10, 3)

(30, 7)(30, 7)

(50, 20)

(b) Solution PC-LAN

Figure 2: Example input graph for the PC-LAN problem, together with the optimal solution.
The green vertex represents the root. Red vertices are customers. Their demands equal their
profits and are written at the corresponding labels. There are two different edge types, which are
composed of different modules. At each edge, you can choose exactly one module consisting of
edge capacity and edge cost. In the solution, the installed modules are next to the respective edge.

A full ILP model for this problem will be given in the Appendix A. The objective
of the optimisation problem is to maximise the profit, which is composed of the
sum of the profits of all vertices included in the solution reduced by the cost of all
installed edge modules in the solution. The mathematically formal optimisation
function can thus be expressed by max ∑

k∈K pkyk −
∑

e∈E

∑
n∈Ne

ce,nxe,n, where
xe,n and yv are binary variables that induce whether the respective module ne or
vertex v is part of the solution. For each edge, a maximum of one module may be

2 PRELIMINARIES 5

installed. To add a potential customer v ∈ K to the solution, its specific demand
dv of traffic must be satisfied. The connection from the root r to the individual
customers can be seen as a flow problem, where the flow is directed from the root to
the vertices in the solution. On each edge the flow must not exceed the capacity of
the installed module. When the flow reaches a vertex v connected to the solution,
it consumes dv units of flow. To satisfy the demand of a vertex, we can use the
flow of different incident edges. Therefore, different than in other shortest network
problems, the result does not necessarily have to be a tree [4]. Figure 2 shows an
example instance together with a solution for the PC-LAN problem.
The problem is NP-complete, as we prove in Chapter 3.1.

In our next problem, the LAN-Forcea problem, there is no choice between different
cable types at each edge. Instead, there are only two cable types, with only one of
the two cables eligible at each edge. Instead of one root, there are multiple access
points. Since the goal of the LAN-Forcea problem is to supply all amplifier points,
the problem is not prize-collecting.

2.1.2 LAN-Forcea

Let G = (V, E) be an undirected graph. There are multiple vertices that can be
used to route traffic into the network. These connection vertices AP ⊂ V are
referred to as access points. The set of access points can be divided into fibre access
points (APf) and coaxial access points (APc), where: APf ⊂ AP, APc ⊂ AP with
APf ∩ APc = ∅ and APf ∪ APc = AP.
As described for the PC-LAN problem, we can divide the vertices V \ AP into two
disjoint sets K and I. The vertices k ∈ K are called amplifier points, they have a
positive demand dk ∈ Q+. We assign to all other vertices i ∈ I a demand of 0.
Each edge has exactly one module (|Ne| = 1). For simplicity, we assign exactly one
positive capacity ue with positive cost ce to each edge e ∈ E. We can divide the
edges into two subsets Ef , Ec ⊆ E with Ef ∩ Ec = ∅ and Ef ∪ Ec = E. We assign
to each edge e ∈ Ec the capacity ue = u with u ∈ N and costs of ce = 0. For each
edge e ∈ Ef we assign the capacity ue = ∞ and the costs ce = c with c ∈ N. We
interpret the different edge types Ef and Ec as fiber optic cables or coaxial cables
respectively.
For each AP ∈ APc there is an already existing coaxial cable network connecting
only amplifier vertices k ∈ K to the AP. This network has a tree structure, where
the respective access point is the root of the tree. We call this tree a net cascade.
There are no amplifier points k that are not connected to a net cascade. The edges
in Ef are street segments where it is possible to lay a fiber optic cable. Laying a
fiber optic cable involves costs depending on the length of the street segments.
The goal is to connect every amplifier point k ∈ K to the network at minimum
cost. An amplifier point can only be part of the solution if the traffic reaching it

2 PRELIMINARIES 6

from an access point is greater than or equal to its demand dk. For this reason, it
is necessary to install fibre optic cables from Ef whenever not enough traffic can
be routed to the amplifier points through the edges of the already existing coaxial
cable network Ec. Figure 3 shows an example instance of the LAN-Forcea problem.

apc1 apc2apf

40

40

60

70

5

5

9

10

0

7

(a) Input LAN-Forcea

apc1 apc2apf

40

40

60

70

5

5

0

7

(b) Solution LAN-Forcea

Figure 3: Example input graph for the LAN-Forcea problem, together with the optimal solution.
The red edges represent the net cascade consisting of coaxial cables with a capacity of u = 64. The
black edges represent fibre edges with their respective costs. In each vertex, we have recorded the
respective vertex demand.

On the connection from access point to amplifier point, after using a coaxial cable
edge, we are not allowed to use a fibre edge. Overall, we try to route the flow to
the customers via the net cascades at no cost, and then connect all customers that
could not be connected to the net cascade via coaxial cable as cheaply as possible.
We call this problem Local Access Reinforcement Problem, as the goal is to reinforce
the capacity existing through the net cascades with the help of fibre roll-out. We
prove the NP-completeness of the problem in Chapter 3.2. A full ILP model for this
problem will be given in Chapter 4.3.
The LAN-Forcea problem is a special case of the PC-LAN problem, since we can
transform the LAN-Forcea problem into the PC-LAN problem. For this, we create
an artificial root by connecting a new vertex r to all a ∈ AP by an edge era = {r, a}.
These new edges have costs of 0 and capacities of infinity. Furthermore, for each
edge e we create a module ne = (ue, ce) from the capacity ue and the cost ce. The
result is a PC-LAN instance where each edge has exactly one module.

2 PRELIMINARIES 7

2.1.3 LAN-Forceh

The LAN-Forceh problem is a variant of the PC-LAN problem, which we can derive
from the LAN-Forcea problem. The goal of the LAN-Forceh problem is to connect
paying customers to the amplifier points as profitable as possible. The amplifier
points were already supplied as part of the LAN-Forcea problem and thus serve as
root vertices in the LAN-Forceh problem. Below we give a formally definition of
the LAN-Forceh problem.

Let G = (V, E) be an undirected graph. There are multiple vertices called amplifier
vertices VAMP ∈ V to route traffic into the network. We can further divide the
vertices of the graph V \ AMP into two disjoint vertex sets K and I. The vertices
k ∈ K represent paying customers. They have two different positive profits pkc >
0 and pkf

> 0 and a positive demand dk > 0. We assign to all other vertices
i ∈ I a profit and a demand of 0. The edges of the LAN-Forceh problem are
defined analogously to the edges of the LAN-Forcea problem. Unlike the LAN-Forcea
problem, the coaxial cables do not occur in a tree structure around the individual
amplifier points. Instead, there are selected clients that have a direct coaxial cable
connection to an amplifier point. Figure 4 shows an example instance.

3|7

5|7

4|6

9

10

20

8

4

5

7

10

(a) Input LAN-Forceh

3|7

4|6 4

(b) Solution LAN-Forceh

Figure 4: Example input graph for the LAN-Forceh problem, together with the optimal solution.
The red vertices are amplifier points. The red edges represent coaxial cables with a capacity of
u = 64. The black edges represent fibre edges with their respective costs. The coax and fibre profit
are in first and second place respectively as labels in the customers. The demand corresponds to
the coax profit.

The goal of the LAN-Forceh problem is to maximise the total profit. The profit
consists of the profit of connecting customers reduced by the cost of cable expansion.

2 PRELIMINARIES 8

Customers pay a profit according to the nature of their cable connection. If there
is a coaxial cable edge on the path of connectivity, customer k pays profit pkc . If
the path consists entirely of fibre, the customer pays a profit of pkf

. A customer
only pays the profit if its demand dk is fully satisfied. Since, analogous to the LAN-
Forcea problem, no fibre edge may follow a coaxial edge on the root-to-customer
connection, we only need to consider the last edge of the connection for the nature
of the customer’s profit. A customer may never be connected to the network via
both coaxial and fibre cables. We prove the NP-completeness of the problem in
Chapter 3.3. A full ILP model for this problem will be given in the Appendix B.
The LAN-Forceh problem is a variant and not a special case of the PC-LAN problem,
since it is not possible to transform the LAN-Forceh problem into the PC-LAN
problem. It is not possible to model the different customer profits pkf

and pkc

according to the PC-LAN problem.

2.2 Terms and notation

In this section we explain some basic terms. Both the LAN-Forcea problem and the
LAN-Forceh problem have, instead of a single root vertex r, a set of access points AP
that supply the network with traffic. However, some techniques we describe require
an explicit root vertex. Whenever we talk about a root vertex r in the context of
the LAN-Forcea or LAN-Forceh problem, we create an artificial root by connecting
the new vertex r to all a ∈ AP by an edge era = {r, a}. The new edge has cost
cra = 0 and capacity ura =∞. With the help of this artificial root, it is possible to
supply all access points with enough traffic for free.
When we speak of a graph without a net cascade Gf , we mean the graph that results
from G when we delete all coaxial cable edges e ∈ Ec. After applying the techniques
that require Gf as input, we can add the coaxial cable edges back in.
We often use the Steiner tree problem (STP) [5] and the prize-collecting Steiner
tree problem (PCSTP) [6]. The input of the STP is a graph G = (V, E). All edges
e ∈ E have associated costs ce ∈ Q+. The vertices are divided into so-called terminal
vertices T ⊂ V and non-terminal vertices I ⊂ V \T . All vertices of the subset T ⊂ V
must be included in the solution. The goal of the STP is to connect all terminal
vertices t ∈ T with each other via edges and thereby minimise the cost of all edges
in the solution S. The PCSTP is an extension of the STP. In this problem, each
terminal vertex t ∈ T is associated with a positive profit pt ∈ Q+. The terminal
vertices do not necessarily have to be part of the solution, instead the objective is
to maximise the total profit consisting of all customer profits reduced by all edge
costs in the solution (max ∑

t∈S pt −
∑

e∈S ce). When speaking of the rooted version
of the problem (RSTP or RPCSTP), there is a designated root vertex r which must
be part of the solution.
In an undirected graph, we denote the set of all incident edges of a vertex v ∈ V by
δ(v). In the directed case, we make a distinction between the incoming edges δ−(v)

3 PROOF OF NP-COMPLETENESS 9

and the outgoing edges δ+(v). Similarly, we define the set of all edges incident to a
vertex set V ′ ⊂ V with δ(V ′). In the directed case we denote the edges entering V ′

with δ−(V ′) and the outgoing edges with δ+(V ′).
We denote the length of the shortest path between the two vertices vi ∈ V and
vj ∈ V by d(vi, vj). If we do not specify anything extra, we use the Dijkstra method
for calculation of the shortest path [7], using the edge costs as underlying costs.
For simplicity, we define branches of a tree. Given a rooted tree T = (V, E) with
root r. If we delete each edge incident to the root vertex er,v ∈ δ(r), we call all
resulting subgraphs except the root vertex itself a branch of the tree T . Figure 5
shows an example.

r

Figure 5: Branches of a tree: This tree has three branches because the root is connected to
three subgraphs. The respective branches are the black subgraphs.

3 Proof of NP-completeness

In the following we prove the NP-completeness of the problems PC-LAN, LAN-
Forcea and LAN-Forceh. A problem is NP-complete if it is in NP and is NP-hard.
For our proofs we first define the decision variant of the respective problem. Then
we prove that the problem is in NP by showing that we can verify a solution instance
of the problem in polynomial time. Finally we show that the problem is NP-hard by
transforming each instance of an already known NP-complete problem in polynomial
time into an instance of the problem to be proved and give an equivalence proof.

3 PROOF OF NP-COMPLETENESS 10

3.1 PC-LAN

The decision variant of the PC-LAN problem is as follows:

Given an instance of the PC-LAN problem and a parameter k ∈ Q+. Is there a
vertex set V ′ ⊂ V , an edge set E ′ ⊂ E and for each edge a module ni such that
all the constraints of the PC-LAN problem are satisfied and ∑

v∈V ′
p(v)− ∑

e∈E′
ce,ni
≥ k?

We want to show that PC-LAN is NP-complete. To do this, we will show that it is
in NP and that it is NP-hard.

PC-LAN is in NP: We show that we can verify a solution in polynomial time.
Given a set of vertices V ′ ⊂ V and edges E ′ ⊂ E together with the respective
installed modules ni ∀e ∈ E ′, which is a solution. To check whether the total profit
is greater than k, we must sum up the profits of all vertices in V ′ and subtract the
sum of all installed module costs. This can be done in O(V + E). To check whether
the solution is connected, we apply a depth-first search in O(V + E).
To test whether the demand of each vertex in the solution is satisfied, we create an
artificial sink vertex t. We connect each vertex v ∈ V ′ to t, giving the respective
edge a capacity of dv. We then apply the Edmonds–Karp algorithm [8] from source
r to sink t on the resulting graph. The Edmonds–Karp algorithm has a runtime of
O(V E2). Since we can check the given solution in polynomial time, PC-LAN is in
NP.

PC-LAN is NP-hard: We show that PC-LAN is at least as hard as the
NP-complete problem RPCSTP by reducing RPCSTP to PC-LAN. Let I be an
instance of RPCSTP consisting of a graph G = (V, E) with a root vertex r ∈ V .
Each vertex v ∈ V is assigned a profit pv ≥ 0, each edge e ∈ E is assigned a cost
ce ≥ 0. We define the instance I ′ for the PC-LAN problem as follows: We copy the
graph G together with the root vertex r. Each vertex v ∈ V keeps its profit pv. In
addition, each vertex is assigned a demand dv = 0. Each edge e ∈ E with cost ce is
assigned a module n0 = (0, ce). Since there is no overbuilding risk in the RPCSTP,
we set p0 = 0. This reformulation of instance I into instance I ′ is in O(V + E) and
thus obviously in polynomial time. Finally, it must be shown that the RPCSTP
with instance I and the PC-LAN problem with instance I ′ are equivalent.

’⇒’: Assuming I is a ’Yes’-instance of the RPCSTP, we need to show that
I ′ is a ’Yes’-instance of the PC-LAN problem. Since I is a ’Yes’ instance,
there is a vertex set V ′ ⊂ V and an edge set E ′ ⊂ E connected to the root
for which ∑

v∈V ′ pv −
∑

e∈E′ ce ≥ k holds. In I ′, the vertex profits and edge

3 PROOF OF NP-COMPLETENESS 11

costs are identical to those in I. Since each vertex v has a demand of 0, it is
possible to connect any vertex connected by edges to the network and take its profit.

’⇐’: Assuming I ′ is a ’Yes’-instance of the PC-LAN problem, we need to show that
I is a ’Yes’-instance of RPCSTP. There is a vertex set V ′ ⊂ V and an edge set
E ′ ⊂ E which is connected to the root and for which holds: ∑

v∈V ′
p(v)− ∑

e∈E′
ce, n0 ≥ k.

Furthermore, for each vertex v ∈ V ′, its demand dv is satisfied. The sets V ′ and E ′

also form an optimal solution in I, since the underlying graph consists of the same
vertices and edges with the same weights.

We have now shown that PC-LAN lies in NP and is NP-hard. It follows that PC-
LAN is NP-complete.

3.2 LAN-Forcea

The decision variant of the LAN-Forcea problem is as follows:

Given an instance of the LAN-Forcea problem and a parameter k ∈ Q+. Is there
an edge set E ′ ⊂ E such that all the constraints of the LAN-Forcea problem are
satisfied and ∑

e∈E′
ce ≤ k?

LAN-Forcea is in NP: We show how to verify a solution in polynomial time. Let
E ′ ⊂ E be a solution for the LAN-Forcea problem. To check whether the total cost
is smaller than k, we sum up the costs of all edges in E ′ and compare the sum to
k. This can be done in O(E).
To verify that the solution is connected and that the demands dv of the vertices
v ∈ V ′ are satisfied, we perform a depth-first search analogous to the proof of
the PC-LAN problem, followed by execution of the Edmonds–Karp algorithm in
O(V + E + V E2).

