
An ILP Implementation for Predicting

Drug Sensitivity in Cancer Cell Lines

Tomas Raising

A thesis presented for the degree of

Bachelor of Science

Algorithmic Bioinformatics

Heinrich Heine University Düsseldorf

Germany

21st July, 2022



Acknowledgments

I am grateful for Prof. Dr. Gunnar Klau for providing guidance and introducing the interesting

field of bioinformatics to me. Next, I want to thank Prof. Dr. Martin Lercher for agreeing to be

my second assessor. I want to extend my gratitude Kerstin Lenhof for providing assistence with

MERIDA. I also thank my daily supervisor, Nguyen Khoa Tran, who supported and encouraged

me.

Computational infrastructure and support were provided by the Center for Information

and Media Technology at Heinrich Heine University Düsseldorf.

ii



Abstract

Cancer therapeutics can be further improved upon by correctly predicting medication effec-

tiveness and inferring sensitivity information. However, interpretability of the methods and

results plays a major role alongside performance.

We reproduce the input data and analyze the performance of MERIDA, an integer linear

formulation based on LOBICO. To generate the data, we use the same GDSC datasets and

data generation workflow as outlined in the MERIDA manuscript. The unavailability of older

datasets seems to be a major bottleneck in this workflow.

After constructing our input data with help from the authors of MERIDA, we train both

LOBICO and MERIDA on a selection of drugs using a stratified 5-fold cross-validation. We

evaluate the results regarding runtime and statistical performance using specificity and sen-

sitivity as metrics. We consider different weight functions, model parameters and a priori

knowledge with MERIDA, if available. Our results show that when MERIDA and LOBICO an

a model with feature size 4, MERIDA is faster up to a factor of 1241.02 on average. How-

ever, MERIDA does not benefit as much as LOBICO from different weight functions. LOBICO

can achieve an improved runtime by 6.96 times using a cubic weight function instead a linear

function. Statistically, LOBICO shows a higher specificity overall while MERIDA has a higher

sensitivity on average. MERIDA shows a higher sensitivity overall on larger models and a

higher specificity on smaller models. Neither LOBICO nor MERIDA seem to show a difference

regarding weight functions.

In conclusion, MERIDA seems convincing regarding performance and interpretability.

iii



Contents

1 Introduction 1

2 Preliminaries 2

2.1 Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 k-Fold Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Methods 3

3.1 Data and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 LOBICO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 MERIDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Results 7

4.1 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Statistical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2.1 Specificity and Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Discussion 13

5.1 Data and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3.1 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3.2 Statistical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Conclusion 15

iv



1 Introduction

A major goal in oncology research is to further improve medicine and develop personalized

treatments. Typically, machine learning algorithms are employed to analyze gathered data and

infer drug sensitivity on cell lines. These models perform well in predicting drug sensitivity,

however, the results are usually hard to interpret. An easily explainable model is important

for wide acceptance and pharmaceutical application [1].

Improving interpretability, Knijnenburg et al. [2] present an integer linear program formu-

lation to infer and predict drug sensitivity from binarized input data called Logic Optimization

for Binary Input to Continuous Output (LOBICO). Although information loss is unavoidable in

the data binarization process, LOBICO retains accuracy through weighting the binarized drug

responses to retain information about the effectiveness of a drug against a specific cell line.

LOBICO constructs logic formulas in disjunctive normal form (DNF), allowing the synthesis

of any boolean function. The prediction vector is calculated by disjunction of intermediate

terms, which are obtained by conjunction of the input features and their negations. However,

building larger models might be considered unpractical because of the high computation time

required.

Based on that approach, Method for Rule Identification with multi-omics Data (MERIDA)

(Lenhof et al.) [3] utilizes another integer linear program formulation to classify cancer cell

lines into sensitive and resistant classes. In contrast to LOBICO, MERIDA restricts its logic

formula to a specific type by assuming that a cell line is only considered sensitive towards a

drug if sensitivity-associated and no resistance-associated features are present. This allows

MERIDA to build two terms, one that is a disjunction of sensitivity-associated features and the

other a disjunction of resistance-associated features. A conjunction of those terms then results

in the prediction vector. Additionally, MERIDA enables the inclusion of a priori knowledge

while constructing the input matrix and also preselect features in the integer linear program

(ILP) formulation.

