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Abstract

Here we present an approach to assign identical partial charges to atoms with chemically
equivalent environments. We show how atoms of a molecule can be grouped into sets of
atoms with equivalent environments by comparing the atom neighborhoods with sub-
graph isomorphism and graph canonization. As an extension to the charge assignment
problem, we introduce the symmetric charge assignment problem where the task is to
select a charge for every atom of a molecule from a range of candidate charges. Charges
have to be selected such that chemically equivalent atoms receive the same charge and
such that the sum of partial charges matches the total known charge of the molecule
with a slight margin for error. Each candidate charge has a score that is based on the
observed frequency of that charge in a database of already parameterized molecules.
By selecting charges that maximize the sum of scores under these conditions we assign
charges that are frequently assigned in similar chemical environments. We show that
the symmetric charge assignment problem can be modeled as a multiple-choice knapsack
problem variant and show that our variant remains weakly NP-complete. We give an In-
teger Linear Programming formulation and design a transformation algorithm to assign
identical partial charges using an existing pseudo-polynomial time Dynamic Program-
ming algorithm. We evaluate our method on a database of about 261.000 parameterized
molecules and compare our computed charges to quantum-mechanically (QM) derived
charges. We show that our method results in very similar average charge errors, but
increases the usability of the computed charges in molecular dynamics simulations.
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1 Introduction

Molecular dynamics (MD) simulations are computational simulations of molecules and
intermolecular interactions and play a key role in modern analysis of (bio)-chemical sys-
tems. They simulate motion on a fixed time-scale as the result of forces acting between
atoms in large systems of molecules and are used to gain insight into molecular processes
like ligand binding pathways, protein folding and many more.

Force fields describe molecules and are parameterized according to the molecular struc-
ture of a molecule and the properties of a system. Partial charges in these force fields
describe the electron density on all atoms throughout a molecule. They are float val-
ues associated with each atom’s center and model electrostatic interactions. On small
molecules (with less than 40 atoms) partial charges can be fitted with an electrostatic
potential obtained from quantum mechanics (QM) calculations [1], but with larger
molecules, computational costs increase significantly [2].

As noted by Malde et al. [1], partial charge assignment is a major challenge in the devel-
opment of force fields, as it is not possible to relate partial charges to physical observable
values. Partial charges are just an approximation to the electron distribution and meth-
ods to assign these partial charges are based on assumptions made to the underlying
physics.

This paragraph is based on the introduction given in (Engler et al., [2]). The local en-
vironment of an atom is described by the surrounding atoms and their bonds in close
proximity to the atom. The local environment influences the partial charge of an atom
heavily which opens up the possibility to estimate partial charges of an unparameterized
molecule based on charges assigned in equivalent local environments of other molecules.
Equivalent local environments have the same local pattern of connected atoms and
thus similar chemical properties. Therefore, we can assign charges to atoms of a query
molecule by referring to the charges assigned in already parameterized molecules that
contain environments equivalent to the query molecule atom environments. Since partial
charges are just an approximation, the charges assigned to equivalent environments in
different reference molecules can vary. If we screen a database of already parameterized
molecules for charges assigned in equivalent atom environments, we end up with a range
of possible charges for every atom of the query molecule. Standard approaches to as-
signing charges are to then simply take average of the candidate charges as the assigned
charge, but these approaches often fail to match the total charge of a molecule.

The charge assignment problem as formulated by Engler et al. [2] is to select a charge
from a range of candidate charges for every atom of the query molecule such that the
sum of charges is close to the known total integer charge, and such that the frequency,
with which the charges occur in equivalent environments of the reference molecules, is
maximized. Selecting charges that maximize the score leads to charges frequently as-
signed in equivalent environments.
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ε-MCKP is a multiple-choice-knapsack based approach by Engler et al. [2] to solve the
charge assignment problem and, whilst charges selected with ε-MCKP are on average
comparable to the reference charges [2], ε-MCKP sometimes assigns inconsistent charges,
with atoms of a molecule that have equivalent environments receiving different charges.

Partial charges with differing values on equivalent chemical groups are inappropriate for
molecular dynamics simulations [1]. A molecule with these differing partial charges could
show different properties of otherwise identical functional groups, for example, ligands
might only interact with one side of a protein that actually has two identical binding
sites, reducing the predicted protein’s activity by 50%. This results in inaccurate force
field descriptions of the molecules.

1.1 Objective

In this bachelor thesis we aim to improve the consistency, reliability and symmetry of
partial atomic charge assignment within drug-like molecules by introducing the sym-
metric charge assignment problem which, in addition to the charge assignment problem,
requires assigned charges to be identical on atoms with chemically equivalent environ-
ments. To solve the symmetric charge assignment problem, we introduce a generalization
of ε-MCKP, called ε-EMCKP and then show how ε-EMCKP can be solved with Integer-
Linear-Programming and Dynamic Programming. We explain how identical atom neigh-
borhoods can be identified and grouped into equivalence sets to use in conjunction with
ε-EMCKP for assignment of identical partial charges.

We evaluate the accuracy of ε-EMCKP with a leave-one-out analysis in which we simu-
lated the assignment of charges on new molecules not included in a database. Our data
set (reference and validation data) is a snapshot of the Automated Topology Builder
(ATB) and Repository [1] that contains roughly 261.000 molecules. ATB charges are
calculated on the density functional theory (DFT) level of quantum mechanics with
an electrostatic potential fitting approach (ESP) based method. Average charge errors
(compared to the ATB) of our method are almost identical to those of ε-MCKP whilst
providing more consistent and reliable charges on molecules that contain atoms with
equivalent environments.

1.2 Preliminaries

Like in (Engler et al., [2]), molecules are defined as molecular graphs G = (V,E, t) where
vertices v ∈ V are atoms, edges {u, v} ∈ E are bonds between atoms u and v and a
function t : V → Σ labels atoms by their atom type (alphabet Σ). Bonds between
atoms are usually described in chemistry by an additional parameter that indicate the
number of electrons used in that bond (single, double and triple bonds) but Engler et al.
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[2] did not include the bond type, as (Martin Engler, personal communication, July 23,
2019) bond-types would be inferred by a set of arbitrary rules and their chemical ex-
perts were of the opinion that bond types had a neglect-able influence on partial charges.

As atom types we use the IACM type code of the GROMOS force field. This type code
gets assigned by the ATB. Instead of providing a single label for every chemical element,
there are multiple different labels for the chemical elements, e.g. oxygen has five differ-
ent atom types and carbon has eight different atom types [1]. These IACM values are
inferred from the connectivity, chemical environment and sometimes net charge of the
atom [1]. Therefore, IACM atom types provide a more detailed and specific description
of the local atom environment than the chemical elements.

2 ε-MCKP

Engler et al. [2] describe the problem of assigning partial charges to atoms of a query
molecule from a set of candidate charges with a multiple choice knapsack approach. Ev-
ery atom i of a molecule is mapped to a class Ni that contains items j with weights wi,j

corresponding to candidate partial charges and profits pi,j corresponding to the charge’s
score. This score depends on the frequency with which the candidate charge is observed
in equivalent atom neighborhoods of other molecules. The known total charge of the
query molecule is mapped to the capacity c and the sum of assigned partial charges has
to equal this total charge. The error ε limits the maximal allowed difference between
the sum of assigned charges and the known total charge.