LAN-Forcea is NP-hard: We show that LAN-Forcea is NP-hard by using the
RSTP for the reduction. Let I be an instance of RSTP consisting of a graph
G = (V, E) with a root vertex r ∈ V . Each edge e ∈ E is assigned a cost ce ≥ 0.
We define the instance I ′ for the LAN-Forcea problem as follows:
We copy the graph G together with the root vertex r. The set of fibre access points
contains only the root vertex APf = {r}, the set of coax access points is empty
APc = 0. We assign to each vertex a demand dv = 0. The terminal vertices T of
the RSTP become the amplifier points K of the LAN-Forcea problem. We assign
to each edge e ∈ E with cost ce a a capacity of infinity. The resulting instance is

3 PROOF OF NP-COMPLETENESS 12

an instance of the LAN-Forcea problem with only a single access point and no net
cascade. The whole reformulation of instance I into instance I ′ is in O(V + E) and
thus obviously in polynomial time. Finally we have to show that the RSTP with
instance I and the LAN-Forcea problem with instance I ′ are equivalent.

’⇒’: Assuming I is a ’Yes’-instance of the RSTP, we need to show that I ′ is a
’Yes’-instance of the LAN-Forcea problem. Since I is a ’Yes’-instance, there is a
solution E ′ ∈ E for which ∑

e∈E′
ce ≤ k holds. In I ′ the edge costs are identical to

those in I. Since each vertex v has a demand of 0, it is possible to connect any
vertex to the network.

’⇐’: Assuming I ′ is a ’Yes’-instance of the LAN-Forcea problem, we need to show
that I is a ’Yes’-instance of RSTP. There is a solution E ′ ∈ E for I ′ for which
holds: ∑

e∈E′
ce ≤ k. Furthermore, for each vertex v in the solution, its demand dv is

satisfied. The set E ′ also forms an optimal solution in I, since the underlying graph
consists of the same vertices and edges with the same weights. Since the demands
of every vertex are 0 the optimal solution has a tree structure.

3.3 LAN-Forceh

The decision variant of the LAN-Forceh problem is as follows:

Given an instance of the LAN-Forceh problem and a parameter k ∈ N. Is there
a vertex set V ′ ⊂ V and an edge set E ′ ⊂ E such that all the constraints of the
LAN-Forceh problem are satisfied and ∑

k∈K

∑
ef∈δ(k)⊂E′

f
pkf

+∑
k∈K

∑
ec∈δ(k)⊂E′

c
pkc−∑

e∈E′ ce ≥ k?

LAN-Forceh is in NP: We show how to verify a solution in polynomial time.
Let a set of vertices V ′ ⊂ V and edges E ′ ⊂ E ve a solution for the LAN-Forceh
problem. To check whether the total profit is bigger than k, we must sum up all
profits of the customers according to their connection and subtract the costs of all
edges in E ′. This can be done in O(V + E).
To verify that the solution is connected and that the demands dv of the vertices
v ∈ V ′ are satisfied, we perform a depth-first search analogous to the proof of
the PC-LAN problem, followed by execution of the Edmonds–Karp algorithm in
O(V + E + V E2).

LAN-Forceh is NP-hard: We show that LAN-Forceh is NP-hard by using the

4 LAN-FORCEA 13

RPCSTP for the reduction. Let I be an instance of RPCSTP consisting of a graph
G = (V, E) with a root vertex r ∈ V . Each vertex v ∈ V is assigned a profit
pv ≥ 0, each edge e ∈ E is assigned a cost ce ≥ 0. We define the instance I ′ for the
LAN-Forceh problem as follows:
We copy the graph G together with the root vertex r. The set of fibre access points
contains only the root vertex APf = {r}, the set of coax access points is empty
APc = 0. Each vertex v ∈ I keeps its profit pv. We assign to each vertex v ∈ K
the two profits pf = pv and pc = pv and to each vertex v ∈ V a demand dv = 0.
In addition we assign to each edge e ∈ E with cost ce a capacity ue = ∞. The
resulting instance is a single access point instance of the LAN-Forceh problem, with
customers paying the same for a fibre or coax connection. The whole reformulation
of instance I into instance I ′ is in O(V + E) and thus obviously in polynomial time.
Finally, we have to show that the RPCSTP with instance I and the LAN-Forceh
problem with instance I ′ are equivalent.

’⇒’: Assuming I is a ’Yes’-instance of the RPCSTP, we need to show that
I ′ is a ’Yes’-instance of the LAN-Forceh problem. Since I is a ’Yes’-instance,
there is a vertex set V ′ ⊂ V and an edge set E ′ ⊂ E connected to the root
for which ∑

v∈V ′ pv −
∑

e∈E′ ce ≥ k holds. In I ′, the vertex profits and edge
costs are identical to those in I. Since each vertex v has a demand of 0, it is
possible to connect any vertex connected by edges to the network and take its profit.

’⇐’: Assuming I ′ is a ’Yes’-instance of the LAN-Forceh problem, we need
to show that I is a ’Yes’-instance of RPCSTP. So there is a vertex set
V ′ ⊂ V and an edge set E ′ ⊂ E which is connected to r and for which holds:∑

k∈K

∑
ef∈δ(k)⊂E′

f
pkf

+ ∑
k∈K

∑
ec∈δ(k)⊂E′

c
pkc −

∑
e∈E′ ce ≥ k. Furthermore, for

each vertex v ∈ V ′, its demand dv is satisfied. The sets V ′ and E ′ also form an
optimal solution in I, since the underlying graph consists of the same vertices and
edges with the same weights. Since the demands of every vertex are 0 the optimal
solution is a tree.

4 LAN-Forcea

In this chapter we describe an algorithmic process to find an optimal and an ap-
proximate solution for the LAN-Forcea problem for a given input graph. Since the
input graphs can be very large, we deal with a division of the graph into smaller
subgraphs in Chapter 4.1. We can solve the different subgraphs separately. Then, in
Chapter 4.2 we describe different reduction techniques to delete vertices and edges
in the respective subgraphs and thus further reduce the size of the instance. We then

4 LAN-FORCEA 14

discuss two different Integer Linear Programs (ILPs) to find an optimal solution on
the graphs. Finally, we describe a heuristic that makes it possible to split the input
graph into smaller subgraphs and then approximate an optimal solution.

4.1 Focus on net cascades

One objective of the LAN-Forcea problem is to satisfy the demand dk of all the
amplifier points k ∈ K in the graph. We can satisfy the demand by connecting the
respective amplifier point to an access point, whereby the edges of the path need to
have sufficient capacity. We describe in Chapter 4.1.1 the focusing on individual net
cascades to reduce the input graph. We create a subgraph Gsub for each net cascade.
The resulting subgraph Gsub contains the respective net cascade along with any fibre
cables and access points that may be required to optimally serve the net cascade.
The resulting subgraphs provide a good starting point for further reductions. How-
ever, by focusing on individual net cascades, we may lose optimal solutions, as it
may be cheaper to connect two net cascades via shared fibre access points than via
their own. For this reason, we describe in Chapter 4.1.2 how we can algorithmically
find a union of related net cascades so that we do not lose optimal solutions.

4.1.1 Focus on single net cascades

For each net cascade in the input graph G we compute a separate subgraph Gsub.
In addition to the net cascade, Gsub contains all the fibre cables E ′ ⊆ Ef and
fibre access points AP ′ ⊆ APf potentially required in an optimal solution. We
compute an upper bound ub of the optimal solution to find out which edges E ′ and
access points AP ′ could be required for an optimal solution. This upper bound
indicates the maximal cost of an optimal solution satisfying the demands of all
the amplifier points in the net cascade. Afterwards we search for all reachable
vertices within a maximum distance of ub using a breadth-first search starting from
each amplifier point. All fibre cables, fibre access points and intersection vertices
that lie within this radius together with the net cascade form Gsub. In the follow-
ing, we explain different methods to algorithmically determine such an upper bound.

Shortest path from every vertex (UB1): In the worst case each amplifier point
must be connected individually via a shortest path to a fibre access point. The
upper bound thus corresponds to the sum of all shortest paths over fibre edges
from all amplifier points to their next fibre access point. We only consider shortest
paths in the graph without net cascades Gf , as we cannot guarantee that we can
sufficiently supply the amplifier points due to the limited capacity of the coaxial
cables.
This upper bound can be further improved by adding the cost of edges that occur

4 LAN-FORCEA 15

multiple times on shortest paths to ub only once. Furthermore, we can supply all
the amplifier points of a branch of the net cascade for free if their accumulated
demand does not exceed the capacity of the coaxial cables. In this case, it is not
necessary to add up the shortest paths of these amplifier points to ub. Finally,
we consider the case where some but not all amplifier points of a branch can
be supplied by the net cascade. In this case, it is advantageous to supply those
amplifier points via the net cascade that would incur the greatest costs through a
connection to fibre. For this reason, we calculate the shortest path to the nearest
fibre access point for all amplifier points of this branch. We sort the vertices in
descending order of the length of the shortest paths and add the shortest paths
to ub only until the cumulative demand of the remaining vertices is less than the
coaxial cable capacity.
Figure 6 shows an example. In the example we can disregard vertex 1 in the
calculation of ub because its demand can be completely satisfied by the net
cascade. Vertex 3 and vertex 4 are on a branch of the net cascade and have
a cumulative demand of 80. Since the capacity of the coaxial cables is 64, the
net cascade cannot supply both vertices together. Since d(3, apf2) = 12 and
d(4, apf2) = 10, we only need to add the shortest path from vertex 4 to the next
fibre access point to ub. The edge (6, apf2) lies on both the shortest path d(5, apf2)
and d(4, apf2) and thus only needs to be included once. This results in an up-
per bound of ub = d(2, apf1)+d(4, apf2)+d(5, apf2)−d(6, apf2) = 5+10+15−5 = 25.

apc

apf1

apf2

1: 60

2: 70 3: 40 4: 40

6: 05: 70

5

5

7
5

5

5

5

Figure 6: UB1: The red edges represent the net cascade consisting of coaxial cables with a
capacity of u = 64. The black edges represent fibre edges with their respective costs. In each
vertex v ∈ V \AP , we have recorded the vertex ID along with the respective vertex demand. We
use all fiber edges whose costs are annotated with a blue circle to calculate the upper bound.

4 LAN-FORCEA 16

The algorithm UB1 finds very poor upper bounds when the distance between
amplifier points and fibre access points is very large, since in the worst case very
long edge-disjoint paths are found from each amplifier point to the next fibre access
point. As a result, ub becomes very large, resulting in a very large subgraph. For
this reason, we explain below another method for finding an upper bound that
addresses this problem.

Shortest path from one vertex (UB2): As described for UB1, we must connect
all amplifier points to a fibre access point via fibre cables in order to calculate an
upper bound. Instead of connecting each amplifier point individually to the next
fibre access point, we only add the distance of the amplifier point k with the short-
est path to the next fibre access point to the upper bound. We connect all other
amplifier points to the same fibre access point via shortest paths to k.
We can apply the same improvements as described in UB1: Edges that occur in
multiple shortest paths do not need to be added to ub multiple times. In addition,
we do not have to add the distances of the amplifier points that can be supplied by
the net cascade to ub. Finally, on the shortest paths, we have to add up multiple
edges to ub only once.
We calculate an example upper bound using the graph in Figure 7. First, we calcu-
late all the shortest paths from each amplifier point to its nearest fibre access point.
The shortest distance of 20 is between vertex 4 and the access point apf4 . We need to
connect all further amplifier points to vertex 4 via shortest paths. This results in an
upper bound of ub = d(4, apf4)+d(1, 4)+d(2, 4)+d(3, 4)−d(3, 4) = 20+2+2+4−2 =
26. Note that this upper bound is far smaller than the bound calculated with UB1,
which is ub = d(1, apf1)+d(2, apf2)+d(3, apf3)+d(4, apf4) = 21+21+21+20 = 83.
Pcst-fast (UB3): For this upper bound computation, we use the heuristic
pcst-fast [9]. Pcst-fast determines an upper bound for the RPCSTP.
To use pcst-fast we need to create a RPCSTP instance from the given LAN-Forcea
instance. For this we use the graph without net cascades Gf . The remaining
edges of the graph are then exclusively fibre edges with a capacity of ∞. Since
the network flow does not play a role in RPCSTP, we can disregard the demand
of the amplifier points and the capacity of the edges. We temporarily introduce
profits for all amplifier points which we set to ∞ to guarantee that pcst-fast
includes all amplifier points in the solution,. The resulting graph is then suitable
for the application of pcst-fast. Furthermore we define a root vertex r. As already
described for the calculation of UB1 and UB2, the amplifier points that can be
supplied by the net cascade do not have to contribute to the calculation of the
upper bound. We set the prize of all these amplifier points to 0 so that the cost of
the upper bound is not driven up by the connection of these amplifier points.

Depending on the input instance, the goodness of the upper bounds calculated by

4 LAN-FORCEA 17

apc 2: 70

1: 70

3: 70

4: 70 apf2

apf3

apf4

apf1

20

21

21

2 3

2

20

2

2 2

21

Figure 7: UB2: The red edges represent the net cascade consisting of coaxial cables with a
capacity of u = 64. The black edges represent fibre edges with their respective costs. In each
vertex v ∈ V \AP , we have recorded the vertex ID along with the respective vertex demand. We
use all fiber edges whose costs are annotated with a blue circle to calculate the upper bound.

the methods UB1, UB2 and UB3 varies. For this reason, we use all three methods
in succession and then select the smallest of the calculated upper bounds. This
upper bound ub serves as the radius, which indicates the maximum distance of the
breadth-first search from each amplifier point of the net cascade.
A vertex i ∈ I in Gsub can only be part of an optimal solution if the sum of its
distance to the nearest fibre access point and its distance to the nearest amplifier
point in Gsub is less than or equal to the upper bound ub. It is thus possible to
further reduce Gsub by deleting every vertex i for which this is not true.

4.1.2 Merging net cascades

By focusing on individual net cascades, it is possible that we lose optimal solutions.
Figure 8 shows an example. In the optimal case we supply the two amplifier points
1 and 3 by the fibre access point apf3 at a cost of 8. However, focusing on the two
net cascades individually, we calculate an upper bound of ub = 5 for each. The
fibre access point apf2 is not included in the respective subgraphs so we calculate
a total cost of 10. To avoid this, we describe below a method to form clusters
of coherent net cascades in order to focus on the clusters afterwards and not lose

4 LAN-FORCEA 18

optimal solutions.

First we calculate the upper bound ub for each net cascade using the method de-
scribed in Chapter 4.1.1. Then we determine the graph Gsub for every net cascade
using a breadth-first search starting from each amplifier point. If the subgraphs of
two net cascades Gsub1 and Gsub2 are not vertex-disjoint, it is possible that both net
cascades are supplied together in an optimal solution. For this reason we merge all
net cascades with overlapping subgraphs into a single net cascade. We create a new
access point, which is connected to all net cascade access points to be merged. The
connecting edges between the new net cascade access point and the old net cascade
access points have a capacity of ∞ and a cost of 0.
Afterwards it is possible to find a subgraph Gsub for this new net cascade using
the method described in Chapter 4.1.1. In the example from Figure 8, vertex 2 is
contained in both the subgraph of apc1 and the subgraph of apc2 . Since the two
subgraphs are not vertex disjoint, we merge the two net cascades into a common
net cascade.

apc1 apc2

apf3apf1

apf2

1: 70 3: 702: 0

5

2

4

2

5

Figure 8: The red edges represent the net cascade consisting of coaxial cables with a capacity
of u = 64. The black edges represent fibre edges with their respective costs. In the non-amplifier
points, the respective vertex ID can be seen together with the vertex edge.

