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Abstract

Single individual diploid haplotype phasing is relevant to several applications in current
research. The goal of such phasing is to identify two haplotypes that represent the se-
quences of the two sets of homologous chromosomes of a diploid individual. Several
methods for haplotype phasing have been developed. A new approach is the Maximum
Allele Co-occurrence (MAC) function, which uses sequencing read data. To phase, the
function calculates two heterozygous haplotypes. These maximise, over all reads, the
count of variant pairs within a read that share the alleles with one of the haplotypes at
the same positions. Alberto Magi, who proposes the MAC function, solves it heuristi-
cally with his algorithm MAtCHap. In this thesis, we solve the MAC function exactly by
formulating an Integer Linear Programming problem. We also formulate an ILP based on
an adapted version of the MAC function that allows homozygosity. We implement the
ILPs and test the running times of these implementations with synthetic and real data.
We also assess the quality of the phasings of real data in contrast to MAtCHap and What-
sHap, a state of the art phasing tool. The results show, that our ILP implementations of
the MAC function with and without allowed homozygosity can only phase smaller re-
gions of a chromosome within a feasible running time. It seems, that the MAC function
with allowed homozygosity produces good phasings, but the other results concerning
the quality of the phasings are ambiguous.
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1 Introduction

The process of identifying two haplotypes of a diploid individual is called single indi-
vidual diploid haplotype phasing. Each haplotype represents the sequences of the chro-
mosomes, a diploid organism has inherited from one parent. The phased haplotypes are
relevant for various applications [4], such as understanding the relationships between
DNA sequence and diseases [13]. Several approaches to haplotype phasing exist. For
example, WhatsHap [11] is a tool that phases haplotypes with sequencing read data as
input. WhatsHap uses a dynamic programming algorithm, which solves the weighted
Minimum Error Correction problem. The idea of Minimum Error Correction (MEC) is
to partition the reads into two sets and calculate two haplotypes that correspond to one
set each. The sets and haplotypes are calculated such that the total count of corrections
within the reads, needed to make the reads fit the assigned haplotype, is minimized. In
the weighted version, a function assigns a weight to every position in each read. The
weight represents a score of confidence in the correctness of the allele at this position.
Here, the added sum of all weights of all corrected positions is minimized [12]. There
are also other algorithms, which are based on MEC. Examples are an exact branch-and-
bound algorithm and a genetic algorithm, which approximates MEC [14].

In this thesis, we explore another approach to diploid individual haplotype phasing us-
ing sequencing read data. Alberto Magi considers, instead of correcting mistakes like
in MEC, the idea that a pair of alleles occurring together within a read implies that it
should also occur together in one haplotype. He formalizes this with the Maximum Al-
lele Co-Occurrence (MAC) function [10], which calculates the total amount of allele co-
occurrences for two heterozygous haplotypes. To find the haplotypes that maximise the
MAC function, Magi proposes an algorithm, called MAtCHap. Magi does not show, that
MAtCHap solves the MAC function exactly. We, therefore, assume that it is a heuristic
algorithm.

To see how well the MAC function can phase haplotypes we constructed and imple-
mented an Integer Linear Programming problem to maximise the MAC function opti-
mally. Further, we explored an adapted version of the MAC function that allows ho-
mozygosity between the two haplotypes. We tested our implementations with synthetic
data to compare their running times to the times of WhatsHap and MAtCHap. Real data
was used to assess the running times and the quality of the phasings, also in comparison
to WhatsHap and MAtCHap. To measure the quality, we compare the phasing results to
trusted phasing data. Two criteria, the Hamming rate, and the switch error rate are used
for evaluation [11].

We observe, that it is only feasible to phase smaller regions of a chromosome with our
ILP implementations of the MAC function with and without allowed homozygosity. The
results for the phasing qualities were mostly ambiguous, but the implementation of the
MAC function with allowed homozygosity seems to yield good results. Some expecta-
tions we had were challenged by our results.



2 PRELIMINARIES 2

2 Preliminaries

In this section, we describe the concepts needed for this thesis. Firstly, we define hap-
lotype phasing and related biological terms. As these are sometimes defined differently,
the scope of these definitions is restricted to this work. Since we consider diploid haplo-
type phasing, we only define the concepts for diploid individuals. Secondly, we define
Integer Linear Programming problems, which we use to phase the haplotypes.

2.1 Biological Background

Term Definition

DNA The genetic information of organisms is stored in long molecules
as a sequence of bases: Adenine, Cytosine, Thymine, Guanine.
These molecules are called DNA and are contained in most cells.
The sequence is usually abstracted as a string of A, C, T, and G.

Chromosome A chromosome is a single DNA molecule, which codes specific
characteristics of an organism.

Locus A locus is a location on a chromosome.

Gene A gene is a unit that codes a certain characteristic. It is located at
a locus on a chromosome.

Allele An allele is a specific sequence of any length in an organism’s
DNA. Often, allele refers to either a single base that might differ
between organisms or the sequence an organism has for a gene.

Genome The set of all genes of a species is called a genome.

Diploid Organisms that have two sets of so-called homologous chromo-
somes are called diploid. Two homologous chromosomes contain
the same genes but not always the same alleles for these genes
since the chromosomes are inherited from different parents.