Engler et al. [2] assign the charges by selecting one item from each class such that these
selected items maximize the sum of profits (the score of a solution). They subject the
sum of selected item’s weights to be in the range [c− ε, c+ ε] which, in combination with
maximization of profits, yields an optimal solution to ε-MCKP and thus to the charge
assignment problem. The weight wi,j of the selected item j in class Ni represents the
charge that they assign to the atom i.

Definition 2.1 (ε-MCKP, decision version). Given a variable K ≥ 0, capacity −∞ <
c <∞, error ε ≥ 0, m classes N1, . . . , Nm of items j ∈ Ni with profit pi,j ≥ 0 and weight
−∞ < wi,j < ∞, select exactly one item from each class, such that the sum of weights
of the selected items is in the range [c − ε, c + ε] and the sum of profits of the selected
items is equal or larger than K.

2.1 Solving ε-MCKP with Dynamic Programming

Engler et al. [2] have provided two algorithmic ways of solving ε-MCKP, one with Integer
Linear Programming and one that is an adaption to the pseudo-polynomial Dynamic
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Programming (DP) MCKP algorithm.

The DP algorithm requires weights, capacity and error to be positive and integer, since
they dictate the size of the DP-table P and are used in the step-wise bottom-up creation
of the DP-table. Multiplying weights and error with an appropriate factor results in in-
teger values. For every class Ni, integer weights wi,j are then converted to non-negative
integer weights w̃i,j that are defined by subtraction of the weight by the minimum weight
of their class. The capacity c̃ is defined by subtracting the original capacity with the
minimum weights of all classes.

The size of P is m × (c̃ + ε̃) where m is the total number of classes, c̃ is the converted
capacity and ε̃ is the converted error. The converted values are used for the remainder
of the DP algorithm.

The field P [k, d] of the DP-table contains the highest profit and optimal solution that
can be achieved with a sum of charges that equals exactly d with a solution using exactly
one item from each of the first k classes. P [k, d] is calculated as the maximum profit
over all items j of class k we get by adding the profit of item j to the profit that was
achieved by an optimal solution for capacity d− wk,j with the first k − 1 classes.

P [k, d] has the value −∞ if there is no solution to reach d by using exactly one item
from each class of the first k classes. The starting point of the recursion is P [0, 0] = 0
and all other fields are −∞.

P [0, d] =

{
0 if d = 0

−∞ else

P [k, d] = max

{
P [k − 1, d− wk,j] + pk,j for j ∈ Nk and d− wk,j ≥ 0

−∞

Since an optimal solution is allowed to have a capacity in the range [max(c̃− ε̃, 0), c̃+ ε̃],
an optimal solution can be found by backtracking which items were used to build the
maximum profit p∗ with

p∗ = max{P [m, d] : max{c̃− ε̃, 0} ≤ d ≤ c̃+ ε̃}

If p∗ is −∞, then there exists no solution to ε-MCKP, since no combination where we
take one converted item from each class equals a sum of weights in the range [max(c̃−
ε̃, 0), c̃ + ε̃]. This means that there is no combination of items with one item from each
class whose original unconverted sum of charges is in the range [c− ε, c+ ε].
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2.2 Limitation of ε-MCKP

Every atom has a set of possible charges (class Ni) and each of these charges has a
profit. The purpose of a standard multiple choice knapsack (MCKP) problem is to
identify items that maximize the profit whilst not exceeding the capacity [see [3]] with
selection of one item from each class. Often the consequence of this is selecting items
that do not have the highest profit of their class, because the trivial solution of only
selecting the best items in each class would not fit the given capacity.

ε-MCKP alters the standard MCKP and constraints the sum of weights to a range
[c − ε, c + ε], with ε being a user-defined fixed allowed error from the total charge.
Sometimes those charges with the highest profits/frequencies, i.e. the ones most often
occurring in equivalent sub-molecules, still can not be selected on every atom. Then in
some (or all) classes items have to be selected that do not have the highest profit.

In some cases, dependent on the molecule and all candidate charges and profits, this may
lead to different selected items on atoms that have equivalent environments. This is not
ideal, as atoms with equivalent environments within a molecule should have the same
charge assigned to them, since that environment is the only partial charge determining
factor in ε-MCKP.

This issue is of particular importance when looking at molecules with reoccurring frag-
ments like some proteins consisting of identical repeated subsections. Here we would
expect atoms in repeating identical structures to have a charge that is consistent (iden-
tical) across all repeated sections. With ε-MCKP, there are no constraints to the charges
other than the total sum condition.

The consequence of this can be seen when assigning partial charges to Benzene (molID
342920), see Fig. 1. According to the structure of Benzene, we would expect all carbon
atoms and all hydrogen atoms to have the same charge as they all have identical local
environments. With ε-MCKP, the C1-atom gets a charge assigned that is different from
the other partial charges of the carbon atoms C2 to C6, whereas we would expect the
charge to not differ at all from the other carbon charges. As expected, the hydrogen
atoms are all assigned the same charge.

Overall, these wrongly assigned charges that appear sometimes, make the charges as-
signed with ε-MCKP unreliable, as this behavior can not be predicted beforehand and
is random. In this Benzene molecule example, any of the other carbon atoms could have
received the different charge instead of the C1-atom, as they are all co-optimal solutions
to the one displayed.
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Figure 1: Benzene (molID 342920) charges assigned with ε-MCKP. The data set used
was the one used in the leave-one-out analysis. Double bonds are not included.
Note that the C1 atom gets a different charge than the C2 to C6 carbon atoms

To change this, we only allow solutions that assign the same charge to all atoms with
equivalent environments. We supply additional information about which atoms should
get the same charge assigned to them, according to the similarity of their local envi-
ronments. We describe how those atoms get identified, grouped together to equivalence
sets and how ε-MCKP needs to be modified to process this additional information and
assign charges accordingly.
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3 Atom neighborhoods

Like Engler et al. [2], we represent atom environments by k-neighborhood induced sub-
graphs. The k-neighborhood of an atom is the set that consists of all atoms that are at
most k bonds away from the atom. The k-neighborhood induced subgraph includes the
k-neighborhood and all edges between the vertices of the k-neighborhood.

We define a k-neighborhood of a node like in (Engler et al., [4]) and (with a slightly
different notation) like in (Engler et al., [2]).

Definition 3.1 (k-neighborhood). The k-neighborhood of a node u ∈ V is defined
recursively as the set of nodes, for which a path of length ≤ k exists:

Nk(u) =

{
{u}, if k = 0

Nk−1(u) ∪ {{w|(v, w) ∈ E, v ∈ NK−1(u)}} if k ≥ 1

3.1 Comparing local atomic environments

To determine whether atoms have the same chemical environment, we compare the struc-
tural properties of their neighborhood-induced subgraphs with subgraph isomorphism.