4.2 Reduction techniques

In this chapter we describe a variety of reduction techniques to reduce a given
LAN-Forcea instance without losing the optimal solution. Most of the reduction

4 LAN-FORCEA 19

techniques described were originally developed for the reduction of the (R)PCSTP.
We describe how to adapt the respective reduction techniques in order to use them
for the LAN-Forcea problem as well. Furthermore, we explain our own reduction
technique Collapse net cascades.

4.2.1 Basic Reductions

The Basic Reductions for the PCSTP originally come from [10] and are an effective
method to reduce a given LAN-Forcea instance in linear time. From the original five
different reductions, we were able to reformulate three for the LAN-Forcea problem.
While the first two reduction rules focus on deleting intersection vertices, the third
rule attempts to delete unconnected components.

Proposition 1 (Adapted from NTD1 in [10]). A vertex v ∈ I of degree 1 and its
incident edge {u, v} can be removed.

A vertex v ∈ I must connect at least two terminals to be part of the optimal
solution, since it does not contribute to the profit itself. If v has vertex degree 1, it
is impossible for it to connect two terminals and thus cannot be part of the optimal
solution.

Proposition 2 (Adapted from NTD2 in [10]). A vertex v ∈ I of degree 2 and
its incident edges {u, v}, {v, w} can be substituted by a single edge {u, w} with
c{u,w} = c{u,v} + c{v,w} and u{u,w} = min(u{u,v} + u{v,w}). In case of two parallel
edges, the one of lowest cost is retained.

Each intersection must be connected to at least two terminals as explained earlier.
If an intersection has degree 2 and is part of the optimal solution, then both incident
edges must also be part of the optimal solution. Since only the edges increase costs,
we can replace all components by a single edge.

Proposition 3 (UDV in [10]). Each vertex v ∈ V that is not connected to the root
vertex r can be deleted along with all incident edges.

With this reduction rule it is possible to delete all components which do not belong
to the optimal solution.

4.2.2 Collapse net cascades

The goal of the reduction technique Collapse net cascade is to reduce the number
of amplifier points of the graph:

4 LAN-FORCEA 20

Proposition 4 (Collapse net cascades). Let G′ = (V ′, E ′) be a branch of a net
cascade such that ∑

v∈V ′ dv ≤ u holds. All vertices in V ′ are replaced by the new
vertex v′ with dv′ = ∑

v∈V ′ dv. All edges e = {j, k} ∈ E connected to a vertex k ∈ V ′

can be replaced by the edge e′ = {j, v′} with ce′ = ce and ue′ = ue.

We can reduce all vertices of a branch of a net cascade, which obviously can be
supplied by the net cascade for free, to a single vertex v′. It is not possible for us to
delete the entire branch, as we may need to be able to route traffic over amplifier
points to amplifier points in other branches.

4.2.3 Least Cost

Proposition 5 (Least Cost [11]). In the graph without net cascade Gf = (V ′, E ′),
an edge euv = {u, v} ∈ E ′ can be deleted if d(u, v) < cuv.

Since all edges in Gf have infinite capacity, it is sufficient to make a single connection
from an access point to an amplifier point to satisfy the demand of the amplifier
point. Thus, if there is a cheaper connection between vertices u and v, it can be
chosen. The reduction technique only works on the graph without net cascade Gf ,
as Figure 9 shows. In the example we cannot delete the edge e = {2, 3} even though
d(2, 3) = 3 < 5 = ce, because in this case we could not satisfy the demand of vertex
2.

apc

apf

1: 60 2: 70

3: 0

0 0

3

4

5

Figure 9: The red edges represent the net cascade consisting of coaxial cables with a capacity of
u = 64. The black edges represent fibre edges with their respective costs.

4.2.4 Dual Ascent

Dual Ascent (DA) is a complex reduction technique that reduces a given input
graph G = (V, E) using upper and lower bounds. DA originates from [12] and was
originally developed for the RPCSTP. We were able to reformulate the reduction
technique for the RSTP. Since the graph without net cascade Gf with artificial
root r is very similar to the RSTP, it is possible to apply DA to the LAN-Forcea

4 LAN-FORCEA 21

problem as well, although we need to adapt the reduction technique to the LAN-
Forcea problem. In this chapter, we first describe the DA for the RSTP. We then
explain the cases in which DA for the RSTP may delete optimal solutions of the
LAN-Forcea problem. We describe our found adaptations of DA for the LAN-Forcea
problem and prove their correctness.

Dual Ascent for RSTP

Preprocessing DA only works on directed graphs. For this reason, we transform
the given input instance G = (V, E) into a directed instance G′ = (V, A) by translat-
ing each edge eij = {i, j} ∈ E with a cost of ceij

into edges eij = (i, j) and eji = (j, i)
with respective costs of c(i,j) = c(j,i) = ceij

. For the algorithm we assume that the
terminals have only one incoming edge and no outgoing edge. For this we create a
new vertex vi for each terminal ti ∈ T . We connect every vertex vi to the respective
vertex ti via an incoming edge etivi

= (ti, vi) with a cost of 0. We set the profit of
vi to pti

and the profit of ti to 0. The resulting graph satisfies the conditions re-
quired for DA and can be easily transformed back after applying the reduction rules.

Finding a lower bound The goal of DA is to delete vertices and edges of the input
instance with the help of upper and lower bounds. We use the heuristic pcst-fast [9]
for finding an upper bound. We use the routine from Algorithm 1 to calculate the
general lower bound LB.

Algorithm 1: Dual ascent routine for lower bound
Data: RSTP instance G = (V, A), c, p, T, r
Result: Lower bound LB, reduced costs c̃

1 LB = 0
2 c̃ij = cij ∀(i, j) ∈ A
3 Ta = T \ r
4 while Ta ̸= ∅ do
5 t = chooseActiveTerminal(Ta)
6 W = W (t) \\found with BFS
7 ∆ = min(i,j)∈δ−(W)c̃ij

8 c̃ij = c̃ij −∆ ∀(i, j) ∈ δ−(W)
9 LB = LB + ∆

10 return LB, c̃

We show an example of how the algorithm works in the Appendix. We define some
basic terms beforehand to better understand the algorithm. In addition to the nor-
mal cost c(i,j) of an edge (i, j), we introduce reduced costs c̃(i,j) . The saturation

4 LAN-FORCEA 22

graph GS ⊆ G contains all edges from G whose reduced costs are zero. We describe
a path between two vertices i, j on a graph G by PH(i, j). By active terminals we
mean all terminals which we cannot reach from the root in the saturation graph
Ta = {t ∈ T \ r : ∄PGs(r, k). An active component W (t) is rooted at an active
terminal t. This is the set of vertices that can be reached from t in the saturation
graph (W (t) = {i ∈ V : ∃PGs(i, t)}).
Algorithm 1 is a greedy algorithm. At the beginning in lines 1 - 3 we initialise lower
bound, reduced costs and the set of active terminals. The reduced costs correspond
to the original costs of each edge.
The idea of the DA algorithm is to iteratively try to connect the terminals to the
root in the saturation graph. For this purpose, we select in line 5 an active terminal
in each iteration of the main loop. Leitner et al. propose in [12] an algorithm for
the choice of the active terminal. Due to time constraints, this choice is random in
our implementation.
Starting from this terminal we search for the active component W (t) by using a
breadth-first-search. The search considers only the reduced costs of all incoming
edges. If it encounters an edge (i, j) with c̃(i,j) > 0, the search is aborted and j is
added to W (t).
After finding the active component, ∆ stores the minimum reduced cost of all incom-
ing edges in W (t). Thus, ∆ is the minimum cost to extend the active component
W (t) by at least one vertex. We then reduce all the reduced costs of the edges
entering W (t) by ∆. Since ∆ corresponds to the costs added in this iteration, the
lower bound is increased by ∆ and the search moves to the next iteration.
We delete a terminal from the set of active terminals as soon as the breadth-first-
search encounters another active terminal or the root. In this case the active terminal
is connected to the rest of the solution.
In summary, the algorithm greedily tries to find the lowest cost to connect a ter-
minal t ∈ T \ r to other terminals or the root, respectively. Since the algorithm is
greedy, it is only a bound and not an optimal solution (see Figure 10 for a example).
For implementation details, the reader is referred to Pajor et al. in conjunction with
Ljubić et al. [13, 12].
Reduction rules For the RPCSTP there are originally three reduction rules [12].
While two of these reduction rules focus on the deletion of vertices and edges, the
third reduction rule can only be applied in the prize-collecting case. Since LAN-
Forcea is not prize-collecting, we only describe the other two reduction rules here.
The reduction rules compare a local lower bound L with a global upper bound U .
Since we are considering a minimisation problem, we can exclude a solution if L > U
holds. In the following, we denote by d̃(i, j) the cost of the shortest path from i ∈ V
to j ∈ V , using the reduced cost c̃ as the underlying cost.

Proposition 6 (Test 1 in [12]). An arc (i, j) ∈ A can be removed if LB + d̃(r, i) +
c̃ij + mint∈T\rd̃(j, t) > UB.

4 LAN-FORCEA 23

33 0

4

1 32

30 2

0 0

0

0

LB = 3 + 2 + 1 + 1 = 7

0

2

0

23

0

000

2

2

0
3

Figure 10: DA instance after applying Algorithm 1. The vertices were selected in ascending
order of their ID. The black numbers next to the edges represent the original costs. We show the
reduced costs in blue circles. The lower bound of 7 is smaller than the optimal cost of 9.

LB denotes the minimum cost of an optimal solution. If the edge (i, j) is part of the
optimal solution, it must connect the root to at least one other terminal, otherwise
it would not belong to the optimal solution. The starting point is the solution found
in the preprocessing step. Thus, the reduced costs c̃ can be considered as the path
costs.

Proposition 7 (Test 2 in [12]). A vertex i ∈ V \ r can be removed if LB + d̃(r, i) +
mint∈T\rd̃(i, t) > UB.

The reasoning is similar to Proposition 10. If i is a terminal, it must be connected
to the root, the path length to the next terminal mint∈T\rd̃(i, t) is equal to 0, since
it is itself the next terminal. If i is a non-terminal vertex, it must be connected to
both the root and at least one other terminal to be part of the optimal solution.

DA for LAN-Forcea

Preprocessing First, we compute the graph without net cascade Gf = (V, E ′) from
the input instance G = (V, E). We also append the artificial root r to Gf . We can
use the resulting instance as input to the DA algorithm for the RSTP described
above.
Incorrect edge deletion for LAN-Forcea When applying the reduction rules
described above to LAN-Forcea, it is possible to delete vertices and edges which

4 LAN-FORCEA 24

would actually be part of an optimal solution. The reason for this is that not all
amplifier points considered by DA necessarily have to be connected to the fibre
network, but some can also be supplied by the coax network. However, DA may
delete shortest paths between amplifier point vi and root, which are part of an
optimal solution for LAN-Forcea. This happens when there is an amplifier point
vj such that the common connection of vi and vj to the root is edge-disjoint with
the shortest path from vi to the root and the cost of connecting them together is
cheaper than connecting them individually. However, if it is possible to connect vj

to the coaxial network, the shortest path from vi to r would possibly be part of the
optimal solution. Figure 11 shows an example.

apf4: 0

1

0

0

4

00

0
20

16

0 LB = 23

3: 120

2: 32

1: 32

apc

1: 120

2: 32

3: 32

apc apf4: 0

0 1

1

5

20

16

0

0

apc

a) b)

Figure 11: a) LAN-Forcea instance to which we apply DA. b) LAN-Forcea instance after applying
the DA routine to calculate LB (for a derivation of LB = 23 and the reduced cost, see the
Appendix C). Let the upper bound (and optimal solution) of the Steiner problem be U = 23.
Applying Test 1 to the edge e = (3, apf) deletes it, since the condition LB + d̃(r, i) + c̃ij +
mint∈T \rd̃(j, t) > UB is satisfied with 23 + 0 + 4 + 0 > 23. However, since in the LAN-Forcea
problem vertices 1 and 2 can be supplied via the net cascade, this edge is included in the optimal
solution.

Solving the problem of incorrect edge deletion We found an additional pre-
processing step to prohibit the deletion of edges and vertices of the optimal solution.
For this we divide the amplifier points VAMP into the two disjoint groups VAMP1 and
VAMP2 such that VAMP1 ∩ VAMP2 = ∅ and VAMP1 ∪ VAMP2 = VAMP . All v ∈ VAMP1

have a demand greater than the coaxial cable capacity u and thus must be connected
to the fibre network. All other vertices whose demand is smaller than u form the set
VAMP2 . As a result we may be able to connect all vertices in VAMP2 to the coaxial
network. We temporarily set the demand of all amplifier points in VAMP2 to 0, thus
declaring them to be normal intersection vertices. All vertices in VAMP1 accordingly
represent the terminal vertices for the subsequent execution of the DA algorithm.
We use the resulting instance as input to DA. When calculating the upper bound,
we use pcst-fast on the unmodified instance to include the vertices from VAMP2 . The
larger VAMP1 and the smaller VAMP2 , the more effective DA’s reduction techniques
are. If VAMP = VAMP1 holds, then DA can be applied without modification. After

4 LAN-FORCEA 25

applying the DA routine for calculating LB and the reduced costs, we set the profits
of all vertices in VAMP2 to their original value and continue with the reduction tests.
Proof In the following, we prove that DA does not delete any vertices and edges
required for an optimal solution using our additional preprocessing step. We distin-
guish between three cases and prove that in all three cases we do not delete edges
and vertices of an optimal solution.

• Case 1: VAMP = VAMP1 : All amplifier points v have a demand of dv > u. We
cannot connect a single one of them to the net cascade because the capacity
of the net cascade is not sufficient to satisfy even one of them. Since all
customers must thus be connected to the fibre network in the best possible
way, the RSTP problem arises and we can apply DA.

• Case 2: VAMP = VAMP2 : All customers have a demand of dv ≤ u. Thus,
no single customer has to be connected to the fibre network. It is unclear
which customers should be connected to fibre and which customers should be
connected to coaxial. Since there are no more amplifier points in the modified
instance, the lower bound also corresponds to L = 0. The reduced cost of
each edge is equal to the original cost. The upper bound U corresponds to the
maximum cost to connect all customers to fibre. We thus only delete edges if
there is certainly a cheaper way to connect each amplifier point to fibre. (This
case corresponds to the deletion of vertices, which we already perform when
focusing on net cascades in Chapter 4.1).

• Case 3: VAMP1 ̸= ∅ and VAMP2 ̸= ∅. U corresponds to the maximum cost to
connect all amplifier points to fibre. LB corresponds to the minimum cost to
connect all amplifier points from VAMP1 to fibre. U − LB = B corresponds
to the maximum cost to connect all vertices from VAMP2 to the fibre network
if all amplifier points from VAMP1 are already connected. B is therefore an
upper bound for the connection of VAMP2 . Now, in the optimal solution, if we
connect the set N ⊆ VAMP2 to the net cascade and G ⊆ VAMP2 is served by
fibre, we only need to connect the customers from G to r. Since B is an upper
bound for all vertices from VAMP2 , all paths of the connection for G are also
included. Since any reduced edge costs due to clients from VAMP1 only further
reduce the cost of the reduction test, we cannot delete edges that would be
part of an optimal solution.

Since the optimal solution is preserved in all three cases, we can use the reduction
technique.

4 LAN-FORCEA 26

4.2.5 Voronoi diagram tests

The Voronoi diagram tests use geometric properties of the input graph to transform
it into a smaller graph. As for DA, we calculate a global upper bound U and
local lower bounds L. Then U is compared to L. If for an explicit instance L > U
holds, the instance does not represent an optimal solution and it is possible to delete
vertices or edges. The Voronoi reduction techniques were originally described for
the PCSTP [10]. In this paper we first describe our adapted version for the STP.
Since, as for DA, optimal solutions could possibly be deleted by applying these
reduction techniques, we use the adjustment already described for DA to guarantee
the preservation of all optimal solutions. We prove that this adjustment does not
delete any optimal solutions in the Voronoi diagram tests either.

