
A Comparison of Two Single-Cell

RNA-Sequencing Analysis Pipelines

using Snakemake

Pascal Meinhard

A thesis presented for the degree of

Bachelor of Science

Algorithmic Bioinformatics

Heinrich Heine University Düsseldorf

Germany

9th May, 2021

Acknowledgements

I am grateful to Prof. Dr. Gunnar Klau for giving me the opportunity to write this thesis and the

extensive feedback on my writing. I thank Dr. Tobias Lautwein for being the second assessor

and providing the data for testing. Special thanks to My Ky Huynh for providing one of the

single-cell RNA sequencing analysis pipelines to use in this thesis and for answering my many

questions.

ii

Abstract

Single-cell RNA-sequencing provides us with access to the gene expression profiles of individ-

ual cells. However, due to technical confounders and unreliable cells, this data needs to be

processed before it can be evaluated by the many available options for analysis. In this the-

sis, we compare two single-cell RNA-sequencing analysis workflows implemented as pipelines

using Snakemake. Their main analysis components are the R packages Seurat and Pagoda2,

respectively. After running the two pipelines on various data sets and evaluating the results,

we concluded that they are similar in structure, but their analysis tools make them suitable for

different research questions, that is, comparative or pathway analysis.

iii

Contents

List of Tables v

List of Figures vi

List of Abbreviations vii

1 Introduction 1

2 Background Information 2

2.1 Single-Cell RNA-Sequencing . 2

2.2 Standard Analysis Workflow . 3

3 Single-Cell RNA-Sequencing Analysis Pipelines 7

3.1 Tools Used to Setup and Build the Pipelines . 7

3.1.1 Conda . 7

3.1.2 Snakemake . 7

3.2 Pagoda2-Pipeline . 9

3.2.1 Preprocessing . 10

3.2.2 Data Analysis . 12

3.2.3 Output . 14

3.3 Seurat-Pipeline . 15

3.3.1 Preprocessing . 16

3.3.2 Data Analysis . 18

3.3.3 Output . 19

4 Comparison 20

4.1 Data . 20

4.2 Runtimes . 20

4.3 Analysis Results . 22

5 Discussion 28

5.1 Use of Snakemake . 28

5.2 Conclusions . 28

5.3 Outlook . 29

6 References 30

A Appendix 33

iv

List of Tables

1 Example sparse count matrix . 3

2 Runtimes of the pipelines on data sets of different sizes 20

3 Number of cells and genes, before and after filtering, in comparison 22

4 Matching structures of both clusterings . 25

5 Seurat-Pipeline: Cell distribution across all clusters 34

6 Pagoda2-Pipeline: Cell distribution across all clusters 34

7 Barcode matches across the two clusterings . 35

v

List of Figures

1 Droplet-based cell isolation technique . 2

2 Pagoda2-Pipeline: Elbow plot . 5

3 Linear vs. non-linear dimensionality reduction methods 5

4 Snakemake DAG of the Pagoda2-pipeline . 9

5 Pagoda2-Pipeline: Summary of user-set QC metrics 10

6 Pagoda2-Pipeline: Gene vs count relationship . 11

7 Pagoda2-Pipeline: Gene variance normalization . 12

8 Snakemake DAG of the Seurat-pipeline . 15

9 Seurat-Pipeline: Data after filtering . 16

10 Seurat-Pipeline: Identification of Doublets . 17

11 Comparison of runtimes . 21

12 Comparison of cell filtering . 23

13 Clusterings of both pipelines . 24

14 Barcode matches across all clusters . 25

15 Pagoda2-Pipeline: Aspects of heterogeneity . 27

16 Pagoda2-Pipeline: Web application . 33

17 Seurat-Pipeline: Section from the ShinyCell Web application 33

vi

List of Abbreviations

scRNA-seq Single-cell RNA-sequencing

FACS Fluorescence-activated cell-sorting

PCR Polymerase chain reaction

bp Base pair

UMI Unique molecular identifier

RNA Ribonucleic acid

cDNA Complementary deoxyribonucleic acid

QC Quality control

PCA Principal component analyis

PC Principal component

t-SNE t-distributed stochastic neighbor embedding

UMAP Uniform manifold approximation and projection

KNN graph k-nearest neighbor graph

DAG Directed acyclic graph

GO Gene Ontology

CSV Comma-separated values

pANN Proportion of artificial k-nearest neighbors

SNN graph Shared nearest neighbor graph

PBMCs Peripheral blood mononuclear cells

RI Rand Index

vii

1 Introduction

Single-Cell RNA-Sequencing (scRNA-seq) analysis is used to gain insight into the transcrip-

tomes of individual cells and is thereby providing the necessary data to study the cellular

heterogeneity of biological tissue samples. For instance, by clustering the cells, we get to un-

cover cellular subpopulations and infer marker genes, that would be hidden in bulk RNA-Seq

analysis. However, before the data can be analyzed, it must be preprocessed to mitigate sam-

pling effects from sequencing or to remove unreliable cells from it. Therefore, due to the many

steps involved in the analysis of scRNA-seq data, it makes sense to build automated pipelines

for it.

Additionally, with increasing interest in the field of scRNA-seq, the number of dedicated

analysis tools is also growing1. While these tools serve a similar purpose, they can provide dif-

ferent analysis applications or perform better or worse than others. This makes the comparison

of those tools worthwhile and also motivates the topic of this bachelor thesis: The compari-

son of two scRNA-seq analysis pipelines implemented with the workflow management system

Snakemake (Mölder et al. 2021).

For this thesis, we present an scRNA-seq analysis pipeline, whose main component is the R

package Pagoda2 (Barkas et al. 2021), and compare it to another Snakemake analysis pipeline

that relies on the R package Seurat (Hao et al. 2020). To do so, we evaluate their differences

and similarities by elaborating on their structure and compare their results in preprocessing

and cluster analysis.

We concluded that the pipelines are similar in their approach, but their options in analysis

make them applicable for different research questions and types of data. Seurat is more suit-

able for comparative analysis of scRNA-seq data with different conditions, such as healthy and

diseased tissue, while Pagoda2 provides insights into biological processes in cells with pathway

overdispersion analysis.

1Approximately 921 tools, as of 16th April, 2021 (Zappia, Phipson, and Oshlack 2018)

1

2 Background Information

In the following section, we introduce the necessary background knowledge for this thesis.

2.1 Single-Cell RNA-Sequencing

Single-cell RNA-sequencing (scRNA-seq), first introduced in 2009 (Tang et al. 2009), allows

us to obtain the gene expression profiles of individual cells, providing a more detailed look at

cellular heterogeneity than bulk RNA-sequencing.

To achieve this, the first step is to isolate the cells. There are several ways to do this, such

as plate-based or droplet-based techniques. Plate-based techniques isolate cells by placing

them into separate wells on a plate, often using fluorescence-activated cell sorting (FACS).

However, this method is time-consuming and not efficient, as every plate has to be processed

individually (Hwang, Lee, and Bang 2018). Since we are working with data in this thesis that

was sequenced with the droplet-based Chromium plattform by 10x Genomics (Zheng et al.

2017), we now explain its functionality in more detail.

Droplet-based approaches, such as Chromium 10x, offer high-throughput sequencing and

thus allow us to process tens of thousands of cells at once. This is done by isolating cells with

oil-encapsulated droplets in emulsion, as shown in Figure 1A. Every droplet contains a gel

bead equipped with many oligonucleotides that are used to capture the transcripts of each

cell. These oligomers consist of multiple components (Figure 1B). They include polymerase

chain reaction (PCR) primers and sequencing adapters. Additionally, a barcode of multiple

base pairs (bp) to identify the cell within the droplet and a unique molecular identifier (UMI).

And lastly, an oligo(dT) sequence to capture the poly(A) tail of the ribonucleic acid (RNA) and

to prime its reverse transcription (Zheng et al. 2017). UMIs consist of multiple bps and are

used to label individual RNA molecules as their complementary deoxyribonucleic acid (cDNA)

is amplified for sequencing. Thus, with the help of UMIs, we are able to distinguish between

copies of one RNA molecule and other transcripts of the same gene (Luecken and Theis 2019,

Box 1).

Figure 1: (A) Cell isolation with gel beads via oil-encapsulated droplets. (B) Components of a gel bead

oligonucleotide. Adapted from Figure 1b, d in Zheng et al. 2017 and Figure 1a in AlJanahi, Danielsen, and

Dunbar 2018.

2

Once a cell and gel bead are in a droplet, the cell membrane is ruptured and the present

RNA molecules are captured and reverse transcribed. Afterwards, with the emulsion broken,

the resulting cDNA molecules are amplified in bulk via PCR and sequenced to produce read

data (Luecken and Theis 2019, Box 1; Zheng et al. 2017). This data is then processed by a

pipeline called Cell Ranger, where the reads are aligned to a reference genome and the corre-

sponding UMIs are assigned to their barcode and a gene (Zheng et al. 2017, Supplementary

Methods and Fig. 1f). Each match results in a count. The output of this pipeline is a count

matrix that contains the molecular counts for each cell barcode and is used as the input for

our scRNA-seq analysis workflows:

Barcode 1 Barcode 2 . . . Barcode N

Gene 1 0 2 . . . 0

Gene 2 4 0 . . . 1
...