Our goal is the reproduction and critical analysis of the results Lenhof et al. present. In

Section 2 we explain important concepts that are vital for understanding this thesis. In Section

3 we describe how we generated and processed the data used in our workflow. Then we show

our results and evaluations of the conducted experiments in Section 4. After that, we critically

discuss these findings in Section 5 regarding reproducibility and interpretability. Finally, we

draw a conclusion by comparing our obtained results to Lenhof et al.

1



2 Preliminaries

In this section we will briefly describe some theoretical components which are important for

understanding the thesis.

2.1 Integer Linear Programming

An ILP is a mathematical optimization program in which all or some variables are integers. An

example in canonical form is the following expression:

max cT x (1)

subject to Ax ≤ b (2)

x ∈ N (3)

ILPs have an objective function (1) that are subject to linear constraints (2). All variables

are restricted to integers and, in this example, x ≥ 0 (3) applies. A feasible solution is acquired

by optimizing the objective function while adhering to the linear constraints. The vectors c, b

and the matrix A are integer inputs, and the ILP is solved for the vector x.

2.2 k-Fold Cross Validation

k-fold cross-validation is a widely used technique to evaluate models. The dataset is split

evenly into k disjoint subsets with one subset serving as the test set while the other k − 2

subsets are used to train the modelt. Afterwards, the trained model is evaluated on the test

set utilizing evaluation metrics. This process is then repeated k times so that each fold served

as a test set once. A stratified k-fold cross-validation is the same procedure with the addition

that the original proportion of classes is retained in each fold.

2.3 Evaluation Metrics

We use specificity and sensitivity to evaluate the test sets. These are metrics describe the ratio

between true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN).

specificity=
TN

TN+ FP

sensitivity=
TP

TP+ FN

Specificity defines the rate of a true negative result being recognized as negative. Sensi-

tivity refers to the rate of a truly positive outcome being correctly identified as positive.

2



3 Methods

In this section we will describe where and how we obtained the data as well as the methods

used to process and integrate it into our Snakemake pipeline. Although there does exist a

reference implementation1, we present a Python implementation of MERIDA using Gurobi and

a Snakemake pipeline. However, the original scripts from this repository are used to generate

binarized input data.

3.1 Data and Preprocessing

We use the same data sets as outlined by Lenhof et al. [3] in their Supplementary Information

S1, specifically the GDSC database [4]. The Genomics of Drug Sensitivity in Cancer (GDSC)

project aimed at identifying genetic features that predict drug sensitivity in over a thousand

human cancer cell lines by screening them with a wide range of anti-cancer therapeutics.

We require the cell line information and drug response (logarithmized IC50 values) data

from the GDSC1 and GDSC2 database. Furthermore, we downloaded mutation and copy num-

ber variation (CNV) datasets as well as gene expression information from the official GDSC

website. The GDSC2 dataset is a more recent screening utilizing better equipment and im-

proved procedures compared to GDSC1. Therefore, we will employ the GDSC2 dataset if there

is information on a drug in both databases. We use additional data from CIViC [5], COSMIC

[6], OncoKB [7] and the Cancer Genome Interpreter [8] to enrich the GDSC datasets and filter

out relevant oncology and sensitivity information. As for genomic features, we only consider

genes that are part of IntOGen [9] and a custom cancer gene driver list by Sanchez-Vega et al.

[10]

Using the script collection provided by Lenhof et al. on their Github page, we generate a

N× P matrix with each of the N cell lines containing information on P features. As the matrix

is binarized in the process, the cell values indicate whether a feature is present (= 1) or absent

(= 0) in a cell line. For each drug, we obtain one data matrix.

Unfortunately, we were unable to reproduce the binarized input data on our own since we

could not acquire the specific GDSC and COSMIC database versions used by Lenhof et al. [3].

Also, we had difficulties operating the workflow on a step-by-step basis as the Python script

documentation was rather scarce. However, after contacting the MERIDA authors, Lenhof pro-

vided us with the already processed data required and assisted us with our data reproduction

efforts.

As a final step, we binarize the drug response by utilizing a drug-specific threshold on the

GDSC IC50 values to classify all cell lines into the categories sensitive and resistant. We use the

binarization thresholds provided by Lenhof et al., which were calculated with the procedure

described by Knijnenburg et al. We then append the binarized drug response vector to the data

1https://github.com/unisb-bioinf/MERIDA.git

3

https://github.com/unisb-bioinf/MERIDA.git


Figure 1: A simplified summary of the MERIDA data generation workflow utilizing the datasets described above

as input. The output is a binarized N x P matrix consisting of N cell lines and P genetic features.

matrix as a new column class_label, assigning a class (sensitive, resistant) to each cell line

with a 1 and 0, respectively.