Voronoi diagram tests for STP

Preprocessing A Voronoi diagram of a graph G = (V, E) is a division of all vertices
in V into vertex-disjoint partitions, so that for each terminal t ∈ T there is a separate
partition. The individual vertices are each assigned to the terminal t closest to it.
Formally, a Voronoi diagram is a partition {N(t) | t ∈ T} of V such that:

v ∈ N(t)⇒ d(v, t) < d(v, t′) ∀t′ ∈ T.

In the case of equality of the distances d(v, t) and d(v, t′) we add v randomly to
partition N(t) or N(t′). Each one of these partitions is also called Voronoi region,
we call the respective terminals ti base of the partition (ti = base(vi)). The radius
radius(ti) of a partition N(ti) is defined as the minimum cost to leave the partition
N(ti) from the terminal ti. The sum over all radii ∑

t∈T radius(t) is a lower bound
of the optimal solution. It is only a lower bound because we cannot guarantee that
we can connect every terminal ti to the solution via the cheapest cost radius(ti).
Figure 12 shows an exemplary division of a graph into its partitions in addition to
the respective radii.
Reduction rules In the following, we describe two reduction techniques that use
the previously calculated Voronoi diagrams to delete both vertices and edges of the
input graph. For the application of the reduction rules it is necessary to calculate
an upper bound U . We use the heuristic pcst-fast again for this purpose. Without
loss of generality we sort the terminals in ascending order according to the value of
their radius. Furthermore, d(vi, vj) denotes the distance between vertices vi and vj

avoiding intermediate terminals. With vi,1 and vi,2 we denote the terminals with the
shortest and second shortest distance to v respectively.

Proposition 8 (Test 1 [10]). Let vi ∈ V \T . If a minimum Steiner Tree S = (VS, ES)
with vi ∈ VS exists, then d(vi, vi,1) + d(vi, vi,2) + ∑s−2

q=1 radius(tq) is a lower bound on
the cost of S.

4 LAN-FORCEA 27

t1

t2

t3

13

4

4
1

7

2

1 2

3

radius(t3) = 5

radius(t2) = 3radius(t1) = 3

t2

t3

Figure 12: A graph with three terminals divided into its Voronoi diagram. Each terminal has its
own Voronoi region. Each vertex belongs to exactly one Voronoi region.

With the help of this reduction technique it is possible to delete single vertices,
which certainly cannot be part of an optimal solution. A vertex vi is only part of
an optimal solution if it is connected to at least two terminals. Since we are looking
for a lower bound, we can assume that vi lies on a path that connects the two
terminals with the highest connection cost and therefore with the biggest radius.
We can calculate a lower bound for the entire instance from the sum over all radii.
Since we assume that vi connects the two most expensive terminals, we only need
to sum up the radii of all terminals except the two most expensive ones. Then we
have to add up the costs of the paths from vi to the next two terminals. If the
resulting lower bound L is greater than the previously calculated upper bound U ,
vi cannot be part of an optimal solution and can therefore be deleted.

Proposition 9 (Test 2 [10]). Let {vi, vj} ∈ E. If there is a minimum Steiner tree
S = (VS, ES) such that {vi, vj} ∈ ES , then L defined by

L = c{vi,vj} + d(vi, vi,1) + d(vj, vj,1) +
∑s−2

q=1
radius(tq)

if base(vi) ̸= base(vj) and

L = c{vi,vj} + min{d(vi, vi,1) + d(vj, vj,2), d(vi, vi,2) + d(vj, vj,1)}+

4 LAN-FORCEA 28

∑s−2
q=1

radius(tq)

otherwise, is a lower bound on the cost of S.

The goal of test 2 is to delete edges {vi, vj} which cannot be part of the optimal
solution. Both vi and vj must be connected to at least one terminal to be part of
the optimal solution. We make a distinction between two cases: If both vertices of
the edge are in different Voronoi regions, the shortest path to the nearest terminal
is summed to L for both vertices. However, if base(vi) = base(vj) = ti, the nearest
terminal for both vertices is ti. Since the edge must connect two different terminals,
the shortest path to another terminal in another Voronoi region is searched. In both
cases, we estimate the cost of the remaining terminals using the radii.

Voronoi diagram tests for LAN-Forcea If we apply Voronoi reduction tech-
niques to the LAN-Forcea problem without further adaptation, we may delete ver-
tices and edges necessary for the optimal solution. As already described for DA, this
problem occurs when we consider individual amplifier points in the Voronoi calcula-
tion for fibre cables but subsequently connect them to the net cascade. We use the
same preprocessing step described for DA by splitting the amplifier points into the
sets AMP1 and AMP2 and then computing the lower bound for AMP1 only. The
proof can be done analogously.

4.3 Optimisation

After splitting the input instance into individual subgraphs and reducing these sub-
graphs, we search for an optimal solution on each reduced subgraph. To solve the
NP-complete LAN-Forcea problem we use Integer Linear Programming (ILP) for-
mulations. An ILP attempts to optimise a given linear function cT x by assigning
x ∈ Rn the optimal values. The optimisation is subject to various constraints, which
are specified by inequalities. Moreover, each xi, (i = 1, . . . , n) must be an integer. To
solve the ILPs, we use commercial software that uses a branch-and-bound method
to find an optimal solution [14].
We use two ILPs which are originally formulated in [4] for the PC-LAN problem. In
the following, we explain the ILPs Single Commodity Flow (SCF) model and cut-set
(CUT) model along with the adaptations we devised to find an optimal solution to
the LAN-Forcea problem. While the SCF model models a network flow from the root
to the amplifier points, the CUT model works with exponentially many constraints
that aim at graph connectivity. Our adaptations take the following properties of
the LAN-Forcea problem into account, which are not part of the PC-LAN problem:

• Instead of a single root, there are multiple access points that can serve the
network.

4 LAN-FORCEA 29

• LAN-Forcea is not prize-collecting, we must include all amplifier points in the
solution.

• Each edge has exactly one capacity and one cost. There are not multiple
modules on each edge.

• There is no overbuilding risk.

• On a path from access point to amplifier point we are not allowed to use a
fibre cable after using a coaxial cable.

4.3.1 SCF model

Before applying the ILP, we create an artificial root r. Since the SCF model works
on directed graphs G′ = (V, A) we transform all undirected edges e = {i, j} ∈ E of
the input graph G = (V, E) into the directed edges −→a = (i, j) and ←−a = (j, i). The
costs and capacities of the new edges c←−a , c−→a , u←−a , u−→a correspond respectively to the
costs and capacities of the old edges ce and ue. We use the binary variables yv for
the vertices and xa for the edges to decide which vertices and edges are included in
the solution. We introduce the continuous flow variables fij for each edge (i, j) ∈ A.
These flow variables represent the bandwidth that we direct from the root to the
amplifier points via the edge (i, j). We distinguish the direct edges a ∈ A into fibre
edges af and coaxial edges ac. We define the SCF model as follows:

min
∑
a∈A

caxa (1)

subject to

∑
a∈δ+(v)

fa −
∑

a∈δ−(v)
fa =


−dvyv, if v ∈ K∑

k∈K dk, if v = r

0, otherwise
∀v ∈ V (2)

∑
af∈δ+(v)

faf
−

∑
af∈δ−(v)

faf
≤ 0 ∀v ∈ V \ {r} (3)

0 ≤ fa ≤ uaxa ∀a ∈ A (4)
xa ≤ fa ∀a ∈ A (5)
0 ≤ (

∑
k∈K

dk)xa − fa ∀a ∈ A (6)

yk = 1 ∀k ∈ K (7)
fa ∈ R+ ∀a ∈ A (8)
xa ∈ {0, 1} ∀a ∈ A (9)
yv ∈ {0, 1} ∀v ∈ V (10)

4 LAN-FORCEA 30

The objective in (1) minimises the cost of the solution, which is the sum of the edge
costs of all edges in the solution. The constraints in (2) are called flow preservation
constraints and come from [4]. The goal of these constraints is to provide the
clients with sufficient flow. Thus, each amplifier point k in the solution consumes its
demand dk of flow, the root r emits enough flow that we can supply each customer,
and each vertex in the street intersections I forwards all the flow routed through
it. We developed the constraints in (3) to prohibit the use of fiber optic cables
after coax cables. These constraints make it impossible to forward flow arriving
via coaxial cables via fibre optic cables, as the outgoing flow through fibre optic
cables must not be greater than the incoming flow through fibre optic cables. While
the constraints in (4) guarantee that the flow at each edge is positive but does not
exceed the capacity of the edge, the constraints in (5) and (6) say that an edge is only
included in the solution if we pass a positive flow over it. Finally, the constraints
in (7) ensure that every amplifier point is included in the solution.

4.3.2 CUT model

Unlike the SCF model, the CUT model is not based on explicitly modelling network
flow in the graph. Instead, we insert exponentially many constraints to obtain a
connected graph. These constraints are dynamically separated in a cutting plane
approach, since inserting exponentially many constraints is inefficient when creating
the ILP. In addition to the constraints necessary for finding an optimal solution,
we explain a variety of other constraints that reduce the search space and thus we
can find an optimal solution faster. In the following, we explain the necessary and
additional constraints of the branch-and-cut approach. Our CUT model extends
the CUT model introduced in [4] for the PC-LAN problem. We have adapted the
constraints to the LAN-Forcea problem. Furthermore, we have developed constraints
so that routing the data stream from coaxial cable to fibre optic cable is prohibited.

4 LAN-FORCEA 31

min
∑
a∈A

caxa (11)

subject to

∑
a∈δ−(S)

uaxa ≥
∑
k∈S

dk ∀S ⊂ V s.t. S ∩K ̸= ∅ and r /∈ S (12)

∑
af∈δ+(v)

xaf
− 1 ≥ −M(1− δv) ∀v ∈ V \ {r} (13)

∑
af∈δ+(v)

xaf
≤M(δv) ∀v ∈ V \ {r} (14)

∑
af∈δ−(v)

xaf
≥ δv ∀v ∈ V \ {r} (15)

yk = 1 ∀k ∈ K (16)
xa ∈ {0, 1} ∀a ∈ A (17)
yk ∈ {0, 1} ∀k ∈ K (18)
δv ∈ {0, 1} ∀v ∈ V \ {r} (19)

A prerequisite for the successful application of the CUT model is an explicit root.
For this reason, we create the artificial root r. Furthermore, we transform the
undirected input graph into a directed graph, as already described for the SCF
model.
The cut-set inequalities (12) are exponentially many constraints that are dynami-
cally separated in the context of a cutting plane approach. These constraints state
that every subset of vertices S, containing at least one customer and not containing
r, must have enough incoming capacity to route the total demand requested
inside the set. As a result, the solution is connected, since we can reach any
customer-containing vertex set S via incoming edges from the root. We developed
the constraints in (13) – (15) to prohibit the use of fiber optic cables after the use
of coax cables. We can do this by having at least one incoming fibre edge at each
vertex with an outgoing fibre edge in the solution (see Figure 13). For this purpose,
we define for each vertex v ∈ V \ r the binary auxiliary variable δv. With the help
of the inequalities in (13) and in (14), we set δv to 1 if at least one outgoing fibre
edge is used at vertex v. If we do not use any outgoing fibre edge we set δv = 0. M
corresponds to a sufficiently large number (e.g. max({δ+(v)|v ∈ V })). The number
of fibre edges entering v must be at least as large as δv. We express this with the
constraints in (15).
These constraints already lead to an optimal solution. By adding the additional
constraints described below, it is possible to speed up the process.

4 LAN-FORCEA 32

rr r r

b)a) c) d)

Figure 13: Black edges: coaxial cable, red edges: fibre cable. Apart from a), all structures are
permitted. Traffic reaching a vertex over coax cable must not be routed further via fibre cable.

Further inequalities:∑
a∈δ−(S)

min(ua,
∑
k∈S

dk)xa ≥
∑
k∈S

dk ∀S ⊆ V s.t. S ∩K ̸= ∅ and r /∈ S (20)

∑
a∈δ−(S)

xa ≥ 1 ∀S ⊆ V s.t. S ∩K ̸= ∅ and r /∈ S (21)

∑
(l,i)∈A,l ̸=j

xli ≥ xij ∀(i, j) ∈ A, i /∈ K, i ̸= r (22)

∑
(j,l)∈A,l ̸=i

xjl ≥ xij ∀(i, j) ∈ A, i /∈ K, j ̸= r (23)

∑
a∈δ−(i)

xa ≥ 1 ∀i ∈ K (24)

xij + xji ≤ yi ∀(i, j) ∈ A (25)

We can tighten the already known cut-set inequalities. For this we check for each
edge entering the cut S whether the total flow ∑

k∈S dk required in the cut is smaller
than the respective edge capacity. In this case, we can choose the sum over the
demands as the upper bound. The connectivity cuts constraints in (21) express
that each customer-containing subset of vertices without the root r must have at
least one incoming edge. Since these are again exponentially many constraints,
they are also dynamically separated as part of the cutting plane approach. Each
non-customer vertex simply forwards the traffic and can therefore have neither only
incoming nor only outgoing edges. This is expressed by the constraints in (22)
and in (23). We can reduce the exponentially many connectivity cut constraints to

4 LAN-FORCEA 33

linearly many constraints by restricting S to single customer vertices S = {k}. Since
every customer vertex must be included in the solution, we can additionally use the
constraints in (24) initially when creating the ILP. Finally, the constraints in (25)
make it impossible to choose both directed edges between two vertices i and j.
Apart from the exponentially many constraints from (12), (20) and (21), we use the
inequalities described above initially for the ILP. While finding the optimal solution,
we perform a cutting plane approach at each vertex of the branch-and-bound tree.
We describe the separation of the solution and the insertion of the violated cut-set
and connectivity-cut inequalities below.

Separation
We perform the separation phase at each vertex of the branch-and-bound tree in
polynomial time. We try to detect unconnected parts of the graph and insert ad-
ditional constraints to guarantee graph connectivity. For this we use the max-flow-
min-cut [15] to detect how much flow can be directed from the root to the amplifier
points in the solution. If not all amplifier points are sufficiently supplied, this cor-
responds to a violated constraint. In detail, the separation phase runs as follows.
Given the fractional solution (x∗, y∗) of the ILP relaxation. We create the di-
rected support graph G′ = (V ′, A′), where V ′ = V ∩ {t} and A′ = A1 ∩ A2 with
A1 = {a ∈ A|x∗a > 0} and A2 = {(k, t)|k ∈ K}. We set the capacities of all edges
a ∈ A1 to ua and the capacities of edges a = (k, t) ∈ A2 to dk. Subsequently,
we can use the max-flow-min-cut from the root r to the new sink vertex t. If the
maximum flow in G′ is less than the total required demand ∑

k∈K dky∗k, not enough
traffic reaches the customer vertices. This is a violated cut-set constraint. The total
capacity of the vertex sets separated by the cut must be at least as large as the
demand of the insufficiently served vertex set.
In addition to the cut-set inequalities, we can also separate the connectivity-
cut inequalities. From the given fractional solution (x∗, y∗) we create the graph
G′ = (V, A), where the capacity of each edge corresponds to ua = x∗a. Then, we can
invoke the max-flow-min-cut problem on G′ between the root r and each client ver-
tex k ∈ K to find violated connectivity-cut constraints. In each branch-and-bound
vertex we insert the missing inequalities and continue solving the ILP.

4.4 Heuristic

Finding an optimal solution can take a long time on large graphs. For this reason
we developed a heuristic that approximates an optimal solution. Our heuristic has
variations in finding subgraphs, reducing them and finding an optimal solution. In
the following we describe the process for an input instance G = (V, E).