Genotype The pairs of alleles for at least one gene or any length of a se-
quence of an organism are called a genotype.

Haplotype A haplotype is the alleles for at least one gene or any length of a
sequence of an organism that are inherited from a single parent.
Therefore, it is a specific sequence of only one of the homologous
sets of chromosomes.

Variant A variant is a position on a chromosome, where the two haplo-
types are expected to differ.
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Reference Genome A reference genome is a synthetic sequence that represents an
average haplotype of a species.

2.1.1 Haplotype Phasing

Single individual diploid haplotype phasing is the process of determining the two hap-
lotypes of an organism. In this thesis, we consider haplotype phasing that is done with
sequencing read data. This data consists of reads, sequences of DNA-fragments, which
have been determined by sequencing the organism’s DNA. They have been aligned to a
reference genome.

From a computational perspective, haplotype phasing can be defined as follows. Given
a set of aligned reads, find the two haplotypes that represent those reads best and are
therefore close to the original haplotypes, from which the reads were generated. Models
like the MAC function [10] and MEC [12] are used to define what "representing the reads
best" means, since this has not been established, yet. Under perfect conditions, haplo-
type one represent one half of the reads and haplotype two the other half of the reads.
Furthermore, there would be no differences between the haplotypes and the reads they
represent.

Concerning the input reads, it is feasible to only consider positions, in which the haplo-
types are expected to differ. Therefore, the input reads can be shortened to only contain
the covered variants. These positions are found via a process called variant calling. The
variants are saved in a matrix with a row for every read, and a column for every variant.
To simplify, the two possible alleles for a variant are represented as "0" for the reference
allele and "1" for the alternative allele. When a variant is not covered by a read, this is
symbolized by a "—" [10].

2.2 Integer Linear Programming

The following definition is based on the book "Introduction to Mathematical Optimiza-
tion" by Matteo Fischetti [6], with some simplification to match the scope of this thesis.

A Linear Programming problem (LP) consists of a linear function, called the objective
function, and a finite set of linear constraints. The objective function is maximized or
minimized with respect to the constraints. Conventionally, LPs are formalized as mini-
mization problems. But since the problem in this thesis is formulated as a maximization
problem, we define an LP as:

max{ch : Az > b, z > 0},

where z € R" describes a possible solution, ¢ € R" is a constant vector and Tz the
objective function, which is maximized. The matrix A € R™*" and the vector b € R"" are
constant. Az < b describes all m linear constraints. z € R" is called a feasible solution, if
x > 0 and z satisfies the constraint Az > b. A solution z* € X is optimal, if it maximizes
the objective function.
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We can convert minimization problems to this form by multiplying the objective function
by —1. Constraints of the form Az = b and Az > b can also be transformed to match the
definition. It is often easier to write down an LP in a more readable way that does not
completely conform to the definition. For example, we write the constraints as functions
instead of giving the matrix and vectors. It has to be possible to transform the LP to
match the definition.

Integer Linear Programming problems (ILPs) are similar to Linear Programming prob-
lems, but all variables are restricted to be integers: x € Z". There are no algorithms to
solve ILPs in polynomial time and the decision problem for an ILP is NP-complete [7].

3 The Maximum Allele Co-occurrence model

In this section, we discuss the Maximum Allele Co-occurrence function, a new approach
to haplotype phasing, which Alberto Magi proposed [10].

Reads that cover more than one variant give information about which alleles occur to-
gether in each haplotype unless there have been sequencing errors. Magi uses this con-
cept for the MAC function. He states, that if a pair of variants has the same pair of alleles
on many reads, it is likely that the variants have those alleles in one haplotype. We,
therefore, try to find two haplotypes, that maximise the total number of times that two
variants on a read share the alleles with one haplotype at the same position. The total
count of co-occurrences is calculated by the allele co-occurrence objective function. By
maximizing this function, we find the best possible haplotypes. The input for the objec-
tive function is a set of reads, which have been aligned to a reference genome and contain
only variants, as discussed in Chapter 2.1.1. These reads are stored in a matrix M, which
has a column for every variant and a row for every read. If a read i covers a variant j,
M]i, j] contains the allele at that position. M]i, j] is set to 0 for the reference allele and
to 1 for the alternative allele. For all variants j in a read ¢, which are not covered, we set
MTi, j] to"="

Magi defines the objective function as follows:

n

MAC(M,H) = Y O((Mi ) M K] (ha[f], ha[K])) +

i=1 je{Mlij]#—} ke {MliK£—)
o ((MTi, g1, M2, k]) , (ha|]; ha[K]))

. 1, ifxy=x2andy; =y
with § ((x1,91) , (z2,2)) = . e
0, otherwise

The input matrix M has the dimension n x m, where n is the number of reads, and m is
the number of variants. The haplotypes are H = (h1, ho). Magi assumes heterozygosity,
that is hi[j] # he[j] for j € {1,...,m}. For each read i, the objective function compares
the alleles of all pairs of Var1ants J and k, which are covered by the read, to the alleles
of both of the haplotypes at the same positions. If for either haplotype both alleles are
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equal, the number of the total allele co-occurrence is increased by one. In the following,
"M AC" will be used to refer to this function.