KDM6A_Unknown HNF1A_Loss-of-function ... ARFGAP3_low_expr class_label

0 0 ... 0 0

0 1 ... 0 0

0 0 ... 0 1

0 0 ... 0 0

0 0 ... 1 1

Table 1: Excerpt from the input matrix for the drug Rapamycin. The column names describe annotated mutation

features and gene expression information. The values show whether the features are present (1) or not (0) in a

cell line. The class label indicates drug response (1=sensitive, 0=resistant).

MERIDA can work with or without a priori integration. If no prior knowledge is requested

or not available, a matrix is constructed like outlined before. However, if a priori inclusion

is desired, then all features with known sensitivity associations are merged together as one

of four composite features, depending on whether they either are associated with sensitivity

or associated with resistance. A second matrix containing these features is constructed. The

composite features are used to enable a priori inclusion in the ILP implementation.

Since we are using the same data as well as data generation process as Lenhof et al. [3],

we were expecting identical feature matrices to be constructed. However, despite continued

4



correspondence, we were unable to reproduce the exact same input data as the MERIDA au-

thors. With the reason being unclear, our input matrices contain slightly deviating feature sets

on some drugs compared to the original paper and the updated values by Lenhof. We show

this slight differences in Table 2.

Features (with a priori) Features (without a priori)

Drug (GDSC version) Result MERIDA Result MERIDA

Alpelisib (GDSC2) 1479 1481 (1481) 1479 1481 (1481)

Apitolisib (GDSC1) 1494 1497 (1497) 1493 1496 (1496)

AZD8186 (GDSC2) 1474 1474 (1474) 1474 1474 (1474)

CX-5461 (GDSC1) 1496 1502 (1500) 1497 1503 (1501)

Dactolisib (GDSC2) 1475 1475 (1481) 1474 1474 (1480)

MK-2206 (GDSC2) 1477 1480 (1480) 1476 1479 (1479)

Rapamycin (GDSC2) 1470 1471 (1474) 1476 1477 (1480)

Pictilisib (GDSC2) 1477 1477 (1477) 1478 1478 (1478)

Talazoparib (GDSC2) 1474 1473 (1479) 1475 1474 (1480)

Taselisib (GDSC2) 1479 1481 (1481) 1479 1481 (1481)

Temsirolimus (GDSC1) 1494 1501 (1500) 1496 1503 (1502)

Table 2: Feature size comparison of selected drugs between updated MERIDA (originally published values in

parentheses) and our results.

3.2 LOBICO

LOBICO constructs its logic formulas in disjunctive normal form. Its objective function mini-

mizes the prediction error.

min
∑
∀cn:yn=0

wn y ′n −
∑
∀cn:yn=1

wn y ′n (4)

First, LOBICO constructs K terms t1, ..., tK by conjunction of all input features s1, ..., sp and

their negations s′1, ..., s′p for each cell line. Then, the prediction vector y ′ is generated from the

disjunction of these K terms for each cell line.

LOBICO has two hyperparameters, which describe the number of literals sp and s′p per term

(M) and the number of terms tk (K).

3.3 MERIDA

Like LOBICO, MERIDA’s objective function minimizes the prediction error.

min
∑
∀cn:yn=0

wn y ′n −
∑
∀cn:yn=1

wn y ′n (5)

5



MERIDA assumes that cell line is only considered sensitive towards a drug if sensitivity-

associated and no resistance-associated features are present. Therefore, MERIDA first collects

all features a associated with sensitivity into a set s and all features b associated with resistance

into a set r for each cell line:

s = (a1 ∨ ...∨ ap) (6)

r = (b1 ∨ ...∨ bp) (7)

Then, according to the prediction assumption, MERIDA obtains the final prediction vector

for a cell line n:

y ′n = sn ∧¬rn = (a1 ∨ ...∨ ap)∧¬(b1 ∨ ...∨ bp) (8)

The following function with v ∈ {1,2,3} describes the linear, quadratic and cubic weight

functions respectively.

wn =
|Yn − t|

2
∑
∀cm:ym=yn

|Ym − t|v (9)

MERIDA only has one hyperparameter, the model size M, which is the number of features

that are considered for s and r.

6



4 Results

To encourage flexibility and reproducibility, we implemented a Snakemake [11] workflow to

run MERIDA and LOBICO experiments with configurable parameters. Snakemake is a work-

flow management system designed to create reproducible and scalable data analysis and is

based on a Python-like language. We use Python 3 and Gurobi [12] as our optimizer of choice

since it offers a Python interface and integrates well into our workflow.