4 LAN-FORCEA 34

4.4.1 Focus on net cascades

Analogous to the process of finding an optimal solution, we can combine neigh-
bouring net cascades and merge them into one large net cascade. Focusing on the
respective net cascade afterwards, we calculate the graph Gsub = (V ′, e′) using the
three upper bounds UB1−UB3 as described in Chapter 4.1. For finding an optimal
solution, we further reduced Gsub by deleting all vertices i ∈ I whose sum of shortest
distances to the next access point and to the next amplifier point was less than or
equal to the smallest upper bound ub = min(UB1, UB2, UB3). In the heuristic, we
instead use the convex hull around all access points and amplifier points (including
an ε-distance) in Gsub to further reduce Gsub. Figure 14 shows an example. Since

Figure 14: We calculate the convex hull around the fibre access points (yellow), the net cascade
access points (blue) and the amplifier points (red). All vertices and edges lying in the convex hull
form the subgraph Gsub.

the optimal solution is usually completely within the convex hull, this method is a
good approximation. However, it is also conceivable that the shortest path between
access point and amplifier points lies outside the convex hull.

4.4.2 Reduction techniques

We use all the reduction techniques described in Chapter 4.2 to reduce the input
instance. For DA and the Voronoi reduction techniques, we omit the adaptation we

4 LAN-FORCEA 35

found to the LAN-Forcea problem. Instead, we use the original reduction techniques
for Steiner trees on the graph without net cascade Gf . It is possible that we lose
optimal solutions by doing this, but since the technique described is a heuristic, we
can tolerate this.

4.4.3 Finding a solution

After the graph Gsub has been further reduced by the reduction techniques, the
next step is to find a solution that is as close as possible to the optimal solution.
Our strategy for finding an optimal solution is inspired by the strategy found by
Ljubić et al. for the PC-LAN problem from [4]. We use the CUT model described
in Chapter 4.3.2 to find an initial solution (x∗, y∗). For this, we solve the ILP and
add violated inequalities to the LP in the first ten separation phases. We continue
to solve the ILP until the eleventh branch-and-bound vertex. We use the fractional
solution (x∗, y∗) as input to the following network construction phase. The goal
of the network construction phase is to find the approximate solution to the
LAN-Forcea problem. We can represent this solution as a vector z = [z1, . . . , z|E|],
where ze = 1 if e is included in the solution and ze = 0 otherwise. The fractional
input solution (x∗, y∗) provides the starting point for this by setting ze to 1 for all
edges e = (i, j) if either xij = 1 or xji = 1.
We try to iteratively connect the individual customer vertices k ∈ K with demand
dk via shortest paths to the root. For the shortest paths, the underlying costs are
not the edge costs themselves, but the additional costs we incurred if we route the
demand dk via the edge e on which we already forward ge traffic units. We calculate
this cost for every edge as follows:

we(ge, ze, dk) =


ce if ge + dk < ue and ze = 0
0 if ge + dk < ue and ze = 1
∞ if ge + dk ≥ ue

By calculating the additional costs incurred, it is possible to efficiently connect
customers to the root via the cheapest possible routes. Algorithm 2 shows the
detailed procedure for finding a solution.
We initialise the algorithm in lines 1 − 3. At the beginning, only the edges e of
the fractional solution x∗ are included in the solution by setting ze = 1. We create
a demand vector b ∈ R|V |≥0 , where bv corresponds to the demand of the respective
vertex v ∈ V . Since no traffic is initially routed through the network, the initial
undirected flow is ge = 0 for each edge. In line 4 and 5, we start the main loop by
selecting a random vertex v with positive demand. We search for a shortest path
from the root r to the vertex v, choosing the extended cost w as the underlying
cost. For the LAN-Forcea problem, since traffic routed through fibre is forbidden

4 LAN-FORCEA 36

Algorithm 2: Network Construction
Data: Customers K, minimum required capacities g∗, input Graph

G = (V, E)
Result: Network design z

1 vertex demand b: bk ← dk ∀k ∈ K and bv = 0 ∀v ∈ V \K;
2 Network design z: ze ← 1 ∀e = {i, j} ∈ E if xij + xji > 0, ze ← 0 otherwise;
3 Undirected flow ge ← 0 ∀e ∈ E;
4 while ∃v ∈ V : bv > 0 do
5 pick random vertex v ∈ V : bv > 0;
6 b = bv;
7 bv = 0;
8 define edge weight w ← we(ge, ze, b)∀e ∈ E;
9 length, path← shortest_modified_path(G, root = r, target =

v, weight = w);
10 if there is no shortest path then
11 return failed
12 for e = (i, j) ∈ path do
13 ū← ue − ge;
14 b̄← min(b, ū);
15 ge ← ge + b̄;
16 if ge > 0 then
17 ze ← 1
18 if b > ū then
19 bi ← bi + b + ū;
20 bj ← bj + ū;
21 break

22 return z

5 LAN-FORCEH 37

to be forwarded over coax, we cannot use Dijkstra’s algorithm for shortest paths.
Instead, we developed a modified shortest path search, finding only paths where
no coax paths follow fibre paths. For a more detailed description of our modified
shortest path algorithm, we refer to the Appendix D. We abort the search for a
solution in line 10 − 11 if there is no such shortest path, as we cannot connect the
vertex to the root in this case.
If we find a shortest path, we calculate in lines 12−15 how much traffic we can route
over the respective edges in addition to ge. We include each edge over which we route
traffic in the solution. If we cannot route all the required traffic bv over an edge of
the shortest path, we increase the demands of the vertices of the corresponding edge.
After we have connected all vertices k ∈ K via shortest paths with r, the algorithm
terminates and returns the solution vector z, which induces the final solution.

5 LAN-Forceh

In this section, we describe finding an optimal solution to the NP-complete LAN-
Forceh problem. Given an input graph G = (V, E). The graph contains the amplifier
points served by the LAN-Forcea problem and the customers to be connected to each
amplifier point. Since G contains the environment of individual net cascades, it is
not possible to split G into smaller subgraphs as described for the LAN-Forcea prob-
lem. Therefore, in the following we directly start describing reduction techniques to
reduce G to a smaller graph without losing the optimal solution.

5.1 Reduction techniques

To reduce a given instance of the LAN-Forceh problem we again use the least cost
tests and the basic reduction techniques described in Chapter 4.2. Since LAN-Forceh
is prize-collecting we can add another reduction technique.

Proposition 10 (TD1 adapted from [10]). Let k ∈ K be a customer of degree 1
and set e = δ(k). If e ∈ Ef and pkf

≤ ce or e ∈ Ec and pkc ≤ ce, then k and e can
be discarded.

It is only worthwhile to include a customer k in the solution if its profit exceeds the
cost of the connection. The profit depends on the type of connection. If the incoming
edge e is a fiber optic edge, we compare the profit of a fiber optic connection pkf

with the edge cost ce. Otherwise, we compare the profit of a coax connection pkc

with the edge cost.

5 LAN-FORCEH 38

5.2 Optimisation

After applying the reduction techniques, we try to find an optimal solution to the
LAN-Forceh problem. We again use ILPs for this purpose. The LAN-Forceh problem
differs from the LAN-Forcea problem in the following properties:

• LAN-Forceh is prize-collecting, which means we do not necessarily have to
include all customers in the optimal solution.

• Customers give different profits depending on the connection.

• Each customer may be connected to either fiber optic or coax. It is not possible
for a customer to be connected by both types of cable.

Therefore, in order for the ILPs to find correct optimal solutions, we modify the
ILPs described in Chapter 4.3 as follows.

5.2.1 SCF model

The modified SCF model works very similarly to the SCF model for the LAN-
Forcea problem. We replace the objective(11) min ∑

a∈A caxa with the new objective
max ∑

k∈K

∑
af∈δ−(k) pkf

xaf
+ ∑

k∈K

∑
ac∈δ−(k) pkcxac −

∑
a∈A caxa. Since LAN-Forceh

is prize-collecting, it is no longer possible to minimise only over the edge costs.
Instead, the total profit is optimised by maximising over the profit associated with
the customers, reduced by the necessary edge costs. The customers give a profit,
which depends on their respective connection. If the edge connected to customer k
is a fiber optic edge af , the customer pays profit pkf

, otherwise pkc .
Furthermore, we replace the constraints (7) yk = 1 ∀k ∈ K with the new constraints∑

a∈δ−(k) xa ≤ 1 ∀k ∈ K. As a result, not every customer needs to be part of the
solution. However, if a customer is included in the solution, it may only be connected
by a single edge.
We adopt all other constraints of the SCF model for the LAN-Forcea problem. This
results in a new ILP which is suitable for finding an optimal solution for the LAN-
Forceh Problem.

5.2.2 Cut Model

We can also use the CUT model from Chapter 4.3.2 to solve the LAN-Forceh prob-
lem. For this we have to adapt the CUT model analogously to the changes for
the SCF model. Thus, we replace one more time the objective min ∑

a∈A caxa by
the new objective max ∑

k∈K

∑
af∈δ−(k) pkf

xaf
+ ∑

k∈K

∑
ac∈δ−(k) pkcxac −

∑
a∈A caxa.

Furthermore we replace the constraints yk = 1 ∀k ∈ K by the new constraints

5 LAN-FORCEH 39

∑
a∈δ−(k) xa ≤ 1 ∀k ∈ K. Since the LAN-Forceh problem is prize-collecting not

all client vertices have to be part of the solution. For this reason, we modify
the constraints (24) so that a customer must have an incoming edge only if it is
also in the solution (∑

a∈δ−(i) xa ≥ yi ∀i ∈ K). Furthermore, we need to change
the initial connectivity-cut constraints in (21) from ∑

a∈δ−(i) xa ≥ 1 ∀i ∈ K to∑
a∈δ−(i) xa ≥ yi ∀i ∈ K to keep the problem prize-collecting. We adopt all other

necessary and additional constraints of the CUT model for the LAN-Forcea problem
without modification for the LAN-Forceh problem.

5.3 Heuristic

The heuristic described in this chapter finds an approximate solution to the LAN-
Forceh problem. We directly start reducing the graph. For these reductions, we
use all Basic Reductions and the Least Cost tests just as we would for computing
an exact solution. The resulting reduced graph serves as input for the subsequent
finding of an approximate solution. The strategy is very similar to finding an ap-
proximate solution for the LAN-Forcea problem, but we have to adapt some details.
While for the LAN-Forcea problem we include every customer in the solution, for
the LAN-Forceh problem we try to only add the customers with greater profit as
connection costs. For this reason, instead of choosing an arbitrary vertex from all
customer vertices in the main loop in each iteration, we make a choice beforehand
which customers we want to connect to our solution in the first place. We have
developed two approaches for this, which we explain in more detail below.
Approach 1: Using the fractional solution After the ILP has gone through
10 separation phases we get the fractional solution (x∗, y∗). As described for the
heuristics for the LAN-Forcea problem, we use x∗ as the initial solution vector z.
We use the vertex vector y∗ as the selection vector for the clients to be connected.
Since we found in experiments that there are far more customers in y∗ than in the
optimal solution, we try to connect only a subset of the customers in y∗ to the
solution. For this, we sort the vertices in y∗ in descending order of their fractional
value and add only the customers with a fractional value greater than a threshold
p0 to the customer vector y′. We try different values for the threshold p0. This
strategy is similar to the one used in [4]. Unfortunately, when collecting our results,
we found that the ILP only assigns integer values of 0 and 1 to vertices in y∗,
making such a selection of client vertices impossible. For this reason, we developed
another strategy that enables selection of customers. We use this second approach
in the calculation of all our results in Chapter 6.2.

Approach 2: Using Distances In this approach, we use the solution vector
(x∗, y∗) resulting from the separation phase one more time. Instead of sorting the
vertices in y∗ by their fractional value, we calculate the shortest path from the root

6 RESULTS 40

vertex r to each of the vertices y ∈ y∗. We then sort the vertices in ascending
order by their distance from r. We choose a threshold p0 with 0 ≤ p0 ≤ 1, which
states what percentage of all customers should be connected to the solution. With
this threshold and the sorted list of vertices y∗ it is now possible to build the list
y′ of customers to be connected by choosing the first p0 percent of customers from y∗.

We proceed as described in Algorithm 2 to connect each customer v ∈ y′ via shortest
paths to the root. Unlike in the LAN-Forcea problem, the customers give their profit
depending on the particular connection. Let vertex v be a customer for which a
coaxial connection via edge {u, v} is possible. A connection over coax would cost
the connection costs cec in addition to the profit loss of a connection over fibre. For
this reason, after calculating the additional costs w, we must increase the additional
cost of the coax edge e by this profit loss (we = we + (pf − pc)). With this modified
additional cost, it is now possible to connect the vertex to the root vertex via shortest
paths as described in the heuristic for LAN-Forcea. It may happen that a customer
is connected to two cables due to the fractional x∗ values. For this reason, after
connecting all customers from y′ to the root, we perform a shortest path search
from the root to all customers over fibre. For all customers with two connections,
we delete the incident coaxial edge if there is a shortest path, otherwise we delete
the incident fibre edge.
With these three changes, we have modified the heuristic to a prize-collecting variant,
where clients give a profit depending on their connection and are only connected via
coax or fiber optic cable. We thus satisfy the properties of the LAN-Forceh problem
that are not part of the LAN-Forcea problem and can thus find an approximate
solution.

6 Results

In this chapter we discuss the performance of the approaches described in Chapter 4
and 5. We compute exact and approximate solutions for the LAN-Forcea and LAN-
Forceh problems on various datasets provided by Vodafone GmbH. We implemented
all techniques using Python version 3.8.3. To compute the optimal solution of our
different ILPs, we used Gurobi version 9.0.2. To easily run our application in parallel
for different instances, we use the workflow tool Snakemake version 6.4.0.
We conducted all experiments on the HPC cluster of the Heinrich-Heine University
Düsseldorf. We used the Intel Xeon Gold 6136 CPU architecture with 3.00 GHz
and 192 GB RAM. We used one core and a maximum of 100GB memory in our
experiments. The code of the implementation and the associated data can be found
on GitLab.

https://gitlab.cs.uni-duesseldorf.de/albi/albi-students/ma-adrian-prinz

6 RESULTS 41

6.1 LAN-Forcea

We divide the description of our results for the LAN-Forcea problem into two steps.
In the first step, we focus on individual net cascades as described in Chapter 4.1.1
without considering whether a fusion of net cascades would make sense. Since this
can lead to non-optimal solutions, we merge in the second step possibly related net
cascades as explained in Chapter 4.1.2. We describe the success and runtime of
our techniques and compare the exact approach with the approximate results of the
heuristic.

6.1.1 Data

Vodafone GmbH provided us with different real-world graphs as input instances.
The individual instances represent the street network, together with customers
and all serving net cascades and access points of parts of Germany. Since no edge
capacities are given in the instances, we assign a sufficiently large capacity to each
possible fibre edge (uf = ∑

k∈K dk ∀k ∈ K). We assign a cost of 0 and a fixed
capacity of 64 to each coax edge. We calculated results for the instances 01051,
landkreis_mettmann, landkreis_muenchen, landkreis_nuernberg, stadt_dresden,
and stadt_muenchen. Since the conclusions drawn from the results are similar for
all instances examined we focus on instance 01051 in the following description of
the results. This instance is a representation of the district of Heide, it consists of
262143 vertices and 348280 edges. It is the instance with the fewest net cascades,
that is why the description of the results is clearer using this instance. We show
the results of the other instances in the extended Appendix on GitLab.