To find the two haplotypes that maximise the MAC function, Magi proposes an algo-
rithm, called MAtCHap. The algorithm calculates the haplotypes by iterating over the
variants. For each variant, both possible assignments of alleles to the haplotypes are con-
sidered, and the assignment that maximises a variant-specific MAC function is chosen.
This is repeated until the haplotypes are not changed in one iteration [10].

3.1 Allowing Homozygosity

Magi assumes that the haplotypes differ in each position. This is called a heterozygous
assumption. If we assume that there are variants in the input data at which the haplo-
types have the same alleles, we want to allow homozygosity. The allele co-occurrence
objective function with allowed homozygosity does not give the desired output.

The idea of the MAC function is to consider all pairs of variants j and k in each read i.
We want to maximize the count of pairs that match the alleles of one haplotype at the
same positions. The previous formulation rewards a pair twice if its alleles co-occur with
both haplotypes. If there is a haplotype h* that has more allele co-occurrences with the
reads than any other possible haplotype, the computed haplotypes are both A*.

To allow homozygous positions, but still get a sensible output, we only count one co-
occurrence for each two covered variants within a read. Instead of adding the outputs
of the J-functions, we combine them with a logical or. This leads us to the following
definition:

3

MAChom(Mvﬂ): Z 5(<M[27]]7M[17k])7(h1[]]7h1[k]))v
=1 je{M[i,jl#—} ke{M[i,k]#-}
6 ((Mi, j], MTi, K]) , (hal], ha[k]))

In the following, "M AC}.," will be used to refer to this function.

4 The MAC function as an Integer Linear Programming problem

Magi used M AC for an algorithm, called MAtCHap [10], which we assume to be a heuris-
tic.

In this thesis, we formulate M AC as an ILP to explore a way to solve it exactly. The ILP
model follows M AC closely. The variables h; for j € {1,...,m} represent one haplotype.
Since we assume heterozygosity, we do not need variables for the second haplotype. It
can be calculated by taking 1 — h; for the j-th allele. The set V; contains all variants, which
are covered by the read i. For each read i and each variant j € V;, the variables e ; ; and
e2,;,; compare the allele at position j on read i to the j-th allele of haplotypes one and two,
respectively. If the alleles are the same, e ; ; is set to 1, otherwise to 0. The same is true for
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e2,i ;- The output of each J-function in the MAC objective function is modelled as its own
variable. For each read i and each pair of variants j,k € V;, the variables 01 ; j 1,2k
describe whether the alleles at j and k are equal to the alleles at j and k& in haplotypes one
and two, respectively. The constraints realize the described properties. ; ; ; » is modelled
using ey ; j and ey ; . If e1; ; and ey ; 1, are equal to 1, the alleles at positions j and k agree
between read i and haplotype one and therefore 0, ; is set to 1. This also holds for
02,1 j ks €24, and eg ; . The objective function sums up all § variables. The ILP is defined
as follows:

n
max Y > ) Sk + 2k

i=1jeV; keV;

s.t. 61,i,j,k =e14,j Nelik Vi € {1, ey TL}; Vi k eV
52,i,j,k =e2;4,j Ne€2ik Vi € {1, ey n}; Vi k eV
el,i,j:hj == M[Z,j] ViE{l,...,n}; V]E%

627i7j:1—hj::M[Z',j] ViE{l,...,n};VjEVi

51,i,j,k752,i,j,k S {0, 1} Vi € {1, .. .,n}; Vj, keV;
€1,i,5,€2,,5 € {0, 1} Vi € {1, .. .,n}; VieV;
th{O,l} VjE{l,...,m}

withV; = {j | j € {1,...,m}, M[i,j] # -} Vi€ {1,...,n}

The operations A and == are not defined for ILPs, but they can easily be transformed to
comply with the definition from Chapter 2.2 as follows. Let z,a,b € {0,1}.

z<a
z=aNb < 2z<b
z>a+b—1

z=a==b <— z<a-b+1
z<b—a+1

The == operation is missing the constraints that set lower bounds. This is sufficient since
we maximize and therefore try to set as many e;; ; and ey ; ; to 1 as possible. For the Vv
operation the last constraint can be left out for the same reasons.

4.1 Allowing Homozygosity

The ILP formulation for M AC},y,, which allows homozygosity, is similar to the previous
definition. We need to add variables for the second haplotype, since it cannot be derived
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from the first haplotype anymore. Here, h; ; stands for the allele in haplotype one at
variant j and ho ; does the same for haplotype two. Since the variables 61 ; jx, 2
have to be connected by a logical or, we need additional variables ; ; ; fori € {1,...,n};
for j, k € Vj. If the alleles at the variants j and k& in read i occur together in a least one of
the haplotypes, d; ; i, is set to 1, otherwise to 0. The ILP is defined as follows:

max Z Z Z 0 j ke

i=1 jeV; keV;