Tran kindly provided us with a Snakemake template as well as a Python LOBICO imple-

mentation used in his master thesis [13]. Our Snakemake pipeline consists of rules which

define input and output files based on configuration parameters. This allows for a determin-

istic sequence of processes to be executed in parallel.

Figure 2: Overview of our Snakemake workflow. This figure depicts each major process and data flow.

We focused mainly on replicating two experiments performed by Lenhof et al. [3], a run-

time analysis and statistical performance analysis. Both experiments compare LOBICO and

MERIDA in terms of performance as well as the implication of utilizing different weighting

functions on the outcome. All experiments were performed using a stratified 5-fold cross-

validation and a wall time of 8 hours.

We ran LOBICO and MERIDA on HILBERT, the high performance computing system of the

Heinrich Heine University, which is an Intel Xeon E5-2697 Ivy-Bridge processor with 24 cores

and 128 GB RAM.

Since Lenhof et al. [3] greatly focused on mTOR pathway inhibitors, we decided to analyze

two mTOR inhibitors (Rapamycin, Dactolisib) and two drugs (CX-5461, Niraparib) with a high

number of sensitive cell lines used in the MERIDA manuscript. Additionally, we chose two

drugs not part of the original MERIDA experiments (THZ-2-102-1, Gemcitabine) that show

the highest standard deviation among the GDSC IC50 drug responses.

4.1 Runtime Analysis

We investigated the runtimes and memory consumption of LOBICO with (M = 4, K = 1), (M =

1, K = 4), (M = 2, K = 2), and MERIDA with a maximum model size of 8 (M = 2, M = 4, M =

8). In contrast to Lenhof et al. [3], who processed another input matrix processed differently

for this experiment, we used the already generated input data without a priori from Section

3.1. Analogous to Lenhof et al. [3], we removed gene expression data, keeping only mutation

and CNV features, and constructed new input matrices sizing from 50 up to 400 features with

7



Drug GDSC version Binarization Threshold

Rapamycin GDSC2 -4.25527488930292

Dactolisib GDSC2 -3.39778231725743

Niraparib GDSC2 4.0375589217371

CX-5461 GDSC1 3.57058254269966

THZ-2-102-1 GDSC1 -4.72637365735214

Gemcitabine GDSC2 -4.19309096257369

Table 3: A list of drugs and their calculated binanrization thresholds used in the following experiments. The

latter two do not appear in MERIDA experiments.

a step-size of 50. As we applied a 5-fold cross validation, each parameter variation is executed

five times. The means are shown in the graphs below, excluding experiments with a runtime

exceeding eight hours.

Figure 3: Average runtime in seconds of all analyzed drugs for an input matrix with 50 up to 400 features,

grouped by weight function and model size.

First, we see that MERIDA has a drastically reduced runtime compared to LOBICO, which

only increases minimally in proportion to the number of features. MERIDA shows an aver-

age runtime of 2.54 seconds for linear and 2.58 seconds for both quadratic and cubic weight

functions. LOBICO averages around 861.27 seconds for the linear, 491.77 seconds for the

quadratic and 319.03 seconds for the cubic weight function. It seems that different weight

functions do not have an influence on MERIDA. LOBICO on the other hand shows improved

average runtime in utilizing a cubic and quadratic weight function compared to a linear one.

This is especially discernible with model parameters K = 2, M = 2. A higher feature size

appears to affect the runtime of LOBICO more than MERIDA.

In addition to runtime, we decided to also take a look at memory usage.

We see that MERIDA needs less than 100 MB RAM in general while LOBICO with K =

4, M = 1 and K = 1, M = 1 consumes slightly more memory. There seems to be no noticeable

difference between the weight functions. LOBICO’s K = 2, M = 2 model on the other hand

uses up more than 10 times more RAM than the other configurations, with the cubic and

8



Figure 4: Average memory consumption in MB of all analyzed drugs for an input matrix with 50 up to 400

features, grouped by weight function and model size.

quadratic weight function consuming less memory than the linear function in general.

4.2 Statistical Performance

We replicate the experiment performed by Lenhof et al. [3] in using three different settings

in combination with linear, quadratic and cubic weight functions. We also do not include

experiments that did not finish within the specified wall time of 8 hours, similar to the original

MERIDA experiments.