6.1.2 Performance on single net cascades

In order to be able to better assess the instances and follow the results, we show in
Table 1 the size of the respective instances in the course of the solution process of
the exact approach.

https://gitlab.cs.uni-duesseldorf.de/albi/albi-students/ma-adrian-prinz/-/tree/main/report/extended_appendix

6 RESULTS 42

AP Focused Reduced Solved

219878 11476 2971 115
13970 4935 115

234333 504 81 24
580 128 23

204993 14814 2084 74
16671 4047 72

48477 11098 2384 104
13065 4047 104

51824 5120 610 29
5632 1055 28

156480 16106 4969 171
20039 8169 175

10230 54949 18135 394
69114 29501 397

16611 10535 2922 338
12851 4803 337

20464 12 6 11
11 5 10

148815 25135 4757 128
29223 8059 129

106879 10723 2076 161
12678 3514 163

1732 14 6 13
13 5 12

138683 21915 3435 90
24991 5879 89

54696 25840 5150 227
30238 8687 229

Table 1: Graph sizes after applying the different steps of the solution process of the exact solution.
In each cell we show the number of vertices at the top and the number of edges at the bottom.

Focus on net cascades First we calculate an upper bound for each net cascade
as described in Chapter 4.1 using the three algorithms UB1, UB2 and UB3. We
show the different upper bounds of the algorithms together with the running time
of the calculation in Table 2.

6 RESULTS 43

AP UB1 UB2 UB3

219878 1025827 1054833 770540
0.1209 0.1346 7.8950

234333 76694 76694 76694
0.0044 2.9087 8.2588

204993 220104 256272 228116
0.0195 0.0376 7.9066

48477 509214 541650 408716
0.0290 0.0519 8.1957

51824 83556 143907 112819
0.0048 0.0088 10.4109

156480 1697983 1710631 1194456
0.2980 0.2873 8.1339

10230 3058602 2390079 1957420
9.7941 0.3392 9.5486

16611 2072594 1434293 1434293
0.6483 0.0021 9.0261

20464 0 0 0
0 0 0

148815 633640 633696 460099
0.1047 0.0655 7.8460

106879 724785 680787 507038
0.1219 0.0704 8.3528

1732 0 0 0
0 0 0

138683 360271 601629 315101
0.0283 0.1005 8.1121

54696 657620 666326 496908
0.1079 0.1660 7.8372

Table 2: Column AP shows the vertex ID of the respective net cascade vertex. The columns UB1
- UB3 show the performance of the three different methods for calculating an upper bound. Each
cell shows the upper bound found at the top and the runtime in seconds at the bottom. We print
the respective best results in bold.

In general, the lower the upper bound, the more efficient is the subsequent focus
on the respective net cascade. We found that UB3 finds the best upper bound in
12 out of 14 cases. The only exceptions to this are the net cascades with access
points 204993 and 51824. In the neighbourhood of these two net cascades there are
a large number of fibre access points. This favours finding a good upper bound with
the help of UB1. The algorithm UB2 did not find a better upper bound than the
other two algorithms in any instance. Instances 20464 and 1732 are net cascades

6 RESULTS 44

whose demand can be completely supplied by the existing coaxial cable network.
This makes an execution of the three algorithms redundant. In terms of runtime,
UB1 and UB2 are far superior to the algorithm UB3. While the first two algorithms
usually have a computation time of less than one second, UB3 needs about 7 seconds
on average to compute an upper bound. However, since the subsequent computation
time of the reduction techniques and of finding an optimal solution is far greater on
large graphs than on small graphs, the application of UB3 is worthwhile. Overall,
it is therefore worthwhile to use UB3 to find an upper bound. However, since UB1
can usually be executed in under a second, it is additionally advisable to apply this
algorithm.

Reduction techniques Afterwards we apply the reduction techniques. At the
beginning we executed the reduction technique Collapse net cascade to delete re-
dundant amplifier points. We then proceeded with the calculation of the Basic
Reductions, iteratively applying the techniques NTD1 and NTD2 until no vertices
and edges are deleted. We finish the calculation of the Basic Reductions with a
single application of UDV . Afterwards we use the reduction technique Least cost.
Least cost requires a calculation of all shortest paths. Since such a calculation takes
a long time, it is possible to limit the calculation of the shortest paths by deter-
mining a cut-off at the maximum edge costs of all edges. We do not lose optimal
solutions and can perform Least Cost without restrictions. The reduction techniques
Voronoi and Dual Ascent follow, where we use the restricted variant for finding the
exact solution and the unrestricted variant for finding the approximate solution. We
conclude the reductions by running the Basic Reductions again. Table 3 shows the
elimination success and runtime of the individual reduction techniques.

6 RESULTS 45

AP Collapse Basic Least Voronoi Dual ∑
219878

0.01 0.01 74.11 78.17 0.0 0.0 0.0 0.8 0.01 2.33 74.13 81.31
0.01 0.01 64.67 69.17 0.0 0.0 0.0 1.11 0.0 3.17 64.68 73.45

0.0032 0.0027 0.6750 0.6367 0.2581 0.1762 1.609 0.9788 4.8041 6.3664 7.3495 8.1608

234333
0.0 0.0 84.52 78.38 0.0 0.0 0.0 11.68 0.79 5.97 85.32 96.03
0.0 0.0 78.45 69.6 0.0 0.0 0.0 16.3 0.0 8.66 78.45 94.57

0.0002 0.0014 0.0095 0.3738 0.0027 0.0743 0.0374 0.2984 0.0341 0.3786 0.0839 1.1265

204993
0.0 0.0 86.52 85.26 0.0 0.0 0.6 7.53 1.17 3.65 88.29 96.44
0.0 0.0 79.2 77.78 0.0 0.0 0.92 11.18 1.81 5.64 81.93 94.61

0.0038 0.0055 0.4827 0.8371 0.1184 0.1957 0.6368 1.1267 1.1924 1.1944 2.4341 3.3594

48477
0.0 0.0 78.53 78.13 0.0 0.0 0.0 6.67 0.01 4.57 78.54 89.37
0.0 0.0 69.03 68.9 0.0 0.0 0.0 9.46 0.0 6.36 69.03 84.71

0.0028 0.0032 0.4281 0.9924 0.1871 0.2534 0.8245 1.2262 2.522 3.0851 3.9645 5.5603

51824
0.02 0.0 88.2 85.1 0.0 0.0 0.0 7.93 0.02 4.72 88.24 97.75
0.02 0.0 81.37 77.54 0.0 0.0 0.0 11.81 0.0 7.3 81.39 96.66

0.0015 0.0056 0.1004 1.0334 0.0284 0.2098 0.1447 1.1628 0.2959 1.1999 0.5709 3.6115

156480
0.0 0.0 69.15 74.47 0.0 0.0 0.0 0.19 0.01 0.67 69.16 75.33
0.0 0.0 59.24 64.82 0.0 0.0 0.0 0.25 0.0 0.9 59.24 65.97

0.004 0.0037 1.2653 1.2951 0.3999 0.2907 3.1508 2.7452 9.5439 15.2413 14.364 19.576

10230
0.0 0.0 67.08 70.52 0.0 0.0 0.0 4.66 0.02 4.15 67.1 79.33
0.0 0.0 57.42 61.05 0.0 0.0 0.0 6.17 0.02 5.39 57.44 72.61

0.0138 0.0124 6.4003 5.5158 1.3594 1.0258 11.5564 10.0198 35.3093 467.1767 54.6392 483.7505

16611
0.1 0.05 72.62 73.37 0.0 0.0 5.75 0.0 0.69 7.32 79.17 80.74
0.09 0.04 63.12 64.3 0.0 0.0 7.72 0.0 0.9 10.02 71.82 74.35

0.0032 0.0068 0.6283 2.6809 0.1864 0.5082 0.6368 2.6474 1.6301 88.1842 3.0848 94.0275

20464
58.33 58.33 33.33 33.33 0.0 0.0 0.0 0.0 0.0 0.0 91.67 91.67
63.64 63.64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63.64 63.64
0.0005 0.0005 0.0003 0.0003 0.0001 0.0001 0.0268 0.0255 0.0111 0.0112 0.0388 0.0376

148815
0.0 0.0 81.19 82.09 0.0 0.0 0.0 1.99 0.04 3.88 81.23 87.96
0.0 0.0 72.58 73.73 0.0 0.0 0.0 2.91 0.05 5.67 72.63 82.31

0.0061 0.0058 1.1509 1.0929 0.2952 0.2699 2.5603 2.3713 6.0872 8.033 10.0997 11.7729

106879
0.05 0.05 80.74 82.19 0.0 0.0 0.0 1.98 0.01 2.55 80.8 86.77
0.04 0.04 72.43 74.54 0.0 0.0 0.0 2.66 0.0 3.58 72.47 80.83
0.003 0.0032 0.4887 0.8492 0.1128 0.1312 0.6979 0.87 2.3057 5.4094 3.6081 7.263

1732
64.29 64.29 28.57 28.57 0.0 0.0 0.0 0.0 0.0 0.0 92.86 92.86
69.23 69.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.23 69.23
0.0005 0.0005 0.0002 0.0003 0.0001 0.0002 0.026 0.0266 0.0113 0.0126 0.0381 0.0402

138683
0.0 0.0 84.6 84.07 0.0 0.0 0.3 6.22 0.06 4.55 84.96 94.84
0.0 0.0 76.84 76.23 0.0 0.0 0.44 9.17 0.1 6.82 77.38 92.22

0.0054 0.0062 0.9368 1.0324 0.2382 0.3083 1.6559 1.7679 3.3517 3.0187 6.188 6.1335

54696
0.0 0.0 80.1 83.24 0.0 0.0 0.0 1.29 0.0 7.47 80.1 92.01
0.0 0.0 71.31 75.42 0.0 0.0 0.0 1.85 0.0 10.9 71.31 88.17

0.0068 0.0063 1.37 1.2143 0.2823 0.2366 3.0014 2.543 6.7898 9.7216 11.4503 13.7218

Table 3: Column AP shows the vertex ID of the respective net cascade vertex. The columns Col-
lapse, Basic, Least, Voronoi and Dual show the performance of the respective reduction techniques.
On the left are the results of the exact reductions, on the right the results of the approximate re-
ductions of the heuristics. The individual cells are divided as follows: Top: reduction of vertices
in percent, Middle: reduction of edges in percent, Bottom: runtime in seconds.

In the following we will explain the performance of the individual reduction tech-
niques in more detail. The Collapse net cascade method achieved particularly great
success in instances 20464 and 1732. In both instances we were able to delete over
50% of all vertices and edges. As already mentioned, these two instances are the self-
supplying net cascades, where no fiber rollout is needed. As a result we could reduce
each branch of the net cascade to a single vertex. However, since the net cascades

6 RESULTS 46

are very small compared to the entire subgraph in the other instances, the overall
reduction success of Collapse net cascade is very low. With the Basic Reductions we
were able to delete a large part of all vertices and edges of the input graphs. Apart
from the two instances 20464 and 1732, the Basic Reductions deleted between 57
and 88 percent of all vertices and edges of the different input graphs. Although we
applied the Basic Reductions in the same way for the exact solution approach and
the heuristic, they differ slightly in success because the input instances are not the
same due to different division into subgraphs. However, the difference is never more
than 6%, indicating consistent success of the Basic Reductions. The Least Cost
reduction technique was not able to delete any vertices or edges in a single instance.
Since we are working on real world instances, which have geometric properties, it
is unlikely that the direct connection between two vertices is more expensive than
an alternative path connecting the two vertices via detours. For the reduction tech-
niques Voronoi reductions and Dual Ascent reductions we find that the success of
the unconstrained techniques for heuristics far exceeds our constrained techniques.
For example, only in instance 16611 were we able to delete more than 1% of all
vertices and edges using the restricted Voronoi method. With the unconstrained
variant, we were able to delete more than 5% of all vertices and edges in 6 of the 14
instances. The same goes for the Dual Ascent reduction techniques.

Optimisation We tried to find an exact solution with both the SCF model and
the CUT model. Since the creation of the support graph in the separation phase of
the CUT model takes a long time, the results of the CUT model were far worse than
those of the SCF model. In our experiments the CUT model is not even close to
being a good alternative to the SCF model in any instance. We decided to explain
only the results of the SCF model in more detail for a better overview. We set a
timeout of 1800 seconds for the calculation of an exact solution. Table 4 shows the
performance of the SCF model compared with the results of the heuristic.

6 RESULTS 47

AP Objective Ratio Runtime Gap
219878 138230.8 248779.8 79.97 1800.1952 1.4796 29.71
234333 76694.4 85571.99 11.58 0.6492 0.0894 0.0
204993 124026.29 142653.90 15.02 715.7041 0.4722 0.0
48477 144506.1 206295.59 42.76 1090.7401 0.9873 0.0
51824 38170.79 40746.6 6.75 5.7985 0.2571 0.0
156480 498937.20 545828.39 9.4 1801.8885 2.9445 60.77
10230 1415167.50 1494360.40 5.6 1800.4358 10.0994 32.46
16611 1345368.10 1348182.10 0.21 1800.1336 2.8176 26.18
20464 0.0 0.0 0 0.0007 0.0021 0.0
148815 260644.80 282368.39 8.33 1800.1486 2.1916 23.16
106879 281176.99 371744.79 32.21 1800.1799 0.8273 38.19
1732 0.0 0.0 0 0.0007 0.0020 0.0

138683 145429.49 154939.3 6.54 1599.4483 0.8083 0.0
54696 358259.99 408782.79 14.1 1801.2699 1.5771 60.68

Table 4: Column AP shows the vertex ID of the respective net cascade vertex. Column Objective
shows the final costs of the fibre rollout, column Runtime the runtime of the solution in seconds.
Both columns show the results of the exact strategy on the left and the results of the heuristic on
the right. In the column Ratio we indicate by how many percent the solution of the heuristic is
worse than the solution found by the SCF model. For the calculation of the exact solution we set
a timeout to 1800 seconds. The column Gap shows the Gurobi gap of the exact solution in percent
if we could not find an optimal solution before timeout.

Since LAN-Forcea is a minimisation problem, smaller objective values are better
than larger ones. We could not find an optimal result in 7 of the 14 instances before
the half-hour timeout occurred. In all instances where we could not find an optimal
result, the Gurobi Gap indicates the gap between the lower and upper objective
bound. Overall, the heuristic delivers results that are on average 10.43% worse than
the results found by the exact method. As we show in Figure 15, the heuristic
performs very differently on the respective instances. If the result is only 0.21%
worse on instance 16611, it is a whole 79.97% worse on instance 219878. We assume
that this is due to the distribution of the fibre access points. If these are rare and far
away from the net cascade, many amplifier points are connected via shortest paths
and the heuristic delivers good results. However, if there are many fiber access points
near the net cascade, the heuristic finds a poor solution. We show in Figure 16 the
solutions found by the heuristic and the exact method of these two instances for
comparison. In individual cases, our heuristic found extraordinarily poor results
that were up to 195798% worse than the solution found by the SCF model. In
these cases, the CUT model could not find a reasonable fractional solution, so the
solution of the heuristic is the whole input graph. Since these are exceptional cases,
we recommend that results with exceptionally high costs be examined more closely

6 RESULTS 48

21
98

78
23

43
33

20
49

93
48

47
7

51
82

4
15

64
80

10
23

0
16

61
1

20
46

4
14

88
15

10
68

79
17

32
13

86
83

54
69

6

AP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ra
tio

Figure 15: The ratio of how many percent the solution of the heuristic is worse than the solution
found by the SCF model.

with the SCF model.
Runtime-wise, we were able to find results far faster using the heuristic than we were
able to with the exact method. While the heuristic found a result within 10 seconds
in all instances, we could not find an optimal result in half of the instances before
the half-hour timeout occurred. Overall, the heuristic delivers good results in a very
short time. Since the performance on the different instances can vary greatly, we
still recommend verifying the results with the exact approach and a short timeout.