Vertices (atoms) v ∈ V in molecular graphs are colored with a function t : V → Σ to
atom types Σ. Molecular (sub)-graphs are isomorphic if they are structurally identical
and the node colors are also identical. This can be defined by the existence of a bijec-
tion which transforms one (sub)-graph into the other whilst keeping the graph structure
(edge relations) and vertex coloring the same.

Definition 3.2 (Isomorphism of molecular graphs). G = (V,E, t) is isomorphic to
G′ = (V ′, E ′, t′) if there exists a bijective function f : V → V ′ such that

∀u ∈ V : t(u) = t′(f(u))

∀u, v ∈ V : {u, v} ∈ E ⇔ {f(u), f(v)} ∈ E ′

We call the k-neighborhoods Nk(u) and Nk(v) of two different nodes (atoms) u, v ∈ V
of a molecular graph identical if the k-neighborhood induced subgraphs G[Nk(u)] and
G[Nk(v)] are isomorphic to each other. This represents atoms u and v having equivalent
chemical environments.

We sometimes refer to atoms of a molecule with identical k-neighborhoods as symmetric
in the rest of this thesis. Note that this does not imply the existence of a symmetry axis
on which the whole molecule or the atom neighborhood is mirrored, this is just another
term for describing that two atoms have identical k-neighborhoods and therefore should
get identical charges.
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Figure 2: Overview of partial charge assignment mechanism in ε-MCKP. For each atom,
charges get collected from molecules with isomorphic k-neighborhoods, then
get condensed to a histogram from which an optimal solution is selected.
Source: [2]

3.2 Isomorphism classes

In an isomorphism class all members are isomorphic to each other.

To assign charges with ε-MCKP, Engler et al. [2] only use the molecule structure to
collect reference charges from atoms with equivalent neighborhoods in other molecules
and not afterwards. In that collection step, they determine the membership of the atom
neighborhood induced subgraph to an isomorphism class for every atom of the query
molecule. Then they can collect the charges from already parameterized atoms whose
neighborhood induced subgraphs are members of the same isomorphism class to create
a range of possible charges for every atom of the query molecule (see Fig. 2).

3.3 Symmetric charge assignment problem

In the symmetric charge assignment problem, the task is to assign partial charges to
all atoms of a molecule from a set of candidate charges such that the sum of all partial
charges equals a known total charge with an allowed margin for error, and to assign
charges such that all chemically equivalent atoms receive the same charge.

We group all atoms of a molecule into equivalence sets, where all atoms of an equivalence
set have identical neighborhoods.
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3.4 Classification into equivalence sets with canonical keys

A canonical form is a function that assigns to each labeled graph an isomorphic labeled
graph that is a unique representative of its isomorphism class [see [5]]. A canonical key
is the string representation of that unique representative.

As noted in (Engler et al., [2]), to collect the candidate charges, we match the k-
neighborhood induced subgraph G[Nk(v)] of every atom v of the query molecule against
the repository. If there is no match, we try to match the k − 1-neighborhood induced
subgraph G[Nk−1(v)] again and we do this iteratively until k equals zero. The canonical
key of the isomorphism class of the first neighborhood-induced subgraph G[Nk′(v)] with
k ≥ k′ ≥ 0 for which a matching isomorphism class is found in the repository, is taken
to represent the neighborhood of atom v. For this isomorphism class of G[Nk′(v)] the
charges in the repository are collected and the canonical key serves as an identifier to
the atom neighborhood induced subgraph isomorphism class.

To create the equivalence sets, we compare the canonical keys of the successfully matched
k′-induced neighborhood subgraphs of all atoms. If atoms have the same canonical key
then they have equivalent k′-neighborhoods (as they belong to the same isomorphism
class) and we place them into the same equivalence sets.

Due to the canonical keys being required to collect the reference charges, we only add
the computational effort it takes to split the atoms into equivalence sets where all atoms
have identical keys. We classify the atoms by using a dictionary/hash-map and mapping
the atoms by their canonical key. If a collision of keys during mapping happens, then
these atoms have identical k′-neighborhoods and are put into the same equivalence set.

3.4.1 Limitations with different sized neighborhoods

A limitation with different sized neighborhoods in a molecule is that atoms with differ-
ent k-neighborhoods but identical smaller k′-neighborhoods could be grouped into the
same equivalence set. This might happen if on two different atoms u, v ∈ V the sub-
graphs G[Nk(u)] and G[Nk(v)] have no matches within the repository but the subgraphs
G[Nk′(u)] and G[Nk′(v)] with k′ < k are successfully matched and are identical. There-
fore they yield the same canonical key and the same charge distributions. The results
is: the k-neighborhoods are different but the atoms are put into the same equivalence set.

We explain this behavior by assuming that the k-neighborhoods G[Nk(u)] and G[Nk(v)]
are not representative enough of the atom’s local environment, because they have no
matches in other molecules. Instead we think that the k′-neighborhoods are more suited
for representation since they occur in other molecules. For us, this justifies grouping the
atoms together even though their k-neighborhoods are different.
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4 ε-EMCKP Formulation

We need to modify the ε-MCKP formulation to include the additional information on
equivalence sets. In this section we create an extended model of ε-MCKP which includes
these equivalence sets to assign identical charges.

As a generalization of ε-MCKP, we define the ε-Equivalence-Multiple-Choice-Knapsack-
Problem (ε-EMCKP) which adds the equivalence sets E1, . . . , Ek to the ε-MCKP for-
mulation. Like ε-MCKP is similar to the charge assignment problem [2], ε-EMCKP is
similar to the symmetric charge assignment problem. We map atoms i to classes Ni with
weights wi,j and profits pi,j and the total charge of a molecule to capacity c. Chemically
equivalent atoms are grouped into equivalence sets {E1, . . . , Ek}. In a feasible ε-EMCKP
solution, all classes in an equivalence set have to have the same item selected in order
to assign identical charges to equivalent atoms.

A prerequisite for every equivalence set El is that all classes Ni with i ∈ El are required
to have element-wise identical weights and profits. This is needed because to select
identical items, all atoms of an equivalence set need to have the same select-able items
in the first place. We call two items of different classes the same if their weights and
profits are identical.

Definition 4.1 (ε-EMCKP, decision version). Given

• a variable K ≥ 0,

• capacity −∞ < c <∞,

• error ε ≥ 0,

• m classes N1, . . . , Nm of items j ∈ Ni with profit pi,j ≥ 0 and weight −∞ < wi,j <
∞,

• k disjoint non-empty equivalence sets E1, . . . , Ek of items i ∈ {1, . . . ,m} with the
identifier i of each class Ni being in exactly one equivalence set and all classes in
an equivalence set having the same items,

select exactly one item from each class Ni such that the sum of weights of the selected
items is in the range [c− ε, c+ ε] and such that the sum of profits of the selected items
is equal or larger than K and such that for each equivalence set El ∈ {E1, . . . , Ek} the
same item j is selected in both classes Ni and Ni′ if i, i′ ∈ El.

Note that if two classes Ni and Nj have identical weights and profits this does not imply
that they have to be in the same equivalence set El.
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4.1 Complexity

Since ε-EMCKP is a generalization of ε-MCKP, we can deduce that it is weakly NP-
complete as well. This is shown in the formal proof below:

Theorem 4.2. (ε-EMCKP) is weakly NP-complete.