st gk =014k Voiik Vie{l,...,nkVikeV;
Ok = €144 N €Lk Vie{l,...,n}; Vi,keV;
02,0k = €25 N\ ek Vie{l,...,n}; Vi,keV;
elij=hj==Ml[i,j] Vie{l,...,n}; VjeV
exij=hoj==Mli,j] Vie{l,...,n}; VjeV

dijk € {0,1} Vie{l,...,n}; Vi, k eV,
014k 0245k €4{0,1}  Vie{l,...,n}; Vi,keV;
e,ij,e2i; € {0,1} Vie{l,...,n} Vj€V;
hij,ho ;€ {0,1} Vi e{l,...,m}

withV, ={j|j€{1,...,m}, M[i,jl|# -} Vie{1,...,n}

The operation V is also not defined for ILPs, but it can easily be transformed to comply
with the definition from chapter 2.2 as follows. Let z,a,b € {0,1}.

z>a
z=aVb < 2z>0b
z<a+b

5 Implementation

We used Python 3.6.7 for all code in this thesis. The code can be found in this work’s
GitLab repository linked in Appendix A. We implemented the ILPs using PuLP 1.6.0!, a
python package developed for optimization. We call CPLEX?, a commercial solver, with
PuLP to solve the ILPs. Our implementation takes a list of dictionaries as input. Each
dictionary represents a read and contains all covered variants as keys, and the alleles at
these variants as values. The output is the two computed haplotypes and the calculated
MAC Score, the total count of allele co-occurrences.

1https://pythonhosted.org/PuLP/index.html#

2www.cplex.com
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To be able to process BAM and VCF files as input we call our code from within the de-
veloper version of WhatsHap® [11]. Whatshap is discussed in Chapter 1. WhatsHap’s
output is a VCF file. We added two command line parameters to be able to choose one
of our implementations to phase instead of the native WhatsHap implementation. We
described the detailed integration into WhatsHap in a ReadMe in the Git Lab Repository.
The changes in the WhatsHap code were made by Sven Schrinner. To phase with the
ILP implementation that allows homozygosity, the flag "-distrust-genotypes" needs to be
added to the WhatsHap call. We call all phasings with "-ignore-read-groups" to avoid
errors due to read group metadata not matching between BAM and VCF input files.

To phase with MAtCHap, we need to create fragment files from the BAM and VCF files,
since MAtCHap [10] takes a VCF and a fragment file as input. To create the fragment file,
we use the extractHAIRS command of HapCut2 [5], another tool for haplotype assembly.
MAtCHap’s output is a VCF file.

To compare the output VCF files to our trusted haplotypes and therefore assess the phas-
ings, we used WhatsHap’s compare command. To do so, we needed to add the first line
that specifies the file format to the output VCF of MAtCHap in order to make it readable
for WhatsHap.

The testing was done using a Snakemake workflow [8]. Snakemake is a tool for imple-
menting workflows that uses a Python-based language. To specify a workflow, rules are
defined, which depend on each other. A rule consists of one or more input files, one or
more output files, and a command. Wanted output files are specified and rules call each
other to create them.

6 Results

In this section, we show how our implementations perform and compare them to What-
sHap and MAtCHap. We used synthetic data to test how our implementation’s running
time scales. Real data was used to compare the running times of our implementations,
WhatsHap [11] and MAtCHap [10] and to assess the quality of the phasings.

6.1 Synthetic Data
6.1.1 Generation

We generated synthetic data by sampling reads from random haplotypes. Our imple-
mentation takes the number of variants, the coverage, the minimum and maximum
length of the reads, the rate of errors in the reads and the rate of homozygosity between
the haplotypes as input. First, the implementation generates one haplotype by filling po-
sitions randomly with zeros and ones. The other haplotype is generated by inverting the
first haplotype, with the given probability of homozygosity. After this, reads are gener-
ated from both haplotypes with random starting positions and random lengths within
the given bounds. Errors are placed with the given probability. This is repeated until the

*https://whatshap.readthedocs.io/en/latest/develop.html
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average coverage is surpassed. Each read is saved as a dictionary, where the keys are the
covered positions and the values are the alleles at these positions.

To test the running time of the implementations of M AC and M AC},,,, we generated 300
data sets for each of the implementations. The specifications of these data sets included
all combinations of coverages 5x, 10x, and 15x, error rates of 0%, 2%, 5%, and 10%, and
numbers of variants from 20 to 500 with a step size of 20. The minimum and maximum
length of reads were set to 6 and 14, respectively. These are realistic counts of variants for
a read, since the human genome, which consists of 3.2 billion base pairs (bp) [3], contains
4 to 5 million variants [2], that is more than one variant every 1000 bp, and long reads
can cover 10000 bp [1]. The homozygosity rate was set to 0. We generated five data sets
for each combination of specifications.

To test the differences between the total number of allele co-occurrences calculated by the
implementations of M AC and M AC},,,, we generated one dataset for each heterozygos-
ity rate from 0% to 20% with a step size of 1. The number of variants was set to 100, the
coverage to 15x and the error rate to 0%. The minimum and maximum length of reads
were set to 6 and 14, respectively.