6.1.3 Performance on merged net cascades

Focus on net cascades We calculated the fusion of the net cascades by first
calculating an upper bound for each net cascade and then merging the net cascades
where the resulting subgraph would have overlapped. This resulted in five unions
of net cascades, which are composed of the original net cascades as follows: 786387:
[219878, 48477, 156480, 10230, 16611, 106879], 786388: [234333], 786389: [204993,
51824, 148815, 138683, 54696], 786390: [20464], 786391: [1732]. It is noticeable
that there are two large unions of net cascades with the access points 786387 and
786389. The other three new net cascades 786388, 786390 and 786391 each contain
only one original net cascade. These are exactly the three original net cascades with
the smallest upper bound (see Table 2). Since the upper bounds are very small in
these cases, the resulting subgraph is also very small and therefore does not overlap

6 RESULTS 49

(a) 16611 SCF (b) 16611 heuristic

(c) 219878 SCF (d) 219878 heuristic

Figure 16: The exact solution compared to the solution of the heuristic in the net cascades 16611
and 219878. Red vertices and blue edges represent the net cascade with its blue access point. Pink
edges show the fibre rollout to the yellow fibre access points.

with the subgraphs of the other net cascades.

6 RESULTS 50

AP UB1 UB2 UB3

786387 8971407 14677969 6407960
13.0461 197.7442 10.4311

786388 76694 76694 76694
0.0045 3.1232 8.4430

786389 1907613 3202236 1607791
0.2362 4.7866 9.6518

786390 0 0 0
0 0 0

786391 0 0 0
0 0 0

Table 5: Column AP shows the vertex ID of the respective net cascade vertex. The columns UB1
- UB3 show the performance of the three different methods for calculating an upper bound. Each
cell shows the upper bound found at the top and the runtime in seconds that was needed to find
it at the bottom.

In Table 5 we show the results of the calculation of the upper bounds after merging
the individual net cascades. The results coincide with the results for individual net
cascades. Thus, the performance of method UB3 far outweighs the performance
of the other two methods. Especially for the very large union 786387, the upper
bound found by UB3 is by far the best. Furthermore, UB3 has the best runtime
of 10 seconds in this particularly large instance. It is therefore worth using UB3 to
calculate an upper bound for small graphs as well as for large graphs.

Reduction techniques In Table 6 we show the reduction results. We could see
that our observations of the reduction results for the individual net cascades can
also be applied to the fusions of net cascades.

6 RESULTS 51

AP Collapse Basic Least Voronoi Dual ∑
786387

0.01 0.01 56.65 62.87 0.0 0.0 0.0 0.0 0.0 0.0 56.65 62.88
0.01 0.01 47.12 53.03 0.0 0.0 0.0 0.0 0.0 0.0 47.13 53.03

0.0929 0.0653 61.927 25.1987 9.8821 6.297 387.2763 219.3 1073.0985 6565.347 1532.2768 6816.208

786388
0.0 0.0 84.52 78.4 0.0 0.0 0.0 11.68 0.79 5.97 85.32 96.05
0.0 0.0 78.45 69.61 0.0 0.0 0.0 16.3 0.0 8.66 78.45 94.58

0.0002 0.0013 0.0098 0.3121 0.0029 0.062 0.0341 0.2456 0.0371 0.3165 0.0841 0.9375

786389
0.0 0.0 69.22 64.18 0.0 0.0 0.0 16.76 0.01 7.16 69.23 88.11
0.0 0.0 59.62 54.58 0.0 0.0 0.0 21.01 0.0 8.97 59.62 84.55

0.0263 0.0549 6.9817 19.5558 1.7216 4.5134 32.3502 80.0488 89.4365 139.1518 130.5163 243.3247

786390
58.33 58.33 33.33 33.33 0.0 0.0 0.0 0.0 0.0 0.0 91.67 91.67
63.64 63.64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63.64 63.64
0.0005 0.0005 0.0002 0.0002 0.0001 0.0001 0.0234 0.0238 0.011 0.0108 0.0352 0.0354

786391
64.29 64.29 28.57 28.57 0.0 0.0 0.0 0.0 0.0 0.0 92.86 92.86
69.23 69.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.23 69.23
0.0005 0.0005 0.0002 0.0003 0.0001 0.0001 0.0243 0.0272 0.0116 0.0111 0.0367 0.0392

Table 6: Column AP shows the vertex ID of the respective net cascade vertex. The columns Col-
lapse, Basic, Least, Voronoi and Dual show the performance of the respective reduction techniques.
On the left are the results of the exact reductions, on the right the results of the approximate re-
ductions of the heuristics. The individual cells are divided as follows: Top: reduction of vertices
in percent, Middle: reduction of edges in percent, Bottom: runtime in seconds.

The reduction technique Collapse net cascade has particularly great success only in
the self-supplying net cascades. The Basic Reductions have the greatest success in
all other instances. With them it is possible to delete large parts of the graph in a
short time. The three reduction techniques Least Cost, Voronoi Reductions and Dual
Ascent have a particularly high runtime in the two large net cascades 786387 and
786389. At the same time, none of the three reduction techniques have a particular
reduction success especially in the exact application. Since the computational time
of these reduction techniques is very long and the computational success is very low,
we did not apply these reduction techniques in our other experiments for LAN-Forcea
in the extended Appendix.

Optimisation Table 7 shows that here, too, the results largely coincide with the
results for individual net cascades. In the very large instance 786387, however, we
were even able to find a better result with the heuristic than with the exact method.
While the exact method still had a gap of 94% after the timeout, the heuristic found
a result in 136 seconds. In all other instances, the SCF model found a better result
than the heuristic. Overall, the results of the heuristic are even 3% better than the
results of the SCF model.

6 RESULTS 52

AP Objective Ratio Runtime Gap
786387 4299400.69 3992215.60 -7.14 1801.8404 135.9335 94.17
786388 76694.4 85571.99 11.58 0.7220 0.0881 0.0
786389 838836.10 980789.30 16.92 1800.5525 18.9793 80.69
786390 0.0 0.0 0 0.0006 0.0018 0.0
786391 0.0 0.0 0 0.0006 0.0020 0.0

Table 7: Column AP shows the vertex ID of the respective net cascade vertex. Column Objective
shows the final costs of the fibre rollout, column Runtime the runtime of the solution in seconds.
Both columns show the results of the exact strategy on the left and the results of the heuristic
on the right. In the Ration column we show how the heuristic performs compared to the exact
method in percent. For the calculation of the exact solution we set a timeout to 1800 seconds.
The Gap column shows the Gurobi gap in percent of the exact solution if no optimal result could
be found before timeout.

6.2 LAN-Forceh

In the following we describe our results for the LAN-Forceh problem.

6.2.1 Data

As input graphs, we once again use the instances of Vodafone GmbH. In these in-
stances there are no coax connections from the amplifier points to the individual
customers. However, in the data some customers have the flag ’uep’, which stands
for transfer point. To offer a choice between coax connectivity and fibre connectiv-
ity, we create additional coax edges e with ce = 0 and ue = 64 from all customers
marked with the flag ’uep’ to the respective nearest amplifier points. We set the
profit pf and pc according to the type of connection. For every customer k, we set
pc = 2000·dk and pf = 3000·dk. To obtain realistic input graphs for the LAN-Forceh
problem we focus on individual net cascades. For each net cascade we compute a
rectangle with the respective access point in the centre, which we enlarge until a
predefined number of customers α lies within the rectangle. In our examples we use
α-values of 2000, 4000 and 8000 customers to get different graph sizes. All vertices
and edges within the rectangle then form the input graph for the LAN-Forceh prob-
lem.
As with LAN-Forcea, we have calculated results for the instances 01051, land-
kreis_mettmann, landkreis_muenchen, landkreis_nuernberg, stadt_dresden, and
stadt_muenchen. Since the results of the different instances are very similar, we
describe once again mainly the results for instance 01051. We show all the other
results in the extended Appendix.

6 RESULTS 53

6.2.2 Reduction techniques

We applied the Basic Reductions and Least Cost reduction techniques to our in-
stances. Table 8 shows our reduction success on instance 01051 with 2000, 4000
and 8000 households respectively. We noticed that the Basic Reductions delete
about the same number of vertices and edges for each net cascade, regardless of the
number of households. While the runtime in the instances with 2000 households is
still less than 4 seconds, the Basic Reductions need up to 27 seconds in the case of
8000 households. The runtime thus increases extremely with the size of the input
graph. The Basic Reductions were mostly able to delete between 10 and 20 percent
of all vertices and edges of the input graph. In the LAN-Forcea instances, in con-
trast, they deleted on average about 70%! This is due to the structure of the input
graphs. Most customers are only connected to the network by one cable as they
only consume the data stream and do not forward it to other customers. In the case
of LAN-Forcea, these customers are non-terminals of degree 1. These vertices, along
with the incident edges, can be deleted using NTD1. In the context of LAN-Forceh,
these customers are terminals. Since the cost of the connection rarely exceeds the
profit of the customer, we cannot delete all these vertices.
The Least Cost reduction technique could not delete vertices or edges in any in-
stance. This suggests a strict Euclidean geometry of the underlying instances. In
spite of their low success in elimination, the running time is very high, because we
calculate a lot of shortest paths. Since the Least Cost reduction techniques were not
successful, we did not use them to calculate the results of the other instances in the
extended Appendix.

6 RESULTS 54

AP 2000 hh 4000 hh 8000 hh
Basic Least Basic Least Basic Least

219878
12.4 0.0 13.45 0.0 13.1 0.0
9.67 0.0 12.11 0.0 12.51 0.0

0.5691 17.932 5.4882 82.6322 15.0144 113.2843

234333
14.5 0.0 12.94 0.0 12.29 0.0
12.26 0.0 11.22 0.0 11.43 0.0
2.0737 21.8779 8.1869 43.0444 12.18 173.1428

204993
10.43 0.0 10.21 0.0 9.57 0.0
7.28 0.0 7.26 0.0 7.42 0.0

0.2582 21.3258 2.4181 75.4042 8.9434 344.6163

48477
9.53 0.0 10.67 0.0 12.03 0.0
6.84 0.0 8.51 0.0 11.14 0.0

0.7994 26.2232 4.3464 90.1162 11.7662 144.748

51824
12.09 0.0 9.69 0.0 10.35 0.0
8.51 0.0 6.67 0.0 8.26 0.0

0.3762 15.5008 1.4199 91.7088 14.2819 334.313

156480
10.5 0.0 8.7 0.0 11.44 0.0
7.41 0.0 6.66 0.0 10.44 0.0

0.7684 11.5424 2.7459 98.8422 15.2344 122.9728

10230
11.95 0.0 13.21 0.0 13.85 0.0
8.65 0.0 12.39 0.0 13.32 0.0

0.4312 12.6298 5.1524 29.1031 26.4044 68.5183

16611
11.09 0.0 17.73 0.0 18.63 0.0
9.79 0.0 17.99 0.0 18.83 0.0

0.8179 16.9848 10.2718 28.8586 12.7426 93.321

20464
13.52 0.0 15.85 0.0 14.39 0.0
13.95 0.0 16.06 0.0 14.05 0.0
1.3414 1.7068 6.2352 9.3582 19.5484 124.4866

148815
12.74 0.0 11.26 0.0 9.71 0.0
8.74 0.0 7.86 0.0 7.39 0.0

0.2523 25.9672 2.0971 85.5955 10.809 418.2519

106879
14.36 0.0 14.56 0.0 15.1 0.0
11.83 0.0 13.67 0.0 14.9 0.0
0.5743 6.363 5.345 39.5215 13.0266 46.0529

1732
19.49 0.0 18.79 0.0 16.04 0.0
19.87 0.0 19.04 0.0 16.05 0.0
3.0148 6.9647 8.453 9.0973 26.1559 80.6593

138683
12.07 0.0 9.49 0.0 10.21 0.0
8.52 0.0 6.5 0.0 8.1 0.0

0.3786 15.5248 1.182 64.0788 14.5661 379.5377

54696
11.73 0.0 10.86 0.0 9.1 0.0
8.05 0.0 7.53 0.0 6.92 0.0

0.3121 26.4534 2.0595 104.4235 7.9749 312.4983

Table 8: Column AP shows the vertex ID of the respective net cascade vertex. We show the
reduction results of the instances with 2000, 4000 and 8000 households in two columns each. The
left column shows the reduction results of the Basic Reductions, the right column the results of the
Least Cost tests. The individual cells are divided as follows: top: reduction of vertices in percent,
middle: reduction of edges in percent, bottom: runtime in seconds.

6 RESULTS 55

6.2.3 Optimisation

We tried to find exact and approximate solutions for all instances. As already
described for the LAN-Forcea problem, the CUT model had such a poor performance
that we do not include it in our results. We set the timeout to 1800 seconds for the
SCF model. We calculated the results of the heuristic for different p0 values. First,
we calculated the results for p0 values of 0, 0.25, 0.5 and 1. We then searched for the
best of the values and calculated results with p0 values of 0.125 and 0.375, 0.375 and
0.625 or 0.625 and 0.876, respectively. In total, we ran the heuristic 6 times to find
our approximate result. Table 9 shows our results of the exact and the approximate
approach.

6 RESULTS 56

hh AP Objective Gap Runtime Gap

2000

219878 3798789.1 3656615.0 3.89 965.4257 140.8056 0.0
234333 4804733.0 4683069.2 2.6 1304.1487 183.3329 0.0
204993 6839913.2 2007016.2 240.8 1766.9850 53.2285 0.0
48477 5137034.6 4952403.2 3.73 712.2089 164.5055 0.0
51824 7970218.3 7842275.0 1.63 588.3427 143.6003 0.0
156480 3965631.3 3758207.7 5.52 858.1451 131.9956 0.0
10230 3561872.3 3364533.4 5.87 800.7214 119.4077 0.0
16611 3007675.3 2869531.1 4.81 1800.1740 170.6053 1.67
20464 2525999.5 2184067.9 15.66 1800.8304 225.0343 3.98
148815 7300517.2 7176496.0 1.73 1094.3573 120.5455 0.0
106879 3578311.6 3376909.7 5.96 1535.1603 114.1877 0.0
1732 1705823.4 1462496.7 16.64 1801.4009 222.4234 6.54

138683 7969931.5 7837194.8 1.69 641.0283 144.6620 0.0
54696 7180230.3 7091946.4 1.24 652.9311 117.1139 0.0

4000

219878 5058297.2 4688613.6 7.88 1800.8703 805.2582 20.59
234333 7702298.6 7436563.5 3.57 1800.8509 849.4487 9.51
204993 10823047.5 10454674.3 3.52 1800.3131 620.9123 0.21
48477 8755004.1 8419537.5 3.98 1800.8039 681.5662 0.2
51824 14016527.1 13794805.9 1.61 1800.1710 695.7181 0.13
156480 8689955.4 8331411.6 4.3 1800.8709 746.5275 0.45
10230 4336059.1 3946246.0 9.88 1800.3794 648.1958 12.08
16611 3417297.6 2780119.1 22.92 1800.3233 878.3433 31.96
20464 2870210.8 2431200.5 18.06 1800.7864 6827.3779 40.45
148815 12697735.5 12367303.1 2.67 1768.8471 656.8002 0.0
106879 5342016.4 4745208.9 12.58 1800.9360 787.7965 6.57
1732 2084975.6 1400671.5 48.86 1801.1003 1150.6802 52.04

138683 13746260.6 13534061.3 1.57 1801.3840 599.0646 0.11
54696 12875077.1 12549069.1 2.6 1800.6469 696.7401 0.2

8000

219878 7559172.6 6706470.8 12.71 1813.7476 2595.7773 37.54
234333 12118391.5 9520020.2 27.29 1800.3756 3317.1079 9.56
204993 21354462.0 20620324.8 3.56 1801.8771 2389.1778 2.46
48477 11536075.0 9012123.2 28.01 1800.6169 3658.7403 10.61
51824 21760679.0 20858755.7 4.32 1801.9606 2443.5632 0.62
156480 11252591.7 8900893.2 26.42 1800.8558 2822.8079 10.97
10230 7294258.9 6535942.2 11.6 1800.9802 3931.1522 23.5
16611 7001499.5 6093441.5 14.9 1803.0610 2874.2913 40.35
20464 7571964.6 6671450.6 13.5 1802.9042 3238.0974 26.88
148815 21504740.7 20720452.2 3.79 1802.2731 2041.7087 2.67
106879 6851615.2 4920008.3 39.26 1811.1961 2823.5661 32.0
1732 7912994.4 6429567.4 23.07 1800.6932 3221.4042 16.77

138683 21699153.4 20959333.4 3.53 1804.3361 2650.2332 0.9
54696 21594978.6 20759413.4 4.02 1801.0600 2624.9058 1.15

Table 9: Column AP shows the vertex ID of the respective net cascade vertex. Column Objective
shows the final costs of the fibre rollout, column Runtime the runtime of the solution in seconds.
Both columns show the results of the exact strategy on the left and the results of the heuristic
on the right. For the calculation of the exact solution we set a timeout to 1800 seconds. The
Gap column shows the Gurobi Gap of the exact solution if no optimal result could be found before
timeout. The results of the instances with 2000, 4000 and 8000 households are one below the other.