Proof. We first have to show that ε-EMCKP is in NP:
On a given ε-EMCKP instance we can verify a solution S by checking whether S would
be a valid solution to the ε-MCKP problem you obtain by omitting sets {E1, . . . , Ek}.
This verifies that only a single item has been selected from each class, that the sum of
selected weights is in the range [c− ε, c+ ε] and that the sum of selected profits is larger
than K. Since ε-MCKP is weakly NP-complete [2], this verification process can be done
in polynomial time.

We also have to verify if the items contained in S comply with the equivalence sets. This
means that for every equivalence set El ∈ E1, . . . , Ek the selected items in S that belong
to classes which are grouped together in this equivalence set El, are the same. This can
be verified in polynomial time as well by checking for each equivalence set whether there
is any difference in the selected items.

We show that ε-EMCKP is weakly NP-hard with a polynomial-time many-one reduc-
tion: ε-MCKP ≤p ε-EMCKP.
Let I be a given ε-MCKP instance with classes N1, . . . , Nm and let I ′ be the ε-EMCKP
instance we get by adding an equivalence set Ei = {i} for every class Ni to I. We
create an equivalence set Ei for every class Ni and therefore bypass the equivalence
set constraint as every class only has to have identical selected items to itself, which is
always true. By using this polynomial time transformation, instances I and I ′ become
equivalent:

S is a solution to I ⇔ S is a solution to I ′

Like Engler et al. [2], to solve the symmetric charge assignment problem we are not
interested in the decision-version of ε-EMCKP problem but rather in the optimization
version which can be obtained in a similar fashion to ε-MCKP by ”omitting [...] variable
K and maximizing the sum of profits” (Engler et al., [2]).

In the remainder of this thesis we will look at the optimization version of ε-MCKP and
ε-EMCKP.
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5 Solving the symmetric charge assignment problem

Solving the symmetric charge assignment problem with ε-EMCKP instead of solving
the charge assignment problem with ε-MCKP defines which atoms have to get identical
charges, as all atoms of an equivalence set have to get the same charge. If there are
multiple co-optimal solutions that satisfy the symmetric charges condition, then like in
ε-MCKP, one solution out of the co-optimal solutions may be freely chosen.

5.1 ILP

A straight forward way of solving ε-EMCKP is formulating the problem as an integer
linear problem and then solving it with commonly known solvers.

Engler et al. [2] have already given an ILP formulation of ε-MCKP:

maximize
m∑
i=1

∑
j∈Ni

xi,jpi,j (1a)

subject to
m∑
i=1

∑
j∈Ni

xi,jwi,j ≥ c− ε (1b)

m∑
i=1

∑
j∈Ni

xi,jwi,j ≤ c+ ε (1c)∑
j∈Ni

xi,j = 1 for 1 ≤ i ≤ m (1d)

xi,j ∈ {0, 1} for 1 ≤ i ≤ m, j ∈ Ni (1e)

xi,j is a binary variable that indicates whether item j in class Ni is selected (xi,j = 1)
or not (xi,j = 0). Constraint (1d) restricts selection of items to exactly one item for
every class and constraints (1b) and (1c) require the total sum of selected weights to be
in the range [c− ε, c+ ε]. Maximization of the profit of selected items (1a) under these
conditions results in an optimal solution to ε-MCKP.

We adapt the ILP formulation of Engler et al. [2] by adding additional constraints for
each equivalence set El ∈ {E1, . . . , Ek}.

xi,j = xi′,j for El ∈ {E1, . . . , Ek}, i = El1 , i
′ ∈ El>1 , j ∈ Ni (2)

The effect of adding constraint (2) is selection of item j in class Ni requires selection of
item j in class Ni′ and vice versa. i can be fixed to the first class of an equivalence set
(i = El1) as all classes in an equivalence set have equal weights and profits and their
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order is not of importance.

If we add constraint 2 to the ε-MCKP ILP then we get an ε-EMCKP ILP, as we add
the equivalence sets in the same manner as we first introduce them as an extension to
ε-MCKP in Chapter 4.

This results in the ε-EMCKP ILP:

maximize
m∑
i=1

∑
j∈Ni

xi,jpi,j (3a)

subject to
m∑
i=1

∑
j∈Ni

xi,jwi,j ≥ c− ε (3b)

m∑
i=1

∑
j∈Ni

xi,jwi,j ≤ c+ ε (3c)∑
j∈Ni

xi,j = 1 for 1 ≤ i ≤ m (3d)

xi,j = xi′,j for El ∈ {E1, . . . , Ek}, (3e)

i = El1 , i
′ ∈ El>1 , j ∈ Ni

xi,j ∈ {0, 1} for 1 ≤ i ≤ m, j ∈ Ni (3f)

5.2 Transformation to ε-MCKP

In this section we introduce another approach to determining an optimal solution for
ε-EMCKP.

The key idea is to transform an ε-EMCKP instance into an ε-MCKP instance, solve that
transformed instance and then transform the solution of that transformed instance back
to a solution of the ε-EMCKP instance.

In Chapter 4.1 we gave a polynomial-time many-one reduction of the decision versions
of ε-MCKP to ε-EMCKP and in this Chapter we describe a polynomial-time many-
one reduction of ε-EMCKP (optimization variant) to ε-MCKP (optimization variant),
showing that we can solve ε-EMCKP optimally by solving the transformed ε-MCKP
instance. We use this transformation because Engler et al. [2] have already designed a
pseudo-polynomial time algorithm for ε-MCKP which we want to use to solve ε-EMCKP.

A key requirement to this transformation process is that all atoms of an equivalence
set must have equal weights and profits. Atoms grouped into equivalence sets by their
neighborhoods automatically fulfill this requirement since their subgraphs have the same
isomorphism class and the atoms then get the same weights and profits.
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Figure 3: Schematic process of solving an ε-EMCKP instance by transforming it into an
ε-MCKP instance, solving that and transforming the solution to the ε-EMCKP
instance. The first two classes were chosen as equivalent. Marked in red is a
selected solution

An ε-EMCKP instance I can be transformed into an ε-MCKP instance I ′ by combining
all classes in an equivalence set to a single class by summing up their weights and profits
element-wise. In any feasible solution to ε-EMCKP, the same item must be selected on
all classes of an equivalence set and thus we can combine these items that always have
to be selected together without compromising on feasibility and optimality of solutions.

Algorithm 1 Transform ε-EMCKP to ε-MCKP

1: for El ∈ {E1, . . . , Ek} do
2: for i ∈ El do
3: for j ∈ Ni do
4: w′l,j ← w′l,j + wi,j

5: p′l,j ← p′l,j + pi,j

6: create class N ′l with items j = (w′l,j, p
′
l,j)

7: ε′ ← ε
8: c′ ← c
9: return I ′ = ({N1, . . . , Nk}, c′, ε′)

The resulting ε-MCKP instance I ′ now only has one class N ′l for every equivalence set
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El of the ε-EMCKP instance. Capacity c and error ε stay the same between I and I ′.