6.1.2 Running time

The tests were run on the High-Performance Cluster of the Heinrich Heine Universitat
Diisseldorf with 16 CPUs and 16GB of memory. We solved the random data sets men-
tioned in section 6.1.1 with the ILP implementations of M AC' and M AC},,,. It should be
noted that new data was generated for each implementation with the same specifications.
We computed the average time to solve the five data sets with the same specification for
each implementation. The allowed maximum for the average running time was set to
15 minutes. If an average running time exceeded 15 minutes for a count of variants, this
running time was discarded. The running times for a higher amount of variants and the
same coverage and error rate were not calculated, as they are expected to take longer.

The measured running times for the implementation of M AC can be found in Figure 1.
The plots top left, top right, bottom left and bottom right represent the results for error
rates 0%, 2%, 5%, and 10%, respectively. Each plot shows the measured running times
for coverage 5x, 10x, 15x. The running times were calculated for 20 to 500 variants with
step size 20, but only if the average running time did not exceed 15 minutes. That means,
that when a curve ends before 500 variants, the average running time for the next count
of variants exceeded 900 seconds and the following running times were not calculated.
When a curve ends at 500 variants, there is no information about the running times for
higher counts of variants.

The plots show that the running times mostly increase with the count of variants, with
some exceptions. We did not expect the running time to decrease as much as it does for
coverage 5x and error rate 10%, even though it rises again after 200 variants. This might
be related to the high error rate. Starting at 80 variants, a higher coverage always yields
a higher running time. We expected the increase with higher coverage and more variants
since these signify a larger input. A higher error rate also increases the running times. We
expected this because we assumed phasing with a higher error rate to be more complex.
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The running times measured for the implementation of M AC},,, are shown in Figure 2.
They display similar properties to the running times for the implementation of M AC,
while always being higher for coverage 10x and 15x and mostly for coverage 5x. This
was expected since M AC},,, allows more possible haplotypes and therefore has a larger
search space.

900 | coverage 15x 900 | coverage 15x
coverage 10x coverage 10x
—e— coverage 5Xx —e— coverage 5Xx

700 1 700 1
C) )
@ 500 f 2@ 500 1
g g

300 | 300 |

100 | 100

() Le-o-0-0-4 : ‘ ‘ | 0 H
0 100 200 300 400 500 0 100 200 300 400 500
number variants number variants

900 | 900 +

700 1 700 1
O @
g T @ 500 1
£ 500 £ 5

300 | 300 +

coverage 15x coverage 15x
coverage 10x coverage 10x
100 + —e— coverage 5x 100 ¢ —e— coverage 5x
0 —7\ : 0 —7\-0-0—0—0—0—0—><
0 100 200 300 400 500 0 100 200 300 400 500
number variants number variants

Figure 1: These plots show the average running time of the implementation of M AC
measured for five random data sets for 20 to 500 variants with stepsize 20, coverage 5x,
10x and 15x and error rate 0% (top left), 2% (top right), 5% (bottom left), 10% (bottom
right). When an average running time exceeded 900 seconds, it was discarded and the
running times for more variants but the same coverage and error rate were not calculated.

6.1.3 Score

The tests for the score differences between the implementations of M AC and M AChom,
were run on the High-Performance Cluster of the Heinrich Heine Universitit Diisseldorf
with 16 CPUs and 10GB of memory. We solved the random data sets mentioned in the
last paragraph of Chapter 6.1.1 with the implementations of M AC and M AC},,,. Here,
we solved each data set with both implementations. To quantify the score improvement
caused by allowing homozygosity, we calculated the percentage of difference between
the scores of M AC and M AC}.,. More precisely, we calculated the absolute difference
between the scores of M AC and M AC},,, and then divided by the score of M AC.
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900 | coverage 15x 900 | coverage 15x
coverage 10x coverage 10x
—e— coverage 5x —e— coverage 5x
700 1 700 1
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0 0 He® : . . ‘ >
0 100 200 300 400 500 0 100 200 300 400 500
number variants number variants
900 1 900 +
700 1 700 1
© z
o 500 f @ 500 1
g g
300 | 300 +
coverage 15x coverage 15x
coverage 10x coverage 10x
100 | —e— coverage 5x 100 ¢ —e— coverage 5x
0 0 +e : : i i '
0 100 200 300 400 500 0 100 200 300 400 500
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Figure 2: These plots show the average running time of the implementation of M AC,,
measured for five random data sets for 20 to 500 variants with stepsize 20, coverage 5x,
10x and 15x and error rate 0% (top left), 2% (top right), 5% (bottom left), 10% (bottom
right). When an average running time exceeded 900 seconds, it was discarded and the
running times for more variants but the same coverage and error rate were not calculated.

The measured rates of score differences are shown in Figure 3. As expected, the rate rises
when the rate of homozygosity increases. With more homozygous positions in the haplo-
types, we expect the implementation of M AC},,, to compute haplotypes that have more
allele co-occurrences with the reads than the haplotypes computed by the implementa-
tion of M AC.