...
...

. . .
...

Gene M 0 0 . . . 3

Table 1: Example sparse count matrix (genes × barcodes).

The matrix is sparse due to the low RNA capture efficiency in scRNA-seq. According to

AlJanahi, Danielsen, and Dunbar 2018, Table 1, Chromium 10x is able to capture about 14

percent of the cells transcripts. These dropout events also account for a large portion of the ze-

ros in the count matrix and occur due to sampling effects in the scRNA-seq workflow described

above (AlJanahi, Danielsen, and Dunbar 2018).

Another confounding factor that can occur during scRNA-seq are droplets that capture

either none or multiple cells at once. While empty droplets are more common (Chromium has

a cell capture rate of approximately 50 percent (Zheng et al. 2017)), they have little impact on

the sequencing results. Droplets with multiple cells, also referred to as multiplets or doublets,

are less frequent, but are more difficult to detect and can distort the counts of some barcodes

(Luecken and Theis 2019).

2.2 Standard Analysis Workflow

The standard analysis workflow of scRNA-seq data can be divided into two phases, as shown

in Luecken and Theis 2019, Figure 1. The first part includes the preprocessing in which the

data is prepared and corrected for the upcoming analysis in the second part.

At the beginning of the preprocessing phase, we filter out unreliable cell barcodes from the

data by performing quality control (QC). Cell QC is usually done based on three QC metrics

(AlJanahi, Danielsen, and Dunbar 2018; Luecken and Theis 2019). The first one is the number

of counted transcripts per barcode, or count depth. For example, a barcode with low count

depth often indicates that the captured cell is a dying one or that its cell membrane has been

broken before capture. An unexpectedly high number of counts for a cell, however, can be

3

due to doublets or multiplets and must also be removed from the data. The second cell QC

metric is the amount of genes expressed per barcode. Because of dropout events, a barcode

can contain too few genes, making it unreliable. Finally, the third QC metric is the percentage

of mitochondrial reads in a cell barcode, where a high percentage is an indicator of cell stress

or a broken cell membrane (AlJanahi, Danielsen, and Dunbar 2018). Therefore, to filter out

outliers and faulty barcodes, we need to set lower and/or upper thresholds for the three metrics

described. These thresholds must be fitted to the data to avoid filtering cell populations whose

unusual characteristics are due to a biological context and not to technical confounders, such

as a high number of counts in large cells that could be mistaken for doublets (Luecken and

Theis 2019). Tools designed for doublet detection are particularly suitable for this case. In

addition to filtering cells, we can also remove genes from the data that are not represented in

more than a few cells or from which only a small number of transcripts were measured. Due

to the high dropout rate, this usually significantly reduces the number of genes and speeds up

further calculations. However, genes that could further differentiate the cells might get lost as

a result (AlJanahi, Danielsen, and Dunbar 2018).

The next step is to normalize the data to account for dropout events and bring all cells to

a comparable scale. A simple but commonly used method for this is count depth scaling. The

counts are divided by the count depth of the corresponding cell and multiplied by a power of

10 (Townes et al. 2019). Afterwards, the data is usually log(x+ 1)-transformed. This has the

advantage that we can measure the changes in gene expressions between cells with log fold

changes (Luecken and Theis 2019). The data may also be corrected for batch effects between

multiple samples.

To decrease the computational effort in downstream analysis and to visualize the data, we

reduce the dimensionality of the count matrix. We start with feature selection, which is the

selection of genes for further processing that are highly differentially expressed between cells,

usually between 1 000 and 5 000 of them (Luecken and Theis 2019). These are referred to

as highly variable or overdispersed genes. Afterwards, the data is further reduced, often with

principal component analysis (PCA), a linear approach also used by both pipelines in this thesis.

PCA manages to summarize the information of similar genes into a principal component (PC).

Each PC captures a portion of the variance in the data, with the first PC having the largest

standard deviation. The standard deviation decreases with each subsequent PC, making it

appropriate to use only the first n PCs for the following analysis (AlJanahi, Danielsen, and

Dunbar 2018). We can choose the number n using an elbow Plot, as shown in Figure 2. After

the "elbow" we see that the standard deviation stagnates, so we set the cutoff at 12, since

the subsequent PCs contribute little to the variance of the data, and we can thus decrease the

computational effort without losing much information. Non-linear methods for visualization

continue to reduce the data so that it can be viewed in two-dimensional space. These include,

for example, t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton 2008)

or uniform manifold approximation and projection (UMAP) (McInnes, Healy, and Melville

2020).

4

Figure 2: Elbow plot generated by the Pagoda2-pipeline showing the standard deviation of each calculated PC.

The higher the standard deviation of a PC, the more information it contains about the variance of the data. The

red dashed line indicates the cutoff.

We use PCA to summarize the data because its linearity preserves the actual distances

between cells, which is beneficial in downstream analysis. However, in the visualization of

the data in two dimensions, this has the effect that the variability between groups cannot

be represented ideally. Non-linear methods manage to highlight the local structures in two-

dimensional space, but often exaggerate the differences between groups (Figure 3) (Luecken

and Theis 2019).

(a) Two-dimensional PCA embedding (linear method). (b) Two-dimensional UMAP embedding (non-linear method).

Figure 3: Comparison of linear vs. non-linear dimensionality reduction methods in two-dimensional space. The

clustering was generated with community detection on the PC-reduced PBMC 3k data set (see Subsection 4.1).

We can see that UMAP displays clusters, or local structures, more densely and groups similar ones together. In

contrast, in the embedding of the first two PCs, the clusters blend into each other.

Now we move on to the analysis phase, where the options depend heavily on the tool

selected for analyzing the scRNA-seq data. We will focus on the methods used in both pipelines,

that is, clustering and differential expression analysis.

To analyze the data at the cell level, we group them into clusters. The approach used by

the two pipelines in this thesis is community detection. For this purpose, a k-nearest neighbor

5

graph (KNN graph) is created based on the PC-reduced data, where each cell is treated as

a vertex and connected to its k most similar adjacent cells. Densely connected regions of

the graph indicate that the cells located there are alike and therefore can be grouped into

a cluster (Luecken and Theis 2019). Luecken and Theis (2019) recommend the use of the

Louvain algorithm (Blondel et al. 2008) to identify these dense regions. The idea behind this

method is to optimize the modularity in the KNN graph. High modularity indicates that vertices

within communities are densely connected, while vertices between different communities are

only sparsely connected. The Louvain algorithm first searches for small local communities

in the graph and then groups them into single nodes. These grouped nodes then form new

communities and are merged again. This step is repeated until the maximum modularity in

the graph is reached. The final communities then form the cell clusters.

To find out how two groups of cells differ in their gene expression we perform differential

expression analysis between them. The two groups can be, for example, cells from one cluster

and all other cells in the data. Both of our analysis pipelines use Wilcoxon rank sum tests to

do so (Wilcoxon 1945). This non-parametric test determines whether the expression of a gene

tends to be higher or lower in one group than in the other. The null hypothesis would be that

a gene is expressed equally in both groups. In turn, the alternative hypothesis is that a gene is

differentially expressed in the two groups. For this, all counts for a given gene are pooled and

assigned ranks. Ranks represent the position of the values in the order of the pooled counts,

for example, the counts [8, 5, 10, 2, 13] would get the ranks [3, 2, 4, 1, 5]. Afterwards, the

ranks for both groups are summed up respectively and the z-score for the smaller rank sum

(W) is calculated, as the large sample size of the cells allows us to use normal approximation:

z=
W−µW
σW

.

Here, µW is the mean and σW the standard deviation of the rank sums, with n1 being the

sample size of the group with the smaller rank sum and n2 that of the group with the larger

rank sum:

µW =
n1(n1 + n2 + 1)

2
, σW =

√√n1n2(n1 + n2 + 1)
12

.

The calculated z-score leads us to the p-value, which we can use to decide whether or not

to reject the null hypothesis based on the significance level α. The significance level is typically

set to 0.05 . If the p-value is less or equal to α, we can reject the null hypothesis, meaning

that the gene is differentially expressed between the two groups. Conversely, a gene is equally

expressed in both groups if the p-value is greater than α and therefore we cannot reject the

null hypothesis.

6

3 Single-Cell RNA-Sequencing Analysis Pipelines

In this section, we introduce the two scRNA-seq analysis pipelines that we will compare to

each other in Section 4. All upcoming figures produced by the pipelines involve the PBMC 10k

data set described in Subsection 4.1.

The source code for the Pagoda2-pipeline is available at https://git.hhu.de/pamei104/

bsc-projekt-scrna-pagoda2-snakemake. A slightly modified version of the Seurat-pipeline can

be found here: https://git.hhu.de/myhuy100/wggc-single-cell. Both links were last accessed

on 9th May, 2021.

3.1 Tools Used to Setup and Build the Pipelines

3.1.1 Conda

Conda (Anaconda Software Distribution 2016) is an open-source package and environment

management system that creates self-contained environments and allows us to easily switch

between them. After creating an environment, we can search for, install and update various

packages and their dependencies via the command-line. We are also able to define them in

advance using an environment.yaml file. This way, Conda installs the specified software when

building the environment.