1. Setting 1: no a priori knowledge is included

2. Setting 2: a priori knowledge is included, and the composite features are fixed to 1

3. Setting 3: a priori knowledge is included, but the ILP determines the corresponding

values

Since no a priori functionality is implemented in LOBICO, we will test it only with Setting

1 and 3. Unfortunately, there seems to be no available a priori knowledge on THZ-2-102-1

and Gemcitabine in our datasets. Therefore, we can only include experiments on these drugs

with Setting 1.

4.2.1 Specificity and Sensitivity

We evaluate the test sets and prediction error based on sensitivity and specificity. This metrics

were chosen for easier comparison to the results of Lenhof et al. [3]

LOBICO shows overall high specificity with a mean of 0.90 and sensitivity averaging 0.42.

Contrarily to runtime, no weight function seems to over- or underperform significantly in

comparison.

MERIDA shows lower specificity, around 0.49, than LOBICO but has a higher average sensi-

tivity of 0.67. Again, there is no significant difference between the weight functions observable.

9



Figure 5: Specificity and sensitivity of LOBICO averaged across all analyzed drugs using a model size of 4,

grouped by weight functions.

Figure 6: Specificity and sensitivity of MERIDA averaged across all analyzed drugs with a model size up to 8,

grouped by weight functions.

10



However, smaller model sizes seem to score higher on the specificity metric while larger mod-

els perform well on the sensitivity metric. Furthermore, Setting 2 seems to have no noticeable

effect on sensitivity or specificity for any weight function, regardless of model size.

Additionally, we compare the results of drugs originally used in the MERIDA experiments

(see Fig. 7 and Fig. 8) to the statistical performance of our chosen drugs (see Fig. 9 and Fig.

10).

There seems to be no major difference between both drug sets, although the data for Gem-

citabine and THZ-2-102-1 show a higher average sensitivity for LOBICO at 0.58 and MERIDA

at 0.77 in Setting 1, respectively.

Figure 7: Specificity and sensitivity of LOBICO using a model size of 4 for Rapamycin, Dactolisib, Niraparib and

CX-5461, grouped by weight functions.

Figure 8: Specificity and sensitivity of MERIDA using a model size up to 8 for Rapamycin, Dactolisib, Niraparib

and CX-5461, grouped by weight functions.

11



Figure 9: Specificity and sensitivity of LOBICO using a model size of 4 for Gemcitabine and THZ-2-102-1,

grouped by weight functions.

Figure 10: Specificity and sensitivity of MERIDA using a model size up to 8 for Gemcitabine and THZ-2-102-1,

grouped by weight functions.

12



5 Discussion

We will critically analyze our methods and results in this section.

5.1 Data and Preprocessing

Unfortunately, the data generation workflow is complex and hard to understand for those

uninvolved in MERIDA. At first, we had difficulties in generating input data since adjusting

parameters and executing the scripts in the correct order is very time-consuming. To overcome

this problem and reduce the complexity of the workflow, we have written a wrapper script that

has three parameters: a drug name, GDSC version and boolean value dictating whether a priori

should be included or not. The wrapper script then automatically calls every required script

in order and passes the required parameters to each, utilizing an editable config file. This

reduces the complexity and required user interaction time considerably and may be improved

further by converting this workflow to a Snakemake pipeline.

However, MERIDA is, for now, unpractical in application. The current process relies on

specific dataset versions, which Lenhof et al. [3] have described in detail, but some, like COS-

MIC [6] and oncoKB [7], have since been updated to a new format and are incompatible with

MERIDA currently. Older versions seem not to be available for download anymore.

5.2 Methods

It would be interesting to see how LOBICO performs in Setting 2, but we were unable to

implement this feature due to time constraints.

Also, a priori knowledge is only available for a select few drugs in our dataset, so results

concerning Setting 2 and 3 might not be very accurate.

5.3 Results

We have excluded experiments exceeding the set wall time of 8 hours. This has heavily im-

pacted results concerning LOBICO’s M = 2, K = 2 model. Instead, we could have included the

best result LOBICO has found during the allowed runtime by setting up a time limit for Gurobi.

Unfortunately, we were unable to repeat affected experiments due to time constraints.

5.3.1 Runtime Analysis

As shown earlier, LOBICO seems to benefit from quadratic and cubic weight functions, es-

pecially the computationally demanding M = 2, K = 2 configuration. A reason might be that

since cubic and quadratic weight functions decrease the weight in itself and the objective func-

tion of the ILP is a minimizing one, the objective value of cell lines is smaller the further away

from the threshold they are, and a solution might be found faster.