6.2 Real Data
6.2.1 Data

We used the same data, which was used by Magi for the evaluation of his pro-
posed tool MAtCHap. [10]. We downloaded the BAM file and BAM.BAI file from
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/NA12878_

PacBio_MtSinai/. Magi states that the BAM file contains PacBio reads from the
genome NA12878 from the CEPH Utah Reference collection [15] created by the Genome


ftp://ftp-trace.ncbi.nih.gov/giab/ ftp/data/NA12878/NA12878_PacBio_MtSinai/
ftp://ftp-trace.ncbi.nih.gov/giab/ ftp/data/NA12878/NA12878_PacBio_MtSinai/
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Figure 3: This plot shows the rates of differences between the scores calculated for M AC
and M AChep, for random data sets with 100 variants, error rate 0% and rates of heterozy-
gosity from 0% to 20% with stepsize 1.

in a Bottle Consortium*. According to him, they have a total sequencing coverage of

45x and were mapped to the human reference genome (hgl9) with BLASR (v1.3.2).
Since we could not find the given link on the GitHub page of the Genome in a Bottle
Consortium, we were not able to confirm this. We downloaded the VCF file from
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/
latest/GRCh37/. Magi states, that the VCF file contains high confidence variants
identified by the Genome in a Bottle Consortium [10]. We also could not confirm this.

All terminal commands mentioned here can be found in the snakefile in the Git Lab
Repository linked in Appendix A. Since our implementation cannot phase a whole chro-
mosome within a reasonable time frame, we used smaller regions. To cut the VCF file,
we used tabix®, a command line tool from samtools [9]. To cut the BAM file, we also
used samtools. The regions that we cut from chromosomes one and two are shown in
Table 1. The labelling of the chromosomes differs between the VCF files and the BAM
files. We adjusted the labelling of the VCF files, which is the number of the chromosome,
to the labelling of the BAM files, which is chr” followed by the number of the chromo-
some. Additionally, in the VCF files, all but the GT column from the format field and
the corresponding columns from the HG001 field were removed, as they are not needed,
and WhatsHap has problems interpreting to contents of the PS column. We used sam-
tools to index the BAM files. We measured the coverage of the BAM files with samtools
depth and awk® and downsampled the BAM files to coverage 10x and 15x using sam-
tools view -s with seed 0, which makes the downsampling repeatable. These BAM files
were also indexed with samtools index. Since we do not know which seed Magi used,
his downsampled BAM files might be different.

‘https://github.com/genome-in-a-bottle
*https://www.htslib.org/doc/tabix.html
®https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html


ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ NA12878_HG001/latest/GRCh37/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ NA12878_HG001/latest/GRCh37/
https://github.com/genome-in-a-bottle
https://www.htslib.org/doc/tabix.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html
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Region Count Variants Chr. 1 Count Variants Chr. 2
coverage 10x  coverage 15x coverage 10x coverage 15x
60000000-60075000 52 52 82 82
60000000-60100000 58 59 106 106
60000000-60125000 74 74 117 118
60000000-60150000 90 90 119 120
60000000-60175000 114 114 119 120
60000000-60200000 130 130 123 124

Table 1: Count of variants phased for each region and coverage.

WhatsHap’s preprocessing, which is used by WhatsHap itself and the ILP implementa-
tions of M AC and M AC},,, downsamples BAM files to a given maximum coverage for
each position. The largest possible coverage is 25x, which we chose to avoid the BAM
files to be downsampled further. Nevertheless, for all regions of chromosome two at cov-
erage 15x, one read was removed by WhatsHap, since samtools only downsamples to an
average coverage. This means that MAtCHap phases these regions with one more read.
The variants that are covered by at least one read that also covers another variant can be
used for phasing. The count of these variants for each region can be seen in Table 1. This
disregards the additional read, that MAtCHap used for phasing, as the information was
taken from WhatsHap’s output.

6.2.2 Running time

The phasing with MAtCHap did not work on the High-Performance Cluster of the Hein-
rich Heine Universitat Diisseldorf. It was possible to start MAtCHap, but even for small
instances, it did not terminate for a yet unknown reason. The phasing was instead done
on a personal computer with four CPUs and 8GB of memory. The other phasings were
run on the High-Performance Cluster of the Heinrich Heine Universitat Diisseldorf with
16 CPUs and 10GB of memory.

The running time of MAtCHap was determined with the terminal command "time",
which measures the total elapsed time. We assume that the phasing time of MAtCHap is
not significantly shorter than the total elapsed time. We used the actual phasing time as
running time for WhatsHap and the ILP implementations of M AC and M AC},op,.

The measured running times for chromosome one are shown in Figure 4. The top plot
shows the times measured for all four implementations for the different numbers of vari-
ants with coverage 10x. The bottom plot shows the same for coverage 15x. MAtCHap
has a running time of around 0.4 seconds for all regions and both coverages. This is
the shortest time for coverage 15x and the second to shortest for coverage 10x. That
the running time does not increase much with higher coverage, agrees with Magi’s test-
ing, where he shows that MAtCHap’s running time increases slowly with higher cov-
erage [10]. WhatsHap has the shortest running times for coverage 10x. For coverage
15x it has the second to shortest running times and they start increasing at 114 variants
(region 60000000-60175000). Generally, WhatsHap’s running times increase with higher
coverage. This was expected since its running time grows exponentially with increasing
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coverage [12]. The implementation of M AC is a lot slower than the mentioned tools and
its running time overall increases with more variants, as already observed for synthetic
data in Chapter 6.1.2. The same is true for the implementation of M AC},,,,, which is even
slower. Phasing with the implementations of M AC and M AC},,, takes longer with the
higher coverage of 15x. This was also observed in Section 6.1.2.