7 OUTLOOK 57

The heuristic was not able to find a better objective value than the exact approach
in any instance.
The approximate solutions found in the instance with 2000 households were on
average 10.21% worse than the exact objective values, in the instances with 4000
households it was 4.92% and with 8000 households 9.79%. We could not find any
correlation between input graph size and solution quality. In all other instances,
the heuristic was also at most 11% worse overall than the exact approach. While
the heuristic consistently delivers good results when considered as a whole, stronger
fluctuations are noticeable when considering individual net cascades. For example,
the result of the heuristic for net cascade 204993 is 240.8% worse than the exact
result. Such bad exceptional cases occur in each of our examined instances. For
these instances, no good initial solution could be found in the initial separation
phase. Increasing the number of separation phases can remedy this.
We observed a very large increase in the running time of the heuristic. While
we needed on average 152 seconds for the instance with 2000 households, it was
already 1185 seconds for 4000 households and 2902 seconds for 8000 households.
This runtime is composed of all six iterative executions of the heuristic with different
p0 values. Each individual execution of the heuristic here takes longer than in the
LAN-Forcea problem, because instead of a few amplifier points we have to connect
many customer vertices to the root via shortest paths. Therefore, many more cost-
intensive shortest path calculations are performed. It is conceivable to shorten the
runtime considerably by parallelisation. The longest runtimes (or largest Gurobi
gaps) occurred in both the exact and approximate solutions in instances 20464 and
1732. These are the instances with the fewest amplifier points. We conclude that
instances with few amplifier points are particularly difficult to compute because the
heuristic takes a longer time to compute the shortest paths.

7 Outlook

In this thesis we have defined the two new problems LAN-Forcea and LAN-Forceh
and explained methods to find optimal and approximate solutions for the two prob-
lems. In this chapter we want to mention possible approaches to solve the problems
more efficiently in the future.
It is conceivable to find other reduction techniques. Apart from the reduction tech-
nique Collapse net cascade, we did not find any reductions specifically targeting the
problems, but adapted different reductions for other already known graph problems
to our problems. It may well be that there are better reduction techniques that
specifically use properties of our new problems to eliminate vertices and edges. Due
to time restrictions we have adapted the reduction techniques Voronoi and Dual As-
cent only for the problem LAN-Forcea. An adaptation for the LAN-Forceh should
be possible. In the literature there are the reduction techniques Reachability [16],

8 CONCLUSIONS 58

Degree-l-test [11] and Bottelneck Steiner Distance [17] for the PCSTP. It is conceiv-
able to adapt these reduction techniques to our problem.
For the exact solution of the problem we use the ILPs SCF model and CUT model.
The performance of the CUT model was far worse than that of the SCF model. One
could further increase the performance of the CUT model by directly adding several
violated constraints in each callback instead of just one additional constraint. For
this, it might be useful to use the Golberg’s maximum flow algorithm [18] instead
of the Ford-Fulkerson flow we use.
The heuristic we found gave unsatisfactory results especially for the LAN-Forceh.
Unfortunately, we were not able to obtain fractional solutions after the initial sepa-
ration phases of the CUT model, so we filtered the vertices according to the distance
to the next access point. To improve the performance of the heuristic, it might be
worthwhile to sort the vertices according to their fractional value. To reduce the
runtime of the heuristic, parallelising the execution of the heuristic for different p0
values may be useful.
Since the problems LAN-Forcea and LAN-Forceh are new problems, there is still
much to explore. We hope that we have laid a foundation with our work and that
more research will be done on the problems in the future to find better solutions
faster.

8 Conclusions

In this thesis we have introduced the two new problems on graphs Local Access
Network Reinforcement problem for amplifier points and Local Access Network Re-
inforcement problem for households. The problems are interesting for planning
telecommunication infrastructures and are continuations of the already known Prize-
collecting Local Access Network problem [4]. We find techniques to divide a given
input graph into smaller planning units. We then describe reduction techniques to
further reduce the planning units and delete vertices and edges that are not relevant
for the solution. We explain two different Integer Linear Programs to find an opti-
mal solution. Since finding an optimal solution on some instances takes a long time,
we develop heuristics for finding an approximate solution for both problems. We
test our methods on real instances of Vodafone GmbH. Our experiments show that
especially the simple Basic Reduction techniques have a great success. Furthermore,
our heuristics find good results overall in a short time.

LIST OF FIGURES 59

List of Figures

1 Examples LAN-Forcea and LAN-Forceh 2
2 PC-LAN . 4
3 LAN-Forcea . 6
4 LAN-Forceh . 7
5 Branches of a tree . 9
6 UB1 . 15
7 UB2 . 17
8 Coherent net cascades . 18
9 Least Cost . 20
10 Dual Ascent . 23
11 Dual Ascent problem for LAN-Forcea 24
12 Voronoi diagram of a graph . 27
13 Forbidden fiber optic cables . 32
14 Convex hull . 34
15 Ratio heuristic to SCF model . 48
16 Comparison of solutions . 49

List of Tables

1 Graph sizes . 42
2 Upper Bounds for single net cascades 43
3 Reductions for single net cascades . 45
4 Optimisation for single net cascades 47
5 Upper Bounds for merged net cascades 50
6 Reductions for merged net cascades 51
7 Optimisation for merged net cascades 52
8 Reductions for LAN-Forceh . 54
9 Optimisation for LAN-Forceh . 56

REFERENCES 60

References

[1] Andreas Bley, Ivana Ljubić, and Olaf Maurer. “Lagrangian decompositions
for the two-level FTTx network design problem”. In: EURO Journal on Com-
putational Optimization 1.3-4 (2013), pp. 221–252.

[2] Martin Grötschel, Christian Raack, and Axel Werner. “Towards optimizing the
deployment of optical access networks”. In: EURO Journal on Computational
Optimization 2.1 (2014), pp. 17–53.

[3] Stefan Voß. “Steiner tree problems in telecommunications”. In: Handbook of
optimization in telecommunications. Springer, 2006, pp. 459–492.

[4] Ivana Ljubić, Peter Putz, and Juan-José Salazar-González. “A MIP-based ap-
proach to solve the prize-collecting local access network design problem”. In:
European Journal of Operational Research 235.3 (2014), pp. 727–739.

[5] Richard M Karp. “Reducibility among combinatorial problems”. In: Complex-
ity of computer computations. Springer, 1972, pp. 85–103.

[6] David S Johnson, Maria Minkoff, and Steven Phillips. “The prize collecting
steiner tree problem: theory and practice”. In: SODA. Vol. 1. 0.6. 2000, p. 4.

[7] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische mathematik 1.1 (1959), pp. 269–271.

[8] EA Dinic. “Algorithm for solution of a problem of maximum flow in a network
with power estimation, soviet math. doll. 11 (5), 1277-1280,(1970)”. In: English
translation by RF. Rinehart (1970).

[9] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. “A nearly-linear time
framework for graph-structured sparsity”. In: International Conference on Ma-
chine Learning. PMLR. 2015, pp. 928–937.

[10] Daniel Rehfeldt, Thorsten Koch, and Stephen J Maher. “Reduction techniques
for the prize collecting Steiner tree problem and the maximum-weight con-
nected subgraph problem”. In: Networks 73.2 (2019), pp. 206–233.

[11] Ivana Ljubic et al. “Solving the prize-collecting Steiner tree problem to opti-
mality”. In: ALENEX/ANALCO 2005 (2005), pp. 68–76.

[12] Markus Leitner et al. “A dual ascent-based branch-and-bound framework for
the prize-collecting steiner tree and related problems”. In: INFORMS journal
on computing 30.2 (2018), pp. 402–420.

[13] Thomas Pajor, Eduardo Uchoa, and Renato F Werneck. “A robust and scalable
algorithm for the Steiner problem in graphs”. In: Mathematical Programming
Computation 10.1 (2018), pp. 69–118.

[14] Laurence A Wolsey and George L Nemhauser. Integer and combinatorial op-
timization. Vol. 55. John Wiley & Sons, 1999.

REFERENCES 61

[15] Peter Elias, Amiel Feinstein, and Claude Shannon. “A note on the maximum
flow through a network”. In: IRE Transactions on Information Theory 2.4
(1956), pp. 117–119.

[16] Cees Duin. “Preprocessing the Steiner problem in graphs”. In: Advances in
Steiner Trees. Springer, 2000, pp. 175–233.

[17] Eduardo Uchoa. “Reduction tests for the prize-collecting Steiner problem”. In:
Operations Research Letters 34.4 (2006), pp. 437–444.

[18] Andrew V Goldberg, Éva Tardos, and Robert Tarjan. Network flow algorithm.
Tech. rep. Cornell University Operations Research and Industrial Engineering,
1989.

A SCF MODEL FOR PC-LAN 62

A SCF model for PC-LAN

max
∑
k∈K

pkyk −
∑
a∈A

∑
n∈Na

ca,nxa,n

subject to

∑
a∈δ+(v)

fa −
∑

a∈δ−(v)
fa =


−dvyv, if v ∈ K∑

k∈K dk, if v = r

0, otherwise
∀v ∈ V

0 ≤ fa ≤
∑

n∈Na

ua,nxa,n ∀a ∈ A

∑
k∈K

pkyk ≥ p0∑
n∈Na

xa,n ≤ 1 ∀a ∈ A

fa ∈ R+ ∀a ∈ A

xa,n ∈ {0, 1} ∀a ∈ A,∀n ∈ Na

yv ∈ {0, 1} ∀v ∈ V

In order to describe the network flow correctly, each undirected edge e = {u, v}
must be converted into the two directed edges auv = (u, v) and avu = (v, u). The
edges keep their respective modules.

B SCF MODEL FOR LAN-FORCEH 63

B SCF model for LAN-Forceh

max
∑
k∈K

∑
af∈δ−(k)

pkf
xaf

+
∑
k∈K

∑
ac∈δ−(k)

pkcxac −
∑
a∈A

caxa

subject to

∑
a∈δ+(v)

fa −
∑

a∈δ−(v)
fa =


−dvyv, if v ∈ K∑

k∈K dk, if v = r

0, otherwise
∀v ∈ V

∑
af∈δ+(v)

faf
−

∑
af∈δ−(v)

faf
≤ 0 ∀v ∈ V \ {r}

0 ≤ fa ≤ uaxa ∀a ∈ A

xa ≤ fa ∀a ∈ A

0 ≤ (
∑
k∈K

dk)xa − fa ∀a ∈ A

∑
a∈δ−(k)

xa ≤ 1 ∀k ∈ K

fa ∈ R+ ∀a ∈ A

xa ∈ {0, 1} ∀a ∈ A

yv ∈ {0, 1} ∀v ∈ V

In order to describe the network flow correctly, each undirected edge e = {u, v}
must be converted into the two directed edges auv = (u, v) and avu = (v, u). The
edges retain their respective capacities and costs. Furthermore, we have to insert
an artificial root r as described in Chapter 2.2.

C DUAL ASCENT EXAMPLE 64

C Dual Ascent example

t1

t2

t2

1

1

5

20

16

r

0

Figure 17: The RSTP input graph

1

1

5

20

16

t3

r

0

t2

t1

0

0

0

Figure 18: Preprocessing step: the input graph becomes directed. Every terminal is only con-
nected by an incoming edge.

1

1

5

20

16

t1

t2

t3

1

5
20

16

1

0

0

LB = 0

0

r
0 0

Figure 19: Initialization: the terminals become active terminals. For every edge we introduce
reduced costs. We set the lower Bound to 0.

C DUAL ASCENT EXAMPLE 65

1

1

5

20

16

t3

t2

t1

1

5
20

16

0

0

0

LB = 1

0

r
0 0

Figure 20: First iteration of the main loop. We try to gradually increase the active component
of t1. An edge with a cost of 1 limits the active component. We set the reduced costs of the edge
to 0 and increase LB by 1.

1

1

5

20

15

t3

t2

t1

0

4
20

16

0

0

0

LB = 2

0

r
0 0

Figure 21: We continue to expand the active component of t1.

1

1

5

20

11

t3

t2

t1

0

0
20

16

0

0

0

LB = 6

0

r
0 0

Figure 22: We continue to expand the active component of t1.

C DUAL ASCENT EXAMPLE 66

1

1

5

9

0

t3

t2

t1

0

0
20

16

0

0

0

LB = 17

0

r
0 0

Figure 23: We continue to expand the active component of t1. After we increase the lower bound
by 11, there is a path from t1 to the root in the saturation graph. Terminal t1 is thus connected
to the root and we can delete it from the list of active terminals.

1

0

5

9

0

t3

t2

t1

0

0
20

16

0

0

0

LB = 18

0

r
0 0

Figure 24: We choose t2 as the next active terminal and begin to expand its active component.
After we have extended the active component by only one edge, it is already possible to reach the
root starting from t2 in the saturation graph. Terminal t2 therefore becomes inactive and we chose
t3 as the next active terminal.

1

0

0

4

0

t3

t2

t1

0

0
20

16

0

0

0

LB = 23

0

r
0 0

Figure 25: After we have extended the active component by only one edge, it is already possible
to reach the root starting from t3 in the saturation graph. Terminal t3 therefore becomes inactive.
Since there is no active terminal left we end our search. We return our final LB value of 23.

D MODIFIED DIJKSTRA ALGORITHM 67

D Modified Dijkstra algorithm

Algorithm 4: We extend the Dijkstra shortest path search. We use for
each vertex u the dictionary coax to keep track of whether the vertex is
part of a coax or fibre link. If u is part of a fibre link, its neighbour v is
only considered if there is a fibre edge between u and v.

Data: G = (V, A), source
Result: Table with all distances

1 dist[source] = 0
2 parent[source] = None
3 coax[source] = True
4 Q.put(source)
5 while Q ̸= ∅ do
6 u = vertex in Q with smallest cost
7 remove u from Q
8 foreach v ∈ neighbours(u) do
9 if capacity(u, v) == coaxCapaxity then

10 if coax[u] == False then
11 continue

12 coax[v] = True

13 else
14 coax[v] = False

15 alt = dist[u] + distance_between(u, v)
16 if alt < dist[v] then
17 dist[v] = alt
18 parent[v] = u
19 Q.put(v)

20 return dist

	Introduction
	Preliminaries
	Problem statements
	Terms and notation

	Proof of NP-completeness
	PC-LAN
	LAN-Forcea
	LAN-Forceh

	LAN-Forcea
	Focus on net cascades
	Reduction techniques
	Optimisation
	Heuristic

	LAN-Forceh
	Reduction techniques
	Optimisation
	Heuristic

	Results
	LAN-Forcea
	LAN-Forceh

	Outlook
	Conclusions
	List of Figures
	List of Tables
	SCF model for PC-LAN
	SCF model for LAN-Forceh
	Dual Ascent example
	Modified Dijkstra algorithm