I ′ can then be solved with any algorithm suitable for ε-MCKP. We call that solution S ′

in the following.
To build a solution S for the ε-EMCKP instance I, we do the opposite process of the
transformation: If item j has been selected on class N ′l in S ′ we need to select item j in
all classes Ni where i ∈ El (select item j in all classes that are combined into N ′l ). This
process does not alter the score (sum of profits) or total charge (sum of charges) of a
solution, as any selected item j in S ′ consists of the items j that gets selected in S.

Theorem 5.1. Let I be an ε-EMCKP instance and I ′ be the ε-MCKP instance that is
the result of applying Algorithm 1 on I. Let S ′ be a solution to I ′ and S be the solution
to I that is build from S ′ by reversing Algorithm 1. Then I and I ′ are equivalent:

S ′ is a feasible solution to I ′ ⇔ S is a feasible solution to I

S ′ is an optimal solution to I ′ ⇔ S is an optimal solution to I

The proof can be found in Appendix A.

We introduced an algorithm to transform ε-EMCKP instances into ε-MCKP and have
shown that ε-EMCKP can be solved optimally with any algorithm that solves ε-MCKP
optimally.

5.2.1 Improving the transformation algorithm

Summing up all weights element wise as implemented in Algorithm 1 requires looking
at every single weight in the ε-EMCKP instance. This has a worst case running time
of O(m · |Nmax|) where m is the number of classes and |Nmax| is the size of the largest
class, since each class is contained in exactly one equivalence set.

This algorithm and the running time can be further improved upon by incorporating
the fact that all classes of an equivalence set have to have element-wise identical weights
and profits. This allows for not looking at each weight and profit of every class, but only
looking at each weight and profit of the first class of every equivalence set.

Instead of element-wise addition of the same weight/profit over and over again, we can
simply multiply the weight/profit of the first (or any) class that is contained in the
current equivalence set by the times it gets added up which is the number of classes
contained in that current equivalence set:

w′l,j =
∑
i∈El

wi,j = |El| · wl1,j
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Algorithm 2 Improved Transformation of ε-EMCKP to ε-MCKP

1: for El ∈ {E1, . . . , Ek} do
2: i← El1

3: for j ∈ Ni do
4: w′l,j ← wi,j ∗ |El|
5: p′l,j ← pi,j ∗ |El|
6: create class N ′l with items j = (w′l,j, p

′
l,j)

7: ε′ ← ε
8: c′ ← c
9: return I ′ = ({N1, . . . , Nk}, c′, ε′)

Given the same input instance, Algorithm 1 and Algorithm 2 produce the same output
instance.

Algorithm 2 has a worst case running time of O(k · |Nmax|) where k is the number of
equivalence sets and |Nmax| is the size of the largest class. This improved algorithm also
uses fewer read accesses.

If we have fewer equivalence sets than classes (k < m) then Algorithm 2 is faster than
Algorithm 1.

If we do not have fewer equivalence sets than classes then each equivalence set has ex-
actly one element and k equals m. Then we can omit the equivalence sets completely,
skip the transformation and solve ε-MCKP because in every class the selected charge
only has to be identical to itself (like in Theorem 4.2).

Algorithm 2 is always favorable to Algorithm 1, because it is always faster unless k = m,
in which case we can skip the transformation altogether.

5.3 LP Relaxation

As we have shown, ε-EMCKP is a weakly NP-complete (or weakly NP-hard in the op-
timization variant) problem.

Solving the linear program relaxation is a common way of simplifying an NP-hard inte-
ger linear program by dropping the integrality constraint and allowing the variables to
be continuous.

In this case, to relax the ε-EMCKP ILP, the 0/1 constraint

xi,j ∈ {0, 1} for 1 ≤ i ≤ m, j ∈ Ni
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is replaced by allowing the variables to be float values in the range [0, 1]:

0 ≤ xi,j ≤ 1 for 1 ≤ i ≤ m, j ∈ Ni

To get a charge for each atom i of a molecule, instead of choosing the single charge wi,j

where xi,j = 1, the sum of charges
∑

j∈Ni
xi,jwi,j yields the charge to atom i with the

sum of profits
∑

j∈Ni
xi,jpi,j being its score.

By relaxing the integrality constraint we are able to freely combine items within a class.
The symmetric charge assignment problem and charge assignment problem by Engler
et al. [2] can be solved efficiently, if we allow the partial charges to deviate from the
reference charges.

5.4 Mean, Median or Mode Selection

There are three more alternative baseline methods described by Engler et al. [2] for
assigning partial charges to the atoms of a query molecule. For every atom, the partial
charge is calculated as an average of the collected charges of that neighborhood. The
charge for each atom gets assigned independently from the other atoms.

• Mean: The arithmetic mean of the collected charges is the assigned charge, calcu-
lated by dividing the sum of charges by the number of charges.

• Median: The middle value of all collected charges (ordered from lowest to highest)
is the assigned charge. If there is an even number of charges, the mean of the two
middle values is the median charge.

• Mode: The mode of the histogram (the charge that appears most often) is the
assigned charge. On multimodal histograms, the mode closest to the median is
the selected mode.

With these baseline methods of selecting a partial charge as some type of average, as-
signment of symmetric charges happens automatically. All atoms with identical neigh-
borhoods get identical charge distributions and for each of those atoms, the same value
gets selected (as the charge distributions all share the same mean/median/mode value).

These methods are therefore capable of assigning identical charges to symmetric atoms,
but they do not necessarily deliver a solution to the symmetric charge assignment prob-
lem. Like described by Engler et al. [2], the sum of partial charges deviates from the
required total charge, because individual charge assignment errors get accumulated.
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6 Implementation

To solve ε-EMCKP we have two options: We can either solve the ILP or we can first
reduce the classes with the transformation to ε-MCKP and then solve that ε-MCKP
instance with any suitable method. Both options are implemented in Python 3.7.3 as
additional classes in the implementation by Engler and Veen [6], called charge assign.
The source code is located in the charge assign GitHub repository [7]. The LP-relaxation
has also been implemented as a modification of the ε-EMCKP integer linear program.

ε-EMCKP can be used in the same way as the original ε-MCKP implementations and
atoms automatically get grouped into equivalence sets after the collections of charges,
requiring no additional manual steps. As a way of solving the ε-MCKP instance, the al-
ready implemented dynamic programming approach gets used. Since that can be solved
with the programming languages C and Python, both are available options for solving
ε-EMCKP as well.

6.1 Requirements

To run the tool, a python environment with the following packages is required:

• networkx

• msgpack-python

• numpy

• nauty

A key component to the implementation is nauty [5] as it is responsible for computing
the canonical keys and matching the neighborhood induced subgraphs to the repository
of molecules.

6.2 Usage

After installation or update of the charge assign library, we can use ε-EMCKP by choos-
ing the ’symmetric’ version of the available chargers and assigning charges to molecules
with it. Chargers are different Python classes that employ the different assignment
methods.
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7 Results

As a source of reference charges we used a snapshot of the ATB that contained 261.336
molecules. Only molecules with less than 50 atoms were included, as molecules with
atom counts greater than 50 have not had higher level quantum mechanics calculations
performed on them and thus were deemed to be too inaccurate to serve as reference
charges.