The measured running times for chromosome two can be found in Figure 7 in Ap-
pendix B. These running times have similar properties to the ones for chromosome one.
Here, MAtCHap has the shortest running times for both coverages.
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Figure 4: These plots show the running times of WhatsHap, MAtCHap and the imple-
mentations of M AC and M AC},,, measured for different regions on chromosome one

for coverage 10x (top) and coverage 15x (bottom).
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6.2.3 Quality of phasing

The quality of the phasing was measured with the command line tool compare from
WhatsHap. We used the measures switch error rate and block-wise Hamming distance
rate to assess the quality of the phasings. A block is a set of variants, which were phased
relative to each other. That means, that for any two different blocks, the relation between
the phasings of the blocks is not known. The switch error rate in a block is the number of
cuts that would need to be made in this block to get the true haplotypes by rearranging
the phasing regions at the cut positions, divided by the total amount of connections in
the block. The switch error rate is the number of cuts needed over all blocks divided
by the total amount of connections. A connection is two neighbouring variants, which
have been phased relative to each other. That means that one block of length n contains
n — 1 connections and the total amount of connections is the number of phased variants
minus the number of blocks. The block-wise Hamming distance rate is the sum of the
Hamming distances between all blocks and the trusted phasing, divided by the total
number of phased alleles. The Hamming distance is the number of phased alleles that do
not agree with the trusted phasing [11].

The switch error rate for the phasings of chromosome one are shown in Figure 5. A
smaller switch error rate signals a better phasing. For coverage 10x, the implemen-
tation of M AC},, has switch error rates of 0% for all regions. The rates of the other
three implementations overall decline slowly with an increasing number of variants. The
implementation of M AC' and WhatsHap have similar switch error rates, which might
indicate that the MAC function and MEC are similar. MAtCHap has the highest error
rates. It was expected, that the implementation of M AC' phases better than MAtCHap,
since the implementation of M AC solves the MAC function exactly. For coverage 15x,
MAtCHap, WhatsHap and the implementation of M AC have almost the same switch
error rates, which are similar to the switch error rates of WhatsHap and the implemen-
tation of M AC for coverage 10x. It was not expected that WhatsHap phases worse with
higher coverage, but the difference is small. It was expected that MAtCHap phases bet-
ter with higher coverage since it was designed to phase read data with high coverage.
The switch error rates of the implementation of M AC},,, are zero for the two smallest
and the largest regions but are higher for the others. They are still smaller than the error
rates of all other implementations. This might be because M AC},,,, allows homozygous
variants. The increase of the switch error rates for the implementation of M AC},,, with
higher coverage was not expected.

The switch error rate for the phasings of chromosome two are shown in Figure 8 in Ap-
pendix B. The rates have different properties than the switch error rates of chromosome
one. For example, with increasing variant counts, the switch error rates increase for chro-
mosome two and decrease for chromosome one. Further, it was not expected that the
rates for the implementation of M AC are higher than the ones of MAtCHap. The rates
for chromosome two do not support the interpretations made for chromosome one. The
smaller switch error rates for the higher coverage were expected.

The block-wise Hamming distance rates for chromosome one are shown in Figure 6. For
coverage 10x, the implementation of M AC},,, has rates of zero. WhatsHap has rel-
atively small, constant rates. MAtCHap’s rates increase with the number of variants.
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Figure 5: These plots show the switch error rates of WhatsHap, MAtCHap and the imple-
mentations of M AC and M AC},,,, measured for phasings of different regions on chro-
mosome one for coverage 10x (top) and coverage 15x (bottom).

The implementation of M AC has the same rates as WhatsHap except for 74 variants (re-
gion 60000000-60125000) and 130 variants (region 60000000-60200000), where the rates
are similar to MAtCHap. For coverage 15x, MAtCHap’s rates are very similar to its rates
for coverage 10x. The rates of the other tools are close to the rates of MAtCHap, except
for the implementation of M AC},, at 130 variants (region 60000000-60200000), where its
rate is zero. It was not expected for the rates to rise as much for the higher coverage.
Instead, we expected them to be smaller for a higher coverage since more information for
phasing was available. MAtCHap always has equal or worse rates than the implementa-
tion of M AC. This was expected since MAtCHap is a heuristic and the implementation
of M AC solves the MAC function exactly. The implementation of M AC},,, has the best
rates, possibly because it allows homozygous variants. The implementation of M/ AC' and
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WhatsHap share many similar rates. This might indicate a relation between the MAC
function and MEC.