When comparing a model size of 4 and using a linear weight function, MERIDA with M = 4

is on average 3.0 times faster than M = 4, K = 1, 21.36 times faster than LOBICO’s M = 1, K =

13



4 and 1241.02 times faster than M = 2, K = 2 configuration. Using a quadratic or cubic weight

function on LOBICO’s M = 2, K = 2 shows an improved runtime by a factor of 2.64 and 6.96,

respectively.

Our results show a high standard deviation for LOBICO runtimes on a smaller dataset,

although they are in line with Lenhof et al. [3]

5.3.2 Statistical Performance

In our results, MERIDA has a lower average specificity than LOBICO, but performs well regard-

ing sensitivity. Interestingly, larger MERIDA model seem to increase sensitivity while smaller

models have better specificity, although it is not apparent in our data whether a priori knowl-

edge improves sensitivity. This interpretation might be obstructed by the high standard devia-

tion our results show and by the small sample size of drugs with available a priori knowledge.

Generally, our results are similar to Lenhof et al. We agree that a higher sensitivity might

be a good choice for a model working with unknown data. Since MERIDA is very fast, further

analysis on performance of larger models that might be better suited to represent the biological

complexity would be feasible.

14



6 Conclusion

In this thesis, we analyzed MERIDA [3] regarding credibility and reproducibility. MERIDA

claims to be faster than LOBICO, comparing a model with a feature size of 4 and the same

weighting function. Additionally, Lenhof et al. [3] results show that LOBICOs runtime can

be improved by utilizing a different weighting function instead of a linear one. Compared to

LOBICO, Lenhof et al. show that MERIDA has a lower average specificity but a higher overall

sensitivity. A priori knowledge (Setting 2) should increase the sensitivity slightly.

Although we had difficulties reproducing input data used by the ILP at first, our results

show that MERIDA (M = 4) is indeed faster than LOBICOs 4-feature sized models ((K =

1, M = 4), (K = 4, M = 1), (K = 2, M = 2)) by up to 1241.02 times on average. LOBICOs

runtime with parameters K = 2, M = 2 show an improvement by a factor of up to 6.96 us-

ing a cubic weight function, according to our experiments. Our data confirms that MERIDA

demonstrates a higher average sensitivity than LOBICO while showing lower specificity. Addi-

tionally, smaller MERIDA models seem to score higher on specificity and lower on sensitivity

while larger models have lower specificity but high overall sensitivity. Our results do not seem

to indicate that different weight functions affect these metrics.

In conclusion, our results based on the reproduced data matrices seem promising and also

support the results Lenhof et al. [3] show in their manuscript.

15



References

[1] Delora Baptista, Pedro G Ferreira, and Miguel Rocha. “Deep learning for drug response

prediction in cancer”. In: Briefings in Bioinformatics 22.1 (Jan. 2020), pp. 360–379.

ISSN: 1477-4054. DOI: 10.1093/bib/bbz171. eprint: https://academic.oup.com/bib/

article-pdf/22/1/360/35934938/bbz171.pdf. URL: https://doi.org/10.1093/bib/

bbz171.

[2] Theo A Knijnenburg et al. “Logic models to predict continuous outputs based on binary

inputs with an application to personalized cancer therapy”. In: Scientific reports 6.1

(2016), pp. 1–14. DOI: 10.1038/srep36812. URL: https://doi.org/10.1038/srep36812.

[3] Kerstin Lenhof et al. “MERIDA: a novel Boolean logic-based integer linear program for

personalized cancer therapy”. In: Bioinformatics 37.21 (Aug. 2021), pp. 3881–3888.

ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btab546. eprint: https://academic.

oup . com/bioinformatics/article - pdf/37/21/3881/41091860/btab546 .pdf. URL:

https://doi.org/10.1093/bioinformatics/btab546.

[4] Francesco Iorio et al. “A Landscape of Pharmacogenomic Interactions in Cancer”. In:

Cell 166.3 (2016), pp. 740–754. ISSN: 0092-8674. DOI: https://doi .org/10.1016/

j . cell . 2016 . 06 . 017. URL: https : / /www. sciencedirect . com / science / article / pii /

S0092867416307462.

[5] Malachi Griffith et al. “CIViC is a community knowledgebase for expert crowdsourc-

ing the clinical interpretation of variants in cancer”. In: Nature genetics 49.2 (2017),

pp. 170–174.

[6] John G Tate et al. “COSMIC: the Catalogue Of Somatic Mutations In Cancer”. In: Nucleic

Acids Research 47.D1 (Oct. 2018), pp. D941–D947. ISSN