From these 261.336 molecules there were 151.444 molecules that were fully covered by a
fixed k = 3 neighborhood and for which ε-EMCKP was solvable. Fully coverable means
that for every atom of the query molecule at least one molecule with an isomorphic
k-neighborhood induced subgraph was found in the repository.

There were a total of 6 molecules, for which ε-MCKP was solvable but ε-EMCKP was
not solvable and another 7 molecules for which partial charges could not be determined
with either ε-MCKP or ε-EMCKP but for which partial charges could successfully be
assigned using the simpler methods of selecting the mean, median or mode.

7.1 Methodology

To evaluate our methods, we have used the same leave-one-out-analysis that has been
used by Engler et al. [2] and supplied with the implementation by Engler and Veen [6].
For each query molecule, a repository that was filtered of all molecules isomorphic to the
query molecule, was created to simulate the assignment of charges for new molecules not
included with the database. With these filtered repositories the charges for all atoms
of the fully coverable molecules were determined. Afterwards, the distance between the
computed charge and the ATB assigned charge was calculated for each atom to deter-
mine the charge error.

We opted for a fixed k = 3 shell size as the neighborhood size because Engler et al. [2]
have used a fixed k = 3 neighborhood as well. Martin Engler (personal communication,
June 18, 2019) explained that selecting the right shell size is a trade-off between coverage
and accuracy as a lower shell size provides a higher probability to cover the whole query
molecule while a higher shell size results in more accurate charges. He said that a shell
size of 3 is a sweet spot, as it allows fully matching aromatic rings which gives a large
boost in accuracy compared to shell sizes of 2, 1 or 0.

Fully matching an aromatic ring means that on Benzene-like rings (and all rings of up
to 6 atoms) the 3-neighborhood induced subgraph of every atom in a ring includes the
whole aromatic ring and attached side chains (apart from a potential side-chain on the
opposite sided atom). Charges collected from reference molecules have to belong to a
very similar ring structure and should in return be quite accurate. Matching the whole
ring is important as ring structures within molecules are special structures that behave
differently from other structures.
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The maximal error ε was set to 0.01 to allow some freedom in choosing the charges,
whilst keeping the maximal distance from the total charge low. We decided on this
error-value, as it was the default setting in the implementation by Engler and Veen [6]
and we had no reason to change it so something bigger or smaller in most cases. We only
changed ε = 0.01 to ε = 0 in the analysis of the LP-relaxation method, since charges
can be combined there and we expected that hitting an exact total charge would not
compromise on the charge accuracy as much as in ε-EMCKP.

7.2 ε-EMCKP

Figure 4: Results of the leave-one-out analysis with a fixed k = 3 neighborhood, showing
the average distance between the computed charges to the charge found in the
ATB. ε has been set to 0.01. GROMOS IACM types have been used for atom
type labeling. Average distances are grouped by atom type. Column ’Total’
is the total charge of the molecule (sum of all partial charges).

Average charge distances of ε-EMCKP and ε-MCKP are nearly identical on all atom
types. Molecules charged with ε-EMCKP and ε-MCKP only differ on a handful of
atoms, sometimes the assigned charges are completely identical, as ε-MCKP will assign
identical charges if it happens to be the highest scoring solution. In the other cases
where the methods produced different charges on equivalent atoms, charges on most
atoms are still identical between ε-EMCKP and ε-MCKP and just a few charges are
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adjusted between ε-MCKP and ε-EMCKP.

Apart from the total charge difference of the molecule, phosphorus shows the largest gaps
between the different charge-methods. This difference between methods is explained by
the number of phosphorus atoms for which charges were assigned, as there were only
3207 phosphorus atoms on the 151.444 evaluated molecules. In contrast, there were
1.927.400 partial carbon atom charges assigned. The average charge error on phospho-
rus is low nonetheless and we attribute this to the few reference charges that were found
for phosphorus being very specific and accurate to the chemical environment whilst there
is a large range of different charges for carbon atom neighborhoods.

As with the results of Engler et al. [2], the method of selecting the median charge still
produces the charges with the lowest average distance to the ATB assigned charge, but
with the total charge showing a large distance to the actual total charge.

We will note here that, as with all these charges from the ATB, there is no definitive right
or wrong partial charge. Force fields and different models all have their own assumptions
to physics and assign different partial charges. For Benzene, there are currently two more
possibilities of assigned charges in the ATB and probably many more in different force
fields. But all possibilities of assigning realistic charges to Benzene will have uniform
charges across carbon atoms and across hydrogen atoms in common.
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7.3 LP-Relaxation

Figure 5: Results of the leave-one-out analysis with k = 3 showing the average distance
between the computed charges to the charge found in the ATB. GROMOS
IACM types have been used for atom type labeling. The relaxed ε-EMCKP
has been run with ε = 0 and with ε = 0.01.

The average charge errors of the relaxation with ε = 0.01 are close to the integer ε-
EMCKP charge errors, with some atom types (C, H, O) having slightly worse averages
and some (S, N, Other) being slightly better. These artificial combined charges are
on average then not much better and not much worse than selecting straight from the
QM-derived charges with ε-EMCKP. Thus the relaxation seem to provide reasonable
estimates at the partial charges, like the other methods do as well, whilst reducing the
theoretical complexity.

The relaxation of ε-EMCKP always produces scores that are better than those of the
integer ε-EMCKP. An optimal solution of the integer ε-EMCKP is always a solution
to the relaxed ε-EMCKP, but an optimal relaxed ε-EMCKP solution might not be an
integer ε-EMCKP solution. This higher score comes at the cost of an increased devi-
ation from the total charge if allowed. Notice that almost every molecule has a total
charge difference of 0.01 in the relaxation with ε = 0.01, as the average total charge
difference is about 0.0098. This means that the total charge of a molecule charged with
the relaxation method will be close to the edge of the allowed difference almost every
time.
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Restricting charges to match the exact total charge (ε = 0) mostly affects carbon, ni-
trogen and phosphorus atoms. This can be once again explained by a low number of
phosphorus atoms and a large range of carbon charges. It is important to note that even
though the nitrogen average charge error is increased by decreasing ε to zero, it is still
better than the average charge error of nitrogen in ε-EMCKP and ε-MCKP.

7.4 Atom label alphabet

Figure 6: Results of the leave-one-out analysis with k = 3 showing the average distance
between the computed charges of ε-EMCKP to the charge found in the ATB.
Atom labels consist of normal atom types (periodic table naming) and GRO-
MOS IACM atom labels.

GROMOS IACM atom labels provide a boost to the accuracy of the assigned charges as
the isomorphism classes get more specific to the local atom neighborhood. We suspect
that the reason for this accuracy improvement is that the IACM labels are assigned ac-
cording to the neighbors and bond types between the atoms. In some cases these IACM
labels might include information about atoms that are not part of the k-neighborhood
but have an influence on the partial charge.

Using IACM types as atom labels sometimes comes at the cost of not being able to cover
a molecule, as 167.710 molecules were fully covered with periodic table atom labels and
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151.444 molecules were fully covered with IACM atom labels. We assume that on the
molecules that were not fully covered with a fixed k = 3 neighborhood size and IACM
labels, the assigned IACM labels were too specific to find a match for in the repository
of molecules.