The block-wise Hamming distance rates for chromosome two are shown in Figure 9. The
rates of MAtCHap and some for implementation of M AC' are a lot smaller for chromo-
some two compared to chromosome one with coverage 10x. All rates except for small
counts of variants are a lot smaller for chromosome two compare to chromosome one for
coverage 15x. All rates for chromosome two decrease with higher coverage, as expected.
The implementation of M AC},, has the best rates. A relation between the MAC function
and MEC is not supported here.
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Figure 6: These plots show the block-wise Hamming distance rates of WhatsHap,
MAtCHap and the implementations of M AC and M AC},,, measured for phasings of
different regions on chromosome one for coverage 10x (top) and coverage 15x (bottom).
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7 Discussion and Outlook

In this section, we discuss the results we showed in the previous chapter. We then give
an outlook for further research.

The running times measured for synthetic and real data support, that an increase in the
number of variants, as well as the coverage, mostly causes a higher running time for the
implementations of M AC and M AC}.,. This was expected since a higher coverage and
a larger number of variants signify a larger input. Further, an increase of the error rate
also often causes a higher running time. Possibly, this is because an increased error rate
makes phasing more complex. Phasing with the implementation of M AC},,, often takes
longer than phasing with the implementation of M AC, presumably, since M AC},, has
a larger search space. Further, phasing with the tools MAtCHap [10] and WhatsHap [11]
is around 10 to 1000 times quicker than phasing with the implementations of M AC and
M AChom.-

Therefore, it is only feasible to phase smaller regions of a chromosome with the imple-
mentations of M AC and M AC},y,. One reason for this might be the LP-Relaxation of the
ILP formulations. An LP-Relaxation is an LP, that is equal to a specific ILP, but does not
restrict the variables to be integers. We used CPLEX” to solve the ILPs. Roughly speak-
ing, CPLEX first solves the ILP’s LP-Relaxation and then finds the optimal solution of the
ILP by restricting non-integer variables through branching [6]. The LP Relaxations for
the ILP formulations of M AC and M AC}, in Chapter 4 are easily solved by setting the
alleles in both haplotypes to 0.5. This causes all e; ; j and ez ; ; fori € {1,...,n} and j € V;
to be set to 0.5. As a result all 61, and 92, fori € {1,...,n} and j,k € V; are set to
0.5. That means that for each pair of covered variants within a read, one co-occurrence
is counted. This is the maximum value that can be achieved for any input. Since this
optimal solution for the LP-Relaxation contains no integers, it might take longer to find
an integer solution, since all variables need to be forced to have integer values.

As expected, the tests of the score differences show, that solving the MAC function with
homozygosity allowed, yields better results for synthetic input with homozygous posi-
tions.

The measurements of the quality of the phasing for the different implementation yield
ambiguous results. The phasing qualities for chromosome one suggest that the MAC
function and MEC [12] could be similar, but the phasing qualities for chromosome two
refute this. We expected our implementation of M AC' to always yield better results than
MAtCHap since our implementation solves the MAC function exactly, but this is not the
case for chromosome two. Further, we expected a higher coverage to improve the phas-
ing quality, since there is more data available, but this was not the case for the block-wise
Hamming distance rates measured for chromosome one. While the block-wise Hamming
distance rates increased with a larger number of variants, the switch error rates increase
for chromosome one and decrease for chromosome two. Generally, there were a lot of
differences between phasings of regions of the two chromosomes. It can be said, that
the implementation of M AC},,, had the best rates in general. This might be because
homozygous positions are allowed, and therefore there are more options for phasing.

7
www.cplex.com


www.cplex.com
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There are several options to further evaluate the ILP formulations for M AC and
M ACHop,. For synthetic data, more combinations of specifications could be considered.
MAtCHap does not output the total number of co-occurrences its phased haplotypes
have with the input read. We could compute this number from MAtCHap’s output and
compare it to the number of co-occurrences calculated by the implementation of M AC, to
evaluate the quality of the heuristic. For real data, other measures of quality for the phas-
ings could be considered to compare them. Higher coverages should be considered since
is designed MAtCHap to solve with them. More data sets and different chromosome
regions should be used for testing to have a better base for interpretation. Further, we
could try to differently formulate the MAC function as an ILP, to circumvent the problem
with the LP-Relaxation.

To summarize, we implemented M AC and M AC}, as ILPs. We tested these implemen-
tations with synthetic and real data and compared them to MAtCHap and WhatsHap.
Our implementations have longer running times than the two tools. The phasing quality
results were mostly ambiguous, but the implementation of M AC},,,, seems to yield good
results.
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A Source code

The following link was checked on March 11, 2020.

The source code and results of this bachelor thesis:
https://gitlab.cs.uni-duesseldorf.de/schrinner/
bsc-thesis-maximum—-cooccurence-phasing
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Figure 7: These plots show the running times of WhatsHap, MAtCHap and the imple-
mentations of M AC and M AC},,, measured for different regions on chromosome two
for coverage 10x (top) and coverage 15x (bottom).
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Figure 8: These plots show the switch error rates of WhatsHap, MAtCHap and the imple-
mentations of M AC and M AC},,, measured for phasings of different regions on chro-
mosome two for coverage 10x (top) and coverage 15x (bottom).
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Figure 9: These plots show the block-wise Hamming distance rates of WhatsHap,
MAtCHap and the implementations of M AC and M AC},,, measured for phasings of
different regions on chromosome two for coverage 10x (top) and coverage 15x (bottom).
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