By using the latter approach, we get to create predefined environments for each pipeline to

ensure reproducibility in terms of packages and an easy setup. Packages that are not available

through Conda have to be installed with the R scripts included in the pipelines’ repositories.

3.1.2 Snakemake

Snakemake (Mölder et al. 2021) is a workflow management system that we use in order to

implement the analysis of scRNA-seq data in form of an automated pipeline. For this, we

split our analysis workflow into steps, referred to as rules, that are listed in a Snakefile. A

rule consists of a name and a set of directives. Although not mandatory, most rules have

an input-directive and an output-directive specifying the names of input- and output files,

and instructions on how to create the latter from the former. These instructions can be, for

example, shell commands, external scripts or regular Python code (Van Rossum and Drake

2009), as Snakemake itself is Python-based. Since both pipelines rely on R packages, we

mostly use the script-directive here. Within the R scripts, a snakemake object is available,

through which we can access the rules properties, like the input-, output- or params-directive.

We also get access to values in the config file, or config.yaml, where we can specify data and

working directories or parameters used in the workflow with key-value pairs.

By using wildcards, rules can be made generic, as it allows Snakemake to name files and

set parameters dynamically. In our case, both pipelines use the config file to fill those wildcards

with values.

7

https://git.hhu.de/pamei104/bsc-projekt-scrna-pagoda2-snakemake
https://git.hhu.de/pamei104/bsc-projekt-scrna-pagoda2-snakemake
https://git.hhu.de/myhuy100/wggc-single-cell/-/tree/pagoda2bsc

Furthermore, we can link rules together by specifying the output of one rule as the input

of another. Snakemake then automatically determines rule dependencies by substituting all

existing wildcards and mapping input files to output files, creating a directed acyclic graph

(DAG) of jobs. The DAG indicates the order of the jobs and finds out whether jobs that are

independent of each other can be executed in parallel, as long as the required resources are

available. To connect the rules in our respective workflows, both pipelines save the scRNA-seq

data at the end of each rule as a single R object (.rds file) and pass it on to the next one for

further processing. An exception to this are rules with scripts that generate various outputs

from the data, but do not modify the object itself. In this case, the data is read but not stored

again, in order to save time and storage space.

Additionally, in cases where the number of output files is unknown before execution, we

can use checkpoints instead of rules. After each succesful job derived from a checkpoint, Snake-

make re-evaluates the job dependencies during workflow execution, because the newly created

files have not yet been included in the DAG. The output files of these jobs can then be accessed

through a checkpoint object in an input function and be returned to a rule, or rather job, de-

pending on them as input. An example of this would be cluster specific files where we want

to include the cluster ID in the file name. Since we do not know how many clusters will be

created from the data prior to workflow execution, Snakemake cannot determine and replace

the wildcards of the cluster IDs when creating the DAG at startup. Therefore, we generate and

name the files with their IDs using a script in a checkpoint. With the help of the checkpoint

object, we then access the files in an input function and extract the cluster IDs from the file

names. During the re-evaluation of the DAG, Snakemake can now substitute the wildcards of

the cluster IDs with the extracted ones and provide the complete file names as input to a target

rule.

8

3.2 Pagoda2-Pipeline

The following Snakemake scRNA-seq analysis pipeline relies on the R package Pagoda2 (Barkas

et al. 2021), a tool designed to analyze large-scale, single-condition scRNA-seq data sets.

Pagoda2 is being developed by the Kharchenko Lab and is partly based on their other software:

SCDE (Kharchenko, Silberstein, and Scadden 2014) and PAGODA1 (Fan et al. 2016). In terms

of preprocessing, Pagoda2 offers methods for quality control, normalization, feature selection

and dimensionality reduction. Further, for downstream analysis, it performs clustering, visual-

ization, differential expression and pathway overdispersion analysis. As a faster alternative to

the latter, the analysis tool offers hierarchical differential expression. Pagoda2 also provides

an interactive web application where users can further explore the analysis results, such as

the clustering or other aspects of heterogeneity in the cells, or perform differential expression

analysis between user-defined selections.

The Snakemake DAG of this pipeline (Figure 4) shows that the workflow is linear up to the

last step of the analysis. Only then it is possible to run several jobs in parallel. In addition, the

pipeline is designed to process only one scRNA-seq data set at a time, as its analysis depends

on user-specified parameters that need to be adjusted to the given data, for example, QC

thresholds. These parameters are set in advance in the config file, config.yaml, although

some of them, such as the minimum number of genes per cell, can also be added later. In

these cases, the pipeline offers plots from which the user can derive appropriate values.

Figure 4: Snakemake DAG of the Pagoda2-pipeline.

9

3.2.1 Preprocessing

Read the Data The scRNA-seq analysis pipeline starts by reading the count matrix that is

located in the directory specified in the configuration file. For this, we use the read-in function

for 10x Cell Ranger count matrices that is provided by Pagoda2 and thus obtain the scRNA-seq

data as a sparse matrix. Then, the matrix is passed on to the next rule, where we perform QC

to filter out unreliable cells.

Quality Control At this point in the workflow, we can set lower and upper bounds on the

count depth, a minimum number of genes per cell and an upper limit on the percentage of

mitochondrial reads. In order to give an overview of the data, the pipeline provides three

different plots, each illustrating one of the three cell QC metrics. We have the option to specify

the QC thresholds in the config file beforehand or, with the help of the given plots, add them

later. By leaving the respective keys in the config.yaml empty, we are prompted to view the

generated plots and decide on suitable values while the Snakemake workflow stops in the

meantime. These values are also added to the corresponding plots and a summary (Figure 5),

in form of a red dashed line, to indicate the thresholding choices.

Figure 5: Scatter plot summarizing the filtering decisions made by the user.

10

In addition, Pagoda2 filters all cells that do not match the expected gene-versus-count

relationship, by fitting a linear model over said relationship and removing any outliers from

the data (Figure 6).

Figure 6: Plots generated by the gene.vs.molecule.cell.filter function of Pagoda2. Left: Histogram of

count depth per cell. Right: Gene-versus-count relationship. Red circles represent outliers that are removed from

the data.

Finally, the pipeline removes genes that do not exceed the user-specified minimum number

of counts across all cells.

Normalization In the following rule the data is normalized by creating a Pagoda2 object

that contains the filtered count matrix. From this point on, this object is used for the rest

of the preprocessing and the subsequent analysis. When creating the object, the matrix is

stored transposed and its counts are normalized with count depth scaling, as described in

Subsection 2.2, with a factor of 1 000. Additionally, we get to decide whether to log(x+ 1)-
transform the data or not. Pagoda2 also offers to correct for batch effects, but since this

analysis tool is intended to process standalone data sets, its batch correction methods are not

optimized, according to the developers. Although the option remains in the pipeline, we do

not recommend using it.

Furthermore, we use the adjustVariance function of Pagoda2 to normalize the variance of

genes in the data. This is because highly expressed genes also show higher expression variance

compared to lowly expressed genes, which may not necessarily be due to a subpopulation

in the cells, but rather to sampling effects. Therefore, Pagoda2 fits a generalized additive

model (Wood 2017) over the variance-versus-magnitude relationship of the genes and rescales

their variance to put them on a more comparable scale. By doing so, Pagoda2 also detects

overdispersed, or highly variable, genes that are later used in feature selection (Figure 7).

11

Figure 7: Plots generated by the adjustVariance function of Pagoda2. Left: Variance-vs-magnitude relationship

with fitted smooth linear model. Right: Adjusted variance of genes by magnitude. Red dots indicate

overdispersed/highly variable genes.

Dimensionality Reduction The last step in the preprocessing portion of this pipeline is to re-

duce the dimensionality of the data. First, we select, via the config.yaml, how many overdis-

persed/highly variable genes to keep in feature selection. If the number of genes exceeds that

of those previously detected in the normalization, Pagoda2 selects additional genes by sorting

them by their variance and picking the next ones in order. We then perform PCA on the fea-

ture selected data. And just as with the QC thresholds, we again have the option to specify

the number of PCs to be used in the upcoming analysis in advance in the config file or add

them later. For this purpose, an elbow plot is generated for visualization, showing the stan-

dard deviation of the first 50 PCs (Figure 2), which we can use to decide on an appropriate

cutoff. After adding the value to the config file, the pipeline adjusts the Pagoda2 object and

a red dashed line is added to the plot, indicating our decision. The Pagoda2 object with the

reduced data is then passed on to the next rule for data analysis.

3.2.2 Data Analysis

Clustering The analysis of the scRNA-seq data in this pipeline starts with the clustering of the

data using community detection. First, the KNN graph is constructed. We set the k parameter

for graph construction in the config file and can therefore roughly control how many clusters

are generated: The larger the k is, the less clusters are found by the community detection

method. Next, community detection is used on the KNN graph to determine the clusters. The

method applied by Pagoda2 is also specified by us in the config.yaml and is provided by the R

package igraph (Csardi and Nepusz 2006). Among them is the multilevel-function, which

uses the Louvain algorithm recommended by Luecken and Theis (2019).

12

To visualize the clusters, Pagoda2 now generates two-dimensional embeddings of the data,

based on our selections made in the config file. Options include, the often used in visualization,

t-SNE, but also UMAP, the Fruchterman-Reingold algorithm (Fruchterman and Reingold 1991)

and LargeVis (Liu et al. 2016).

In addition, Pagoda2 constructs a gene KNN graph for the Show related genes feature of the

web application. This feature allows users to search for genes that resemble each other based

on their expression across all cells.

Gene Level Analysis In this step, the clustered data will be analyzed by Pagoda2 at the gene

level. To start, Pagoda2 determines the differentially expressed genes of each cluster relative

to all others using Wilcoxon rank sum tests. Then, the pipeline prepares a Gene Ontology

(GO) (Ashburner et al. 2000; Consortium 2020) environment to collect relevant gene sets for

investigation in the web app and for potential pathway overdispersion analysis. Gene sets are

considered relevant even if only a part of the corresponding genes are present in the data. To

ensure that the correct database is accessed, we need to specify the species from which the

scRNA-seq data originates in the config file. The pipeline is able to create GO environments

for humans and for mice.

Now, depending on our choice in the config file, the pipeline performs pathway overdis-

persion analysis or hierarchical differential expression. For pathway overdispersion analysis,

Pagoda2 uses a modified version of the method from its predecessor, described by Fan et al.

(2016). During this analysis, valid gene sets from the GO environment are tested for coordi-

nated variability in the expression of their genes in the cells. A gene set is considered valid if its

number of associated genes is within the pathway size that we specify in the config file, that is,

the minimum and maximum number of genes per gene set. Coordinated variability in a gene

set exists, for example, when one group of cells highly expresses the associated genes while

another group downregulates them. For this, the first PC of the gene set is used to summarize

the heterogeneity in gene expression. If the variance in the first PC is higher than expected,

the respective gene set is classified as overdispersed and is retained. Since many gene sets

share genes, similar sets are subsequently clustered into aspects of heterogeneity. To further

reduce redundancy, gene sets that show a similar pattern of expression in the cells are also

grouped together. The results can then be examined in the web app (Figure 16).

As a faster alternative to pathway overdispersion analysis, Pagoda2 provides a method to

perform hierarchical differential expression. In this method, the clusters already generated

are further combined with hierarchical clustering, and at each split of the resulting dendro-

gram, differential expression analysis is performed between the two branches. In the web

application, each split represents an aspect of heterogeneity.

The results of the data analysis are then passed on to the remaining rules in the pipeline,

which generate various outputs from them.

13

3.2.3 Output

In addition to the plots from preprocessing and the .rds intermediates of the scRNA-seq

data, the pipeline generates further output from the data analysis. To visualize the cluster-

ings, the pipeline prints two plots for each selected embedding in the config file, using the

plotEmbedding-function of the Pagoda2 object. In one, the clusters are labeled with their

cluster ID (Figure 13b) and in the other with the corresponding top marker calculated during

differential expression analysis. Also, for each cluster, the pipeline provides Comma-separated

values (CSV) files of the differential expression analysis results, showing the z-score and the

log2 fold change of each included gene. In addition, the CSV files contain the proportion of

cells in the cluster expressing a given gene and a boolean indicating whether the expression of a

gene is higher than in the other groups. For further visualization of the differentially expressed

genes, heat maps are created for each cluster, showing the expression of their respective top

15 markers across all cells. Since we do not know the number of clusters in advance, we

use checkpoints instead of rules in Snakemake to integrate the heat maps and CSV files, with

cluster IDs in their names, into the workflow.

To provide the web application of Pagoda2 (Figure 16), the pipeline offers two ways to

access it. Since the online version of this app needs a running R session, which is closed after

the Snakemake workflow is finished, the pipeline saves the app as an .rds file. Additionally,

it creates an R script, that can be started manually within the Conda environment and loads

the app into an active R session. The more convenient alternative is to load the application’s

binary file (.bin), also generated by the pipeline, directly into the offline app in the browser.

This way, no active R session is needed, however, this offline version of the app is slower than

its online counterpart.

14

3.3 Seurat-Pipeline

The Snakemake scRNA-seq analysis pipeline presented in this subsection uses the R package

Seurat (Hao et al. 2020) as its main component, developed by the Satija Lab. This scRNA-

seq analysis tool can apply the standard preprocessing procedures, cluster data and perform

differential expression analysis. In contrast to Pagoda2, we can process and integrate data

sets with multiple conditions using Seurat. For example, we can use this pipeline to compare

diseased and healthy tissues and look for differences in gene expression.

For reliable doublet detection, the QC includes the R package DoubletFinder (McGin-

nis, Murrow, and Gartner 2019), which detects and removes doublets from scRNA-seq data.

McGinnis, Murrow, and Gartner (2019) have shown that this procedure improves differential

gene expression analysis as it results in newly identified differentially expressed genes, which

would otherwise be obscured by doublets.

The structure of the Snakemake DAG of this pipeline, shown in Figure 8, is similar to that of

the Pagoda2-pipeline (Figure 4). The rules up to the marker discovery cannot be parallelized

either. However, preprocessing involves data integration, and the analysis and output parts

overlap. This pipeline also processes only one data set at a time, due to the parameters that

need to be adjusted to the data, such as the expected percentage of doublets.

Figure 8: Compressed Snakemake DAG of the Seurat-pipeline.

15

3.3.1 Preprocessing

Quality Control The first step in this scRNA-seq analysis pipeline is to load the count matrix

with Seurat’s read-in function, creating a Seurat object. During this process, cells expressing

less than 200 genes are removed from the data, as well as genes that are only present in

less than three cells. Afterwards, the data is split into its samples for further QC, if possible.

These samples could, for example, each contain a batch from the same sequencing experiment

or consist of cells from different experiments. The result is a list of Seurat objects with one

sample each, which is passed on to the next rule.

The maximum percentage of mitochondrial reads per sample is set by us in the config file.

Barcodes that exceed the cutoffs are subsequently filtered. For visualization, two plots are

generated for each sample showing the three cell QC metrics from Subsection 2.2, before and

after filtering by the cutoffs (plot from after filtering the cells: Figure 9). If the keys for the

thresholds in the config.yaml are left empty, we may view the plots of the unfiltered cells,

decide on appropriate cutoffs and add them to the config file.

0

2000

4000

6000

8000

1
Identity

nFeature_RNA

0

20000

40000

60000

1
Identity

nCount_RNA

0

5

10

15

20

25

1
Identity

percent.mt

Figure 9: Violin plots of three QC metrics: Number of features/genes per cell, number of counts per cell and the

percentage of mitochondrial reads per cell. Measured after filtering cells with high mitochondrial read

percentage.

The next step in the QC of this pipeline is to perform doublet detection with DoubletFinder.

First, we specify the expected percentage of doublets per sample in the config file. The expected

number of doublets varies with the size of the sample: The more barcodes in a sample, the

greater the rate of doublets in it. DoubletFinder requires a fully preprocessed Seurat object to

work. For this, the pipeline applies the SCTransform-function (Hafemeister and Satija 2019)

to each sample, which covers all necessary steps, such as normalization and feature selection.

Lastly, PCA and UMAP is used to reduce the dimensionality of each sample. To assist in select-

16

ing the number of PCs to use, the pipeline generates elbow plots for each sample, from which

we can derive the appropriate cutoffs and enter them into the config file.

We will now summarize the DoubletFinder workflow as described in (McGinnis, Murrow,

and Gartner 2019). DoubletFinder starts by generating artificial doublets from the available

data. For this reason, multiple samples are treated individually, so that no doublets are cre-

ated from cells that do not originate from the same batch and thus cannot exist as a real

doublet. Then, DoubletFinder merges the artificial doublets with the real data and prepro-

cesses them again. To infer the similarity between simulated doublets and potentially real

ones, DoubletFinder uses PCA and the resulting PC distance matrix to calculate the proportion

of artificial k-nearest neighbors (pANN) for each cell. A high proportion means that the cell

resembles the simulated doublets, which is presumably because the cell itself is one. Finally,

these pANN values are sorted and cells with the top x values are removed from the data. Here,

x is limited to the expected percentage of doublets per sample. To show which cells were re-

moved by DoubletFinder, the pipeline creates UMAP plots with the classified cells (Figure 10).

−10

0

−10 −5 0 5 10
UMAP_1

U
M

A
P

_2

Doublet
Singlet

DF.classifications_0.25_0.04_536

Figure 10: UMAP embedding with classified doublets (red) and singlets (blue) in the data.

Normalization After adding user-defined metadata to the scRNA-seq data, such as condi-

tions for later comparison, the data is prepared for dimensionality reduction and possibly

data integration. To do that, the data, or each sample, needs to be normalized again with

SCTransform. In contrast to the commonly applied count depth scaling, SCTransform uses gen-

eralized linear models to remove sampling effects, such as dropouts, from the data. The used

approach is further described by Hafemeister and Satija (2019). The results of SCTransform

are stored in an assay in the Seurat object called SCT. Assays in a Seurat object store raw,

normalized and scaled data as well as other metadata, and allow us to safe multiple variations

of the scRNA-seq data, for example, with different normalization methods applied.

17

Integration If the scRNA-seq data consists of multiple samples, the pipeline now merges the

list of Seurat objects into a single object for later analysis. First, Seurat identifies features,

or genes, that are variable across all samples and selects the 3 000 top scoring ones. Using

that information, it then searches for cells across all samples that resemble each other and

therefore could be of the same cell type. Seurat uses these pairs of cells, referred to as anchors,

to integrate the samples and correct for technical confounders such as batch effects. The

resulting data is stored in the integrated assay of the Seurat object. Last, the pipeline reduces

the dimensionality of the merged data with PCA. If the scRNA-seq data consists of only one

sample, data integration is skipped and only PCA is applied.

Dimensionality Reduction The final rule of the preprocessing phase involves further dimen-

sionality reduction with UMAP. Here, we specify the number of PCs to use for the reduction

in the config file and may view the elbow plot, which was printed after data integration, to

select an appropriate value. The pipeline then creates another elbow plot with the selected

cutoff and a plot illustrating the UMAP embedding.

3.3.2 Data Analysis

Clustering The scRNA-seq data analysis in this pipeline starts with clustering of the cells.

First, Seurat constructs a KNN graph on the integrated, dimensionality-reduced data. The k-

parameter is set to 20 and we decide in the config file on how many PCs to use. Based on the

KNN graph, Seurat then creates a shared nearest neighbor graph (SNN graph) by computing

the neighborhood overlap of every cell and its 20 nearest neighbors.

Afterwards, community detection is performed on the SNN graph to generate the clus-

ters, using the Louvain Algorithm. We decide with the resolution-parameter of Seurat’s

FindClusters function on how large the number of discovered communities should be. The

resolution-parameter is a numeric value and is set in the config.yaml. A value above 1.0

leads to a greater number of communities, while a value below 1.0 results in a smaller amount.

We can leave the value for the resolution empty and instead pass a list of various ones to the

choosableResolutions-key in the config.yaml. The pipeline then returns the clustering for

each listed resolution in the form of plots, from which we can choose a fitting value to use.

Finally, the pipeline prints a UMAP embedding of the clustering, annotated with the cluster

IDs (Figure 13a). If the data consists of multiple conditions, an additional plot of the clustering

is created, in which the cells are split into their respective condition.

Marker Discovery The next step is to look for differentially expressed genes, or marker

genes, that characterize each cluster. However, we must first normalize the data again, this

time using the NormalizeData and ScaleData-functions provided by Seurat. Unlike SCTrans-

form, NormalizeData uses count depth scaling with a factor of 10 000 to normalize the count

data and log(x+ 1)-transforms it afterwards. The results are saved to the RNA assay of the

18

Seurat object, following the recommendation of the Seurat developers to run differential ex-

pression on said RNA assay. Next, Seurat calculates the differentially expressed genes by com-

paring each cluster against all others, using Wilcoxon rank sum tests. The results of all clusters

are stored in a CSV file. This file includes the p-values and log2 fold change of the genes, as

well as the proportion of cells in the cluster expressing each gene and, for comparison, the

proportion in all other clusters. In addition, the pipeline provides a CSV file containing the

average expression of each gene across all clusters.

Compare Conditions If the scRNA-seq data contains two conditions, the pipeline calculates

their differences in gene expression for all clusters, again using Wilcoxon rank sum tests. The

results are also saved to a CSV file, one for each cluster, and show the p-value and log2 fold

change of each gene. In addition, the proportion of cells in the cluster expressing a gene is

given for both conditions.

3.3.3 Output

In addition to the output generated during preprocessing and data analysis, the scRNA-seq

analysis pipeline also creates an interactive web application using the R package ShinyCell

(Ouyang 2021). ShinyCell provides the automated creation of a web app that visualizes the

scRNA-seq data in different ways. For example, we can study the co-expression of genes in

cells (Figure 17) or compare cell information between different clusters, samples or conditions.

The app can later be started in an active R session.

At the end, the pipeline creates CSV files showing the distribution of samples and, if

present, conditions across all clusters.

19

4 Comparison

To compare the two scRNA-seq analysis pipelines, we ran them independently on the same

data. The parameters for which it is possible were chosen similarly, for example, the upper

threshold on the percentage of mitochondrial reads in a cell or the number of PCs to be used

in downstream analysis.

4.1 Data

The data used in this comparison includes four data sets of different sizes. Three of them are

publicly available on the 10x Genomics website (10x Genomics 2021). They contain the count

matrices of human peripheral blood mononuclear cells (PBMCs) with about 3 000, 10 000

and 33 000 barcodes respectively (10x Genomics 2016a; 10x Genomics 2020; 10x Genomics

2016b). The fourth data set, here referred to as Mice 67k, consists of approximately 67 000

barcodes and has two conditions that can be compared to each other.

In order to measure the runtimes of both pipelines, we ran them on all four data sets

mentioned above. For a closer look at the preprocessing and analysis results, we chose the

PBMC 10k data set. The reason for this is that Pagoda2, unlike Seurat, is not designed to

compare multiple conditions with each other and we will therefore look at the analysis of

single-condition data. Furthermore, the PBMC 10k data set is the most recent of the three

single-condition 10x Genomics data.

4.2 Runtimes

We now look at the runtimes of each pipeline in Table 2. Each Snakemake execution used

twelve cores and was run on the same machine, with 1 TiB DDR4 RAM and an AMD EPYC

7742 64-Core Processor with 128 Threads. For data sets with only one condition, we skipped

the rule in the Seurat-pipeline that compares two conditions within each cluster. Note that

these times do not represent the respective main analysis tools per se, but the workflows in

which they are implemented. We mention this because when processing large data sets, a

great amount of time is spent saving and loading the scRNA-seq data as .rds files in between

Snakemake rules. And except for the initial read-in of the sparse count matrix, the functions

to do so are provided by the R base package.

Data set Conditions Samples Barcodes Runtime (Hr:Min)

Pagoda2 Seurat

PBMC 3k One One 2 700 00:03 00:10

PBMC 10k One One 10 985 00:18 00:45

PBMC 33k One Six 33 148 00:29 02:02

Mice 67k Two Six 67 338 02:05 06:15

Table 2: Runtimes of both pipelines on data sets with different sizes and conditions. The times were taken from

the log files of Snakemake and cover the entire workflow, from reading the data to the final all rule.

20

We can see that the Pagoda2-pipeline is faster than the Seurat-pipeline across all four data

sets. This is partly due to the use of DoubletFinder in the Seurat-pipeline. With the exception

of the Mice 67k data set, the DoubletFinder portion itself takes at least as long as the entire

Pagoda2-workflow, as seen in Figure 11. The large increase in the runtime of DoubletFinder

from the PBMC 10k data to PBMC 33k is related to the Seurat-pipeline processing each of the

six samples individually in the QC and thus also with DoubletFinder.

Figure 11: Runtime of each pipeline in seconds, measured on different data set sizes. The values are taken from

the log files provided by Snakemake. The blue and red bars represent the Pagoda2 and Seurat pipelines,

respectively. The green bars indicate the DoubletFinder portion of the Seurat-pipeline.

Another reason why the Pagoda2-pipeline is faster is the number of rules and the asso-

ciated storage and loading times of the .rds files in between, as mentioned earlier. This is

because the Seurat-pipeline creates twelve to thirteen .rds files of the scRNA-seq data during

execution, depending on whether data with one or two conditions are used, most of which

are loaded again in another rule. In contrast, the Pagoda2-pipeline stores seven .rds files

of the scRNA-seq data including the web app, with the advantage that the Pagoda2 objects

require less storage than their Seurat counterparts and thus have generally shorter saving and

loading times. Most of the other files, such as the created plots, are too small in size to make

a noticeable difference in the runtimes.

The increase in the runtime of Pagoda2 on the Mice 67k data set was most noticeable in the

pathway overdispersion analysis, which takes much longer with larger data sets. To further

reduce computation time, hierarchical differential expression can be used as an alternative,

although the results are less informative.

21

4.3 Analysis Results

The following analysis results are from the two scRNA-seq analysis pipelines that were run

independently on the PBMC 10k data set. We will examine them for similarities and differ-

ences in QC and clustering. Additionally, we will briefly discuss the results of the pathway

overdispersion analysis by Pagoda2.

Quality Control Using Table 3, we can view how many cells and genes are present in the

scRNA-seq data before and after the filtering process of the analysis tools.

Unfiltered Pagoda2 Seurat/Doubletfinder

Cells 10 985 10 140 9 767

Genes 36 601 19 389 22 860

Table 3: Number of cells and genes, before and after filtering by each pipeline.

Starting with the cells, the Pagoda2-pipeline filtered out 845, while the Seurat-pipeline

with DoubletFinder removed 1 218 barcodes from the data. The user-defined thresholds in

the Pagoda2-workflow, such as the minimum number of genes and the maximum percentage

of mitochondrial reads per barcode, were set to the same values as those used in the Seurat-

pipeline, 200 and 25%, respectively. This implies that the difference in the number of cells

filtered is due to the way the cell sizes were treated. In the Pagoda2-pipeline, cell sizes were

restricted to a minimum of 200 and a maximum of 30 000 counts per cell. Since the raw PBMC

10k data set was trimmed a priori to a minimum size of 500 counts per barcode, the lower

bound set is obsolete. This allows us to make a direct comparison between the upper threshold

of the Pagoda2 workflow, which is intended to filter doublets, and the DoubletFinder tool,

which is designed for this purpose. Figure 12 shows that the cells filtered by the upper bound

of the Pagoda2-pipeline only slightly overlap with those that were also classified as doublets by

DoubletFinder. Therefore, assuming DoubletFinder is correct in its prediction, many valid cells

were removed from the data. DoubletFinder also manages to identify barcodes as doublets that

lie between the cell size thresholds of the Pagoda2-pipeline, as shown by the blue circles in

Figure 12. These are droplets that could have captured two cells, neither of which have a high

number of transcripts and thus are not considered as being too large for a single cell by the

upper limit.

The numerous cells, in Figure 12, that have a gene count between 200 and 1 000 and

were not retained in either workflow can be explained by the shared upper threshold on the

proportion of mitochondrial reads. The isolated red circle, at approximately 12 000 count

depth and 1 800 gene count, was considered an outlier from Pagoda2 and therefore removed

from the data (Figure 6).

22

Figure 12: Scatter plot showing how the cells were filtered in the respective pipelines. Each data point represents

a cell barcode. A green circle indicates that the barcode was kept in both pipelines. A blue circle represents that

the barcode was only kept in the Pagoda2 pipeline, while a red circle represents a barcode that was only allowed

in the Seurat pipeline. A black cross is a barcode that was not retained after either QC and thus was not included

in any downstream analysis.

In terms of genes, the Pagoda2-pipeline removed 17 212 from the scRNA-seq data, while

the Seurat-pipeline filtered out 13 741 genes. This leads us to the assumption that the proce-

dure of filtering genes based on a minimum number of counts, such as in the Pagoda2 work-

flow, is more strict, than specifying a minimum number of cells in which the genes must be

detected, as done by Seurat.

Clustering Our main interest in comparing the two clusterings is whether both scRNA-seq

analysis tools, Pagoda2 and Seurat, group the same cells together. Looking at the two plots in

Figure 13, we see that Pagoda2 divided the cells of the PBMC 10k data set into 16 clusters (IDs:

1-16), while Seurat identified 14 clusters (IDs: 0-13). For the clustering in each pipeline, we

used the same number of PCs for dimensionality reduction and set the k parameters to 20 when

constructing the KNN graphs in both workflows. Furthermore, community detection was per-

formed with the recommended Louvain algorithm. Differences in the number of clusters and

the distribution of the barcodes could be due to the additional construction of the SNN graph in

the Seurat-Pipeline or the varying normalization approaches: count depth scaling in Pagoda2

and Seurat with SCTransform. Another consideration is that the cells that remained only in the

Pagoda2-workflow after QC form additional clusters. After all, the Pagoda2-pipeline kept 487

23

cells that were filtered in the Seurat-pipeline. Conversely, the Seurat-pipeline retained 114

barcodes that its counterpart removed from the data. However, in Tables 5 and 6, we see that

no cluster consists of a majority of cells that were retained in only one pipeline. The deviating

number of clusters in the Seurat-pipeline is therefore related to the resolution-parameter in

the FindCluster method of Seurat. This parameter was set to 0.5 for this run, which leads to

a smaller number of communities compared to higher values: With 0.7 we obtain a clustering

with 16 clusters, the same amount as in Pagoda2. A resolution of 1.0 creates 18 clusters.

2

5

0

7

3

1

4

9

8 6

12

10

11

13

−10

0

10

−10 0 10
UMAP_1

U
M

A
P

_2

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(a) Clustering of the Seurat-Pipeline (resolution-parameter

set to 0.5).

(b) Clustering of the Pagoda2-Pipeline (without top marker

annotation).

Figure 13: UMAP embeddings of the cell clusterings created with the Louvain algorithm.

To determine which groups are similar between the two clusterings, we look at the number

of matching barcodes in each case. The heat maps in Figure 14 show us the proportions in

which the cells from one clustering map to the other. For the specific numbers, please refer to

Table 7.

As we see in Figure 14a, Seurat’s clusters 5-13 can each be almost completely assigned to

a single Pagoda2 cluster using their matching barcodes. Clusters 0-4, however, distribute their

barcodes more evenly across the clusters of Pagoda2. In addition, in the column for cluster

5 of Pagoda2, we see that no cluster of Seurat can be mapped in majority to it. This can be

explained by the fact that cluster 5 includes only 20 cells in total, all of which also occur in

cluster 10 of Seurat. However, the latter also shares 85 barcodes with cluster 14 of Pagoda2.

Similarly, in Figure 14b we notice that no cluster of Pagoda2 maps in majority to cluster 11 of

Seurat. The highest match for this group is cluster 16 of Pagoda2 with 104 barcodes, but the

majority of cells in cluster 16 can be assigned to cluster 5 of Seurat.

24

(a) Barcode matches scaled by row. (b) Barcode matches scaled by column.

Figure 14: Heat maps showing how the shared barcodes are distributed from one clustering to the other. The

rows represent Seurat’s clusters and the columns those from Pagoda2. The dendrograms were created using

hierarchical clustering based on the distance matrix of Table 7 with euclidean distances.

(a) Scaled by row to illustrate the distribution of the Seurat clusters barcodes across the Pagoda2 clusters.

(b) Scaled by column to show the distribution of the Pagoda2 clusters barcodes across the Seurat clusters.

When we compare both heat maps, we see patterns that allow us to assign groups from

both clusterings to each other, building structures, which can also be seen in both Figure 13a

and Figure 13b. For example, the barcodes from both clusters 6 and 8 of Seurat are all present

in cluster 13 of Pagoda2, except for 2 outliers. The UMAP embeddings show that Seurat has

grouped the same cells as Pagoda2, but divided them into two subclusters. Most structures

in the UMAP embeddings can be assigned to each other as follows, based on their matching

barcodes, ignoring outliers:

Seurat clusters Pagoda2 clusters

0, 2, 9, 12 1, 3, 4, 12, 15

1, 3, 4, 5, 7, 11 2, 6, 7, 8, 9, 10, 16

6, 8 13

13 11

Table 4: Groups of clusters of both pipelines that share barcodes and a similar structure.

Clusters 5 and 14 of Pagoda2 form an exception, as they are clearly separated in their

respective UMAP embedding, although almost all of their barcodes are contained in the single

cluster 10 of Seurat. Thus, we observe that the two clusterings share similar structures, but

these slighty differ in the number of clusters and how strictly these are separated.

25

To quantify the similarity of the clusterings, we use the Rand index (RI) (Rand 1971). The

RI is calculated as follows:

RI= a+ b�n
2

� .
Where a is the number of pairs that are in the same cluster in both clusterings and b is the

number of pairs that are in different clusters in the two clusterings. The denominator is the

amount of possible unordered pairings of the cells. The values of the RI range from 0 to 1,

where 0 states that both clusterings do not agree on any pair classification and 1 indicates that

both clusterings are identical. The RI for the clustering from Pagoda2 and Seurat’s clustering

with the resolution-parameter set to 0.5 is 0.9059. This confirms our observation that the

two clusterings are similar. If we raise the resolution parameter to 0.7 to match the number

of clusters in both clusterings, we obtain an RI of 0.9164, a slight increase in similarity.

26

Pathway Overdispersion Analysis Since Seurat does not perform pathway overdispersion

analysis and thus we cannot make a comparison, we briefly look at part of the results from

the PBMC 10k data set. We can see in the center heat map of the Pagoda2 web application

(Figure 16) that seven aspects of heterogeneity were found in the cells by the pathway overdis-

persion analysis. Orange indicates coordinated upregulation of the gene sets contained in an

aspect, while green indicates downregulation. We now take a closer look at aspects 2 and 3

in Figure 15.

(a) Aspect 2. (b) Aspect 3.

Figure 15: UMAP embeddings highlighting aspects of heterogeneity found in pathway overdispersion analysis of

the PBMC 10k dataset.

In Figure 15a, aspect 2 is highlighted in the clusters and we notice that the clusters 1, 3,

4, 12 and 15 all upregulate the gene sets in this aspect. In contrast, most other cells appear to

downregulate them. Gene sets, or biological processes, that are present in this aspect include:

myeloid leukocyte activation, neutrophil activation involved in immune response and neutrophil

degranulation. Based on this, we can assume that the cells highly expressing the corresponding

genes are granulocytes, or more precisely, neutrophils.

If we examine Figure 15b, we see that cluster 13 upregulates the genes sets in aspect 3.

And even though the other cells do not downregulate them, cluster 13 still stands out. Aspect

3 contains the following gene sets/pathways, among others: B cell receptor signaling pathway,

regulation of B cell activation and immunogoblin complex. From this, we presume that the cells

in cluster 13 are B cells.

27

5 Discussion

In this section, we discuss the advantages and disadvantages of Snakemake as a workflow

tool for scRNA-seq analysis pipelines and draw conclusions from the comparison of the two

pipelines.

5.1 Use of Snakemake

Snakemake, as a workflow tool in both scRNA-seq analysis pipelines, has proven useful during

development as well as in execution. In development, we keep a good overview of the different

steps of an scRNA-seq analysis workflow, since each rule usually represents one of these steps

and each associated script performs a single task. In use, Snakemake takes care of saving and

naming the many outputs of the pipelines and creates a clear folder structure for each project.

Through the configuration file, we can also easily adjust each workflow execution to our liking.

A drawback of using Snakemake are the storage and loading times when transferring the

scRNA-seq data between rules. These would not be necessary in a single R script. However,

we can reuse the resulting intermediates in repeated or subsequent workflow executions. For

example, if we later change the parameters for the clustering, we do not have to repeat all the

steps in preprocessing, as these have not changed and are saved in the processed .rds file of

the scRNA-seq data. Thus, we can save time in later workflow runs of the same project.

5.2 Conclusions

Looking at the DAGs and comparing them using the PBMC 10k data, we see that the scRNA-

seq analysis pipelines resemble each other at some points, such as the choice of community

detection for clustering or dealing with mitochondrial reads in the data. However, we notice

that the Seurat-pipeline can filter the cells more accurately by using DoubletFinder, since it

does not need to rely on a fixed upper threshold that might filter out valid cells. With Tables 5

and 6, we saw that it did not have much impact in clustering in our example run. Although, it

could lead to better results in the analysis for larger data sets, where the rate of doublets is also

higher. The biggest difference in the pipelines is due to their main components, Seurat and

Pagoda2, and is the type of data they can process. Since Pagoda2 is designed for standalone

data sets, it is not able to efficiently analyze data with multiple conditions. For example, it

lacks the ability to integrate multiple data sets, or the existing batch correction methods are

not optimized enough to be used, and cannot compare conditions in data, as Seurat does.

However, Pagoda2 is able to perform pathway overdispersion analysis and is comparatively

faster than the combination of Seurat and Doubletfinder. Therefore, the Seurat-pipeline is

the preferred choice when analyzing data sets with multiple conditions and samples. The

Pagoda2-pipeline, in turn, can be considered when dealing with single-condition data or when

the expression of pathways and gene sets plays a major role in the research question.

28

5.3 Outlook

As the number of scRNA-seq analysis tools increases and new methods are developed, the two

pipelines can be expanded in the future. For example, automatic cluster annotation can be

applied to identify cell types more quickly. This involves dedicated tools comparing gene ex-

pression profiles from reference databases with cells and annotating them accordingly. Also,

methods for trajectory inference help to detect dynamic processes in cells, such as cell differ-

entiation (Luecken and Theis 2019). With Snakemake, the scRNA-seq workflows can even be

extended by tools from other programming languages, as long as the option for data conver-

sion is available. In the case of the Pagoda2-pipeline, a doublet detection tool could be added

to the QC.

We can reduce the runtimes of the pipelines by using Snakemake’s pipe-flag for the .rds

output files of the scRNA-seq tools. This way these objects stay in memory and we don’t have

to save and load them between each rule. For the Seurat-pipeline, we could also parallelize

the processing of each sample by DoubletFinder, saving time in QC. To run the pipelines on a

cluster, we would also need to mark the required resources on each rule.

29

6 References

[1] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Exploring the single-cell RNA-seq

analysis landscape with the scRNA-tools database”. en. In: PLoS Computational Biology

14.6 (June 2018), e1006245. DOI: 10.1371/journal.pcbi.1006245. URL: https://doi.

org/10.1371/journal.pcbi.1006245.

[2] Felix Mölder et al. “Sustainable data analysis with Snakemake [version 1; peer review:

1 approved, 1 approved with reservations]”. In: F1000Research 10.33 (2021). DOI: 10.

12688/f1000research.29032.1.

[3] Nikolas Barkas et al. “pagoda2: Single Cell Analysis and Differential Expression”. R

package version 1.0.2. 2021.

[4] Yuhan Hao et al. “Integrated analysis of multimodal single-cell data”. In: bioRxiv (2020).

DOI: 10.1101/2020.10.12.335331. URL: https://doi.org/10.1101/2020.10.12.335331.

[5] Fuchou Tang et al. “mRNA-Seq whole-transcriptome analysis of a single cell”. In: Nature

Methods 6.5 (May 2009), pp. 377–382. ISSN: 1548-7105. DOI: 10.1038/nmeth.1315.

URL: https://doi.org/10.1038/nmeth.1315.

[6] Byungjin Hwang, Ji Hyun Lee, and Duhee Bang. “Single-cell RNA sequencing technolo-

gies and bioinformatics pipelines”. In: Experimental & Molecular Medicine 50.8 (Aug.

2018), p. 96. ISSN: 2092-6413. DOI: 10.1038/s12276-018-0071-8. URL: https://doi.

org/10.1038/s12276-018-0071-8.

[7] Grace X. Y. Zheng et al. “Massively parallel digital transcriptional profiling of single

cells”. In: Nature Communications 8.1 (Jan. 2017), p. 14049. ISSN: 2041-1723. DOI:

10.1038/ncomms14049. URL: https://doi.org/10.1038/ncomms14049.

[8] Malte D Luecken and Fabian J Theis. “Current best practices in single-cell RNA-seq

analysis: a tutorial”. In: Molecular Systems Biology 15.6 (2019), e8746. DOI: https://

doi.org/10.15252/msb.20188746. eprint: https://www.embopress.org/doi/pdf/10.

15252/msb.20188746. URL: https://www.embopress.org/doi/abs/10.15252/msb.

20188746.

[9] Aisha A. AlJanahi, Mark Danielsen, and Cynthia E. Dunbar. “An Introduction to the

Analysis of Single-Cell RNA-Sequencing Data”. In: Molecular Therapy - Methods & Clin-

ical Development 10 (2018), pp. 189–196. ISSN: 2329-0501. DOI: https://doi.org/10.

1016/j.omtm.2018.07.003. URL: http://www.sciencedirect.com/science/article/pii/

S2329050118300664.

[10] F. William Townes et al. “Feature selection and dimension reduction for single-cell RNA-

Seq based on a multinomial model”. In: Genome Biology 20.1 (Dec. 2019), p. 295. ISSN:

1474-760X. DOI: 10.1186/s13059-019-1861-6. URL: https://doi.org/10.1186/s13059-

019-1861-6.

30

https://doi.org/10.1371/journal.pcbi.1006245
https://doi.org/10.1371/journal.pcbi.1006245
https://doi.org/10.1371/journal.pcbi.1006245
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.1101/2020.10.12.335331
https://doi.org/10.1101/2020.10.12.335331
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1038/ncomms14049
https://doi.org/https://doi.org/10.15252/msb.20188746
https://doi.org/https://doi.org/10.15252/msb.20188746
https://www.embopress.org/doi/pdf/10.15252/msb.20188746
https://www.embopress.org/doi/pdf/10.15252/msb.20188746
https://www.embopress.org/doi/abs/10.15252/msb.20188746
https://www.embopress.org/doi/abs/10.15252/msb.20188746
https://doi.org/https://doi.org/10.1016/j.omtm.2018.07.003
https://doi.org/https://doi.org/10.1016/j.omtm.2018.07.003
http://www.sciencedirect.com/science/article/pii/S2329050118300664
http://www.sciencedirect.com/science/article/pii/S2329050118300664
https://doi.org/10.1186/s13059-019-1861-6
https://doi.org/10.1186/s13059-019-1861-6
https://doi.org/10.1186/s13059-019-1861-6

[11] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In: Jour-

nal of Machine Learning Research 9 (2008), pp. 2579–2605. URL: http://www.jmlr.org/

papers/v9/vandermaaten08a.html.

[12] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approxima-

tion and Projection for Dimension Reduction. 2020. arXiv: 1802.03426 [stat.ML].

[13] Vincent D. Blondel et al. “Fast unfolding of communities in large networks”. In: Journal

of Statistical Mechanics: Theory and Experiment P10008 (Oct. 2008), pp. 1–12. DOI:

10.1088/1742-5468/2008/10/P10008. URL: https://hal.archives-ouvertes.fr/hal-

01146070.

[14] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”. In: Biometrics Bulletin

1.6 (1945), pp. 80–83. ISSN: 00994987. URL: http://www.jstor.org/stable/3001968.

[15] Anaconda Software Distribution. Version Vers. 2-2.4.0. Nov. 2016. URL: https : / /

anaconda.com.

[16] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley, CA:

CreateSpace, 2009. ISBN: 1441412697.

[17] Peter V. Kharchenko, Lev Silberstein, and David T. Scadden. “Bayesian approach to

single-cell differential expression analysis”. In: Nature Methods 11.7 (July 2014),

pp. 740–742. ISSN: 1548-7105. DOI: 10.1038/nmeth.2967. URL: https://doi .org/

10.1038/nmeth.2967.

[18] Jean Fan et al. “Characterizing transcriptional heterogeneity through pathway and gene

set overdispersion analysis”. In: Nature Methods 13.3 (Mar. 2016), pp. 241–244. ISSN:

1548-7105. DOI: 10.1038/nmeth.3734. URL: https://doi.org/10.1038/nmeth.3734.

[19] Simon N. Wood. Generalized Additive Models: An Introduction with R. 2nd ed. Chapman

and Hall/CRC, 2017.

[20] Gabor Csardi and Tamas Nepusz. “The igraph software package for complex network

research”. In: InterJournal Complex Systems (2006), p. 1695. URL: https://igraph.org.

[21] Thomas M. J. Fruchterman and Edward M. Reingold. “Graph drawing by force-directed

placement”. In: Software: Practice and Experience 21.11 (1991), pp. 1129–1164. DOI:

https://doi.org/10.1002/spe.4380211102. eprint: https://onlinelibrary.wiley.com/

doi/pdf/10.1002/spe.4380211102. URL: https://onlinelibrary.wiley.com/doi/abs/10.

1002/spe.4380211102.

[22] Jingzhou Liu et al. “Visualizing Large-scale and High-dimensional Data”. In: Proceedings

of the 25th International Conference on World Wide Web. International World Wide Web

Conferences Steering Committee. 2016, pp. 287–297.

31

http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1802.03426
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://hal.archives-ouvertes.fr/hal-01146070
https://hal.archives-ouvertes.fr/hal-01146070
http://www.jstor.org/stable/3001968
https://anaconda.com
https://anaconda.com
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1038/nmeth.3734
https://doi.org/10.1038/nmeth.3734
https://igraph.org
https://doi.org/https://doi.org/10.1002/spe.4380211102
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380211102
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380211102
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380211102
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380211102

[23] M. Ashburner et al. “Gene ontology: tool for the unification of biology. The Gene On-

tology Consortium”. eng. In: Nature genetics 25.1 (May 2000). PMC3037419[pmcid],

pp. 25–29. ISSN: 1061-4036. DOI: 10.1038/75556. URL: https://doi.org/10.1038/

75556.

[24] The Gene Ontology Consortium. “The Gene Ontology resource: enriching a GOld mine”.

In: Nucleic Acids Research 49.D1 (Dec. 2020), pp. D325–D334. ISSN: 0305-1048. DOI:

10.1093/nar/gkaa1113. eprint: https://academic.oup.com/nar/article-pdf/49/D1/

D325/35364517/gkaa1113.pdf. URL: https://doi.org/10.1093/nar/gkaa1113.

[25] Christopher S. McGinnis, Lyndsay M. Murrow, and Zev J. Gartner. “DoubletFinder: Dou-

blet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors”.

In: Cell Systems 8.4 (Apr. 2019), 329–337.e4. ISSN: 2405-4712. DOI: 10.1016/j.cels.

2019.03.003. URL: https://doi.org/10.1016/j.cels.2019.03.003.

[26] Christoph Hafemeister and Rahul Satija. “Normalization and variance stabilization of

single-cell RNA-seq data using regularized negative binomial regression”. In: bioRxiv

(2019). DOI: 10.1101/576827. eprint: https://www.biorxiv.org/content/early/2019/

03/14/576827.full.pdf. URL: https://www.biorxiv.org/content/early/2019/03/14/

576827.

[27] John F. Ouyang. ShinyCell: Shiny Interactive Web Apps for Single-Cell Data. R package

version 2.0.0. 2021. URL: https://github.com/SGDDNB/ShinyCell.

[28] 10x Genomics. Datasets -Single Cell Gene Expression -Official 10x Genomics Support.

https://support.10xgenomics.com/single- cell- gene-expression/datasets. Accessed:

2021-04-21. 2021.

[29] 10x Genomics. 3k PBMCs from a Healthy Donor. Single Cell Gene Expression Dataset

by Cell Ranger 1.1.0. May 2016. URL: https://support.10xgenomics.com/single-cell-

gene-expression/datasets/1.1.0/pbmc3k.

[30] 10x Genomics. 10k Peripheral blood mononuclear cells (PBMCs) from a healthy donor,

Single Indexed. Single Cell Gene Expression Dataset by Cell Ranger 4.0.0. July 2020.

URL: https://support.10xgenomics.com/single-cell-gene-expression/datasets/4.0.0/

SC3_v3_NextGem_SI_PBMC_10K.

[31] 10x Genomics. 33k PBMCs from a Healthy Donor. Single Cell Gene Expression Dataset

by Cell Ranger 1.1.0. Sept. 2016. URL: https://support.10xgenomics.com/single-cell-

gene-expression/datasets/1.1.0/pbmc33k.

[32] William M. Rand. “Objective Criteria for the Evaluation of Clustering Methods”. In:

Journal of the American Statistical Association 66.336 (1971), pp. 846–850. DOI: 10.

1080/01621459.1971.10482356. eprint: https://www.tandfonline.com/doi/pdf/10.

1080/01621459.1971.10482356. URL: https://www.tandfonline.com/doi/abs/10.

1080/01621459.1971.10482356.

32

https://doi.org/10.1038/75556
https://doi.org/10.1038/75556
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gkaa1113
https://academic.oup.com/nar/article-pdf/49/D1/D325/35364517/gkaa1113.pdf
https://academic.oup.com/nar/article-pdf/49/D1/D325/35364517/gkaa1113.pdf
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1101/576827
https://www.biorxiv.org/content/early/2019/03/14/576827.full.pdf
https://www.biorxiv.org/content/early/2019/03/14/576827.full.pdf
https://www.biorxiv.org/content/early/2019/03/14/576827
https://www.biorxiv.org/content/early/2019/03/14/576827
https://github.com/SGDDNB/ShinyCell
https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/4.0.0/SC3_v3_NextGem_SI_PBMC_10K
https://support.10xgenomics.com/single-cell-gene-expression/datasets/4.0.0/SC3_v3_NextGem_SI_PBMC_10K
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1971.10482356
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1971.10482356
https://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
https://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356

A Appendix

Figure 16: Web application of Pagoda2. On the left, the expression of the gene S100A9 is highlighted in the

clusters. Red indicates upregulation of the gene, while blue indicates downregulation.

Figure 17: Section from the interactive web application of the Seurat-pipeline using ShinyCell. Here, the

co-expression of the genes A2M and A1BG is highlighted in the UMAP embedding of the data.

33

Cluster ID
Unique

Cells

Total

Cells

Proportion

(%)

0 9 1 836 0.5

1 0 1 409 0.0

2 31 1 245 2.5

3 0 1 213 0.0

4 0 1 164 0.0

5 1 807 0.1

6 5 485 1.0

7 0 417 0.0

8 0 392 0.0

9 11 359 3.1

10 30 145 20.7

11 0 133 0.0

12 24 93 25.8

13 3 69 4.3

Table 5: Distribution of cells kept only in the Seurat-pipeline across clusters.

Cluster ID
Unique

Cells

Total

Cells

Proportion

(%)

1 30 718 4.2

2 21 430 4.9

3 42 722 5.8

4 70 158 44.3

5 0 20 0.0

6 2 906 0.2

7 3 578 0.5

8 6 781 0.8

9 0 1 033 0.0

10 1 624 0.2

11 42 109 38.5

12 15 973 1.5

13 41 927 4.4

14 4 93 4.3

15 181 1 229 14.7

16 29 839 3.5

Table 6: Distribution of cells kept only in the Pagoda2-pipeline across clusters.

34

IDs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 552 - - 14 - - - - - - - 214 - - 1047 -

1 - - - - - 463 119 - 499 326 - - - - - 2

2 136 - 333 6 - - - - - - - 738 - - 1 -

3 - - - - - 435 7 - 512 259 - - - - - -

4 - - - - - - 405 690 14 22 - - 2 - - 31

5 - 6 - - - 3 42 70 6 7 - - 5 1 - 666

6 - - - 2 - - - - - - - - 478 - - -

7 - 403 - - - - - - - - - - 4 3 - 7

8 - - - - - - - - - - - - 392 - - -

9 - - 344 - - - - - - - - 4 - - - -

10 - - 2 - 20 - - 1 2 - - - 5 85 - -

11 - - - - - 3 2 14 - 9 1 - - - - 104

12 - - 1 66 - - - - - - - 2 - - - -

13 - - - - - - - - - - 66 - - - - -

Table 7: Matching barcode names across the two clusterings. Therefore, barcodes that were only kept in one

workflow after QC are not included. The rows are the clusters from Seurat and the columns the clusters from

Pagoda2.

35

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background Information
	Single-Cell RNA-Sequencing
	Standard Analysis Workflow

	Single-Cell RNA-Sequencing Analysis Pipelines
	Tools Used to Setup and Build the Pipelines
	Conda
	Snakemake

	Pagoda2-Pipeline
	Preprocessing
	Data Analysis
	Output

	Seurat-Pipeline
	Preprocessing
	Data Analysis
	Output

	Comparison
	Data
	Runtimes
	Analysis Results

	Discussion
	Use of Snakemake
	Conclusions
	Outlook

	References
	Appendix