Since they provide a boost in accuracy, the IACM atom labels should be used where
possible.

7.5 Limitations of the atom-neighborhood driven approach

The molecules decane (molID 2589) and to even more extreme extent hexadecane (molID
6329) are examples for where the neighborhood driven approach (in ε-MCKP and ε-
EMCKP) reaches its limits and fails in accurate equivalence set detection.

Both molecules are simple alkanes: single bonded carbon chains surrounded by hydrogen
atoms (called hydrocarbon chains). Alkanes are totally symmetrical molecules that are
mirrored at the center of the molecule and can consist of arbitrarily many repeated CH2

sections between the two CH3 ends.

If a shell size of k = 3 is chosen as the neighborhood size then for example on decane, the
four innermost carbon atoms (C4 - C7) are put into the same equivalence set. According
to the ATB this equivalence set should be split into two equivalence sets. See Fig. 7.

The k-neighborhood induced subgraphs of the four innermost carbon atoms are all iso-
morphic on a k = 3 neighborhood size, since that size is not large enough to include the
three hydrogen atoms connected to the C1 or C10 atom. This structure (three hydrogen
atoms connected to one carbon atom) only occurs at the end of an alkane. It functions
as somewhat of a reference point to an atoms location within the molecule. Because
this structure is not included in any of the C4 to C7 induced neighborhood graphs, the
position of those four innermost carbon atoms, relative to an end of the molecule, can
not be fixed and in return they are grouped into the same equivalence set.

A similar observation, but on a larger scale, is made when assigning charges to hexade-
cane (or much larger alkanes) with a k = 3 neighborhood size.

As noted by Engler et al. [2], there is a trade off between choosing a larger neighborhood
size k for more specific charges that comes at cost of the number of different charges to
choose from. The larger alkanes we look at, the higher we have to increase the neigh-
borhood size to get the actual equivalence sets. Since we can think of arbitrarily large
alkanes, apart from not having enough computational power to compute large equiv-
alence sets, we can reach a point where there are no large enough reference molecules
in the database anymore. Then equivalence sets and resulting charges are reduced to a
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lower size and a similar pattern to the shown pattern on decane will emerge.

This example on alkanes illustrates that equivalence detection on with a neighborhood-
based approach can lead to a false detection of equivalent atoms if the neighborhood
size k is too low. In combination with ε-EMCKP this can result in false enforcement of
identical charges.

Figure 7: Visual equivalence set representation of carbon atoms in decane (molID 2589).
On the top are equivalence sets in the ATB and on the bottom are the equiva-
lence sets found by the ε-EMCKP implementation. Equivalence sets of hydro-
gen atoms have been left out in this figure. All carbon atoms of one color are
included in the same equivalence set. Marked in gray shades are the equiva-
lence sets that are the same between the ATB and ε-EMCKP. Marked in blue
is the additional equivalence set that exists in the ATB but is not found by
ε-EMCKP with k = 3.

8 Discussion

Charges found by the ε-MCKP implementation and the ε-EMCKP implementation are
often indistinguishable and vary only on a few atoms of a molecule, if they vary at all. As
ε-MCKP most of the time assigns charges close to the largest mode of the charge distribu-
tions [2], ε-EMCKP also assigns charges that are close to the largest mode. Atoms with
equivalent neighborhoods receive the same charge distributions and often then the same
charge is selected both by ε-MCKP and ε-EMCKP. On the random sample molecules we
used during testing, most atoms of the molecules were assigned the same charge both
by ε-MCKP and ε-EMCKP and only a fraction of the atoms showed different values at
all. This also explains the similar average charge errors between ε-MCKP and ε-EMCKP.
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We conclude from this that the charge distributions often already indicate which atoms
have identical neighborhoods. The effect of this can be seen when solving ε-MCKP with-
out restrictions to the total charge c and error margin ε with any of the baseline methods.
Since each atom is independent of other atoms to select a charge, all atoms with identical
neighborhoods and therefore identical charge distributions already get the same charge.
Assigning identical charges is natural to the process of reference charge collection from
isomorphic neighborhoods, it is just the ε-MCKP constraint of the partial charge sum
to the total charge that sometimes results in different charges on symmetric atoms. ε-
EMCKP successfully combines the symmetric charges from the baseline-methods with
the partial charge sum constraint of ε-MCKP.

Charges assigned with ε-EMCKP are also more reliable and consistent with changing
data, as symmetric atoms will always receive identical charges, whereas with ε-MCKP,
charges on chemically equivalent atoms might be identical on one set of data and not
identical on the next set of data. As new molecules are added every day to the ATB,
this presents another advantage of ε-EMCKP over ε-MCKP.

Figure 8 shows the charges assigned to Benzene with ε-EMCKP. Not only are the partial
charges assigned to the carbon atoms now with ε-EMCKP uniform across all atoms, but
the distance of every charge to the ATB-assigned charge is smaller than the distance
of the ε-MCKP assigned charge to the ATB, even though both methods use the same
repository of data. This shows that the charges assigned with ε-EMCKP are more reli-
able than the ε-MCKP assigned charges.
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Figure 8: Benzene (molID 342920) charges assigned with ε-EMCKP

Table 1: Average distance of the computed partial charges to the ATB assigned charge
on Benzene (molID 342920).

Atom type ε-MCKP ε-EMCKP
C 0.0173 0.009
H 0.016 0.008

27



9 Outlook

What has yet to be analyzed is running time and scaling of ε-EMCKP and accuracy on
large molecules (> 50 atoms). Since the ε-MCKP DP scales linearly with the number
of items and the blowup factor and transformed capacity [2], with our transformation
of ε-EMCKP to ε-MCKP we cut down on running time since we reduce the number of
items, while the blow-up factor and transformed capacity stay the same. We noticed
a decrease in running time of the dynamic programming during manual testing. We
expect an overall decrease in running time on most molecules, as most molecules have
at least some chemically equivalent hydrogen atoms.

Engler et al. [2] have noticed partial charges on the outer atoms to be assigned well with
more buried atoms not receiving as accurate charges. We expect this trend to continue
with ε-EMCKP, as the deeper an atom is buried, the less likely we think it will be to
find an identical neighborhood within the same molecule, while on the other hand the
outer-most atoms often are hydrogen atoms for which identical neighborhoods often are
found in the same molecule.

10 Summary

We have shown that the ε-MCKP approach does not always mirror the symmetry of
neighborhoods within a molecule, as it lacks the necessity to do so. We have build a
modification of ε-MCKP to always assign symmetry-mirroring charges and showed two
algorithmic ways of solving it, one with Integer Linear Programming and one with a
transformation to ε-MCKP. We also described LP-Relaxation and the average-based ap-
proaches as alternatives to solving the symmetric charge assignment problem.

We added ε-EMCKP to the ε-MCKP implementation in Python and we then compared
the results in a leave-one-out evaluation to the existing ways of solving the charge assign-
ment problem by using a snapshot of the ATB database as reference and validation data.
We have shown that, on average, charges assigned with ε-EMCKP have a similar average
distance to QM-derived charges as ε-MCKP assigned charges but charges assigned with
ε-EMCKP are better suited for MD simulations that involve molecules with symmetric
neighborhoods. When considering a molecule in its entirety, ε-EMCKP assigned charges
are more reliable than ε-MCKP assigned charges, as the charges are always uniform
across equivalent neighborhoods. This is especially noticeable on molecules that are
highly symmetrical or consist of multiple identical subsections, as ε-MCKP sometimes
assigns strange charges that do not fit to the other assigned charges.

28



11 Acknowledgments

I am very grateful to Gunnar Klau for making this thesis possible and always taking
time. I am also grateful to all colleagues for the valuable discussions, and to Martin En-
gler and Lourens Veen for answering my questions about the paper and implementation,
providing the additional code to create Figures 1 and 8, and for proofreading. I thank
Martin Stroet for providing access to the ATB and sending the molecular data.

29



References

[1] Alpeshkumar K. Malde et al. “An Automated Force Field Topology Builder (ATB)
and Repository: Version 1.0”. In: Journal of Chemical Theory and Computation
7.12 (2011). PMID: 26598349, pp. 4026–4037. doi: 10.1021/ct200196m. eprint:
https://doi.org/10.1021/ct200196m.

[2] Martin S. Engler et al. “Automated partial atomic charge assignment for drug-like
molecules: a fast knapsack approach”. In: Algorithms for Molecular Biology 14.1
(Feb. 2019). issn: 1748-7188. doi: 10.1186/s13015-019-0138-7.

[3] Hans Kellerer, Ulrich Pferschy, and David Pisinger. “Knapsack Problems”. In:
Berlin Heidelberg: Springer-Verlag, 2004. isbn: 978-3-642-07311-3. doi: 10.1007/
978-3-540-24777-7.

[4] Martin S. Engler et al. “Enumerating common molecular substructures”. In: PeerJ
Preprints 5:e3250v1 (2017). doi: 10.7287/peerj.preprints.3250v1.

[5] Brendan D. McKay and Adolfo Piperno. “Practical graph isomorphism, {II}”. In:
Journal of Symbolic Computation 60.0 (2014), pp. 94–112. issn: 0747-7171. doi:
10.1016/j.jsc.2013.09.003. url: http://www.sciencedirect.com/science/
article/pii/S0747717113001193.

[6] Martin S. Engler and Lourens Veen. charge assign. Oct. 2018. doi: 10 . 5281 /

zenodo.1475888. url: https://doi.org/10.5281/zenodo.1475888.

[7] charge assign Github Repository. Visited: 2019-07-22. url: https://github.com/
MD-Studio/charge_assign.

30

https://doi.org/10.1021/ct200196m
https://doi.org/10.1021/ct200196m
https://doi.org/10.1186/s13015-019-0138-7
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.7287/peerj.preprints.3250v1
https://doi.org/10.1016/j.jsc.2013.09.003
http://www.sciencedirect.com/science/article/pii/S0747717113001193
http://www.sciencedirect.com/science/article/pii/S0747717113001193
https://doi.org/10.5281/zenodo.1475888
https://doi.org/10.5281/zenodo.1475888
https://doi.org/10.5281/zenodo.1475888
https://github.com/MD-Studio/charge_assign
https://github.com/MD-Studio/charge_assign


12 Appendix A

Table 2: Average distance of computed charge to ATB charge, rounded to 6 decimal
places. Data shown in figure 4

Type ε-EMCKP ε-MCKP Mean Median Mode
C 0.052527 0.05253 0.050396 0.049726 0.051636
H 0.019319 0.019327 0.01911 0.018848 0.019391
N 0.052398 0.052333 0.05148 0.050005 0.051743
O 0.023166 0.023165 0.022918 0.022438 0.02327
P 0.044815 0.044534 0.046735 0.042156 0.043853
S 0.02954 0.02955 0.029771 0.02833 0.029446
Other 0.014467 0.014453 0.014274 0.013915 0.015179
Total 0.005609 0.005819 0.167109 0.169188 0.186075

Table 3: Average distance of computed charge to ATB charge, rounded to 6 decimal
places. Data shown in figure 5

Type relaxed ε-EMCKP with ε = 0 relaxed ε-EMCKP with ε = 0.01 ε-EMCKP
C 0.052697 0.052565 0.052527
H 0.019336 0.019332 0.019319
N 0.051924 0.051834 0.052398
O 0.023235 0.023221 0.023166
P 0.048164 0.04788 0.044815
S 0.029386 0.029368 0.02954
Other 0.014392 0.014414 0.014467
Total 0.0 0.009809 0.005609

Table 4: Average distance of computed charge to ATB charge, rounded to 6 decimal
places. Data shown in figure 6

Type ε-EMCKP without IACM ε-EMCKP with IACM
C 0.054949 0.052527
H 0.020414 0.019319
N 0.054593 0.052398
O 0.024824 0.023166
P 0.045525 0.044815
S 0.032102 0.02954
Other 0.015016 0.014467
Total 0.005544 0.005609
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Proof. Proof of theorem 5.1
Let I be an ε-EMCKP instance and I ′ be the ε-MCKP instance that is the result of
applying Algorithm 1 on I. Let S ′ be a solution to I ′ and S be the solution to I that is
build from S ′ by reversing Algorithm 1.

• S ′ is a solution to I ′ =⇒ S is a solution to I

A valid solution to ε-EMCKP requires the selected items of all atoms in an equiv-
alence set to be the same. By first combining all atoms of an equivalence set
together and later selecting the same item on all atoms of that equivalence set we
satisfy that condition. Due to the sum of weights and sum of profits, the capacity
and the error being unchanged in the transformation and S ′ having to be a valid
solution, S has to be a valid solution for I.

• S ′ is an optimal solution to I ′ =⇒ S is an optimal solution to I

If S ′ is an optimal solution to I ′ and S is not an optimal solution to I then there
must exist an optimal solution Sopt to I. Therefore there must exist a solution S ′opt
to I ′ that can be transformed into Sopt. S ′opt must have a higher score than S ′,
because the score of a solution does not change and Sopt has a higher score than S,
whilst S has the same score as S ′. This is a contradiction to S ′ being an optimal
solution to I ′ and as such, S has to be an optimal solution to I if S ′ is an optimal
solution to I ′.

• S ′ is not a solution to I ′ =⇒ S is not a solution to I

If S ′ is not a valid solution, then either multiple items (or no items) were selected
in one class or the sum of weights is not within the range c− ε, c + ε. In the first
case, S will not be a solution to I, as then multiple items (or no items) would be
selected as well in some classes. In the second case, S will not be a solution to I
too, because capacity, ε and sum of selected weights are not changed between I
and I ′.

• S ′ is not an optimal solution to I ′ =⇒ S is not an optimal solution to I

If S ′ is not an optimal solution to I ′, then there must exist an optimal solution
S ′opt to I ′. As we have already shown, the solution Sopt we get by transforming S ′opt
is an optimal solution to I. S is not an optimal solution to I, as the score of Sopt

is higher, because the score of S ′opt is higher than the score of S ′ and the score of
a solution does not change with the transformation.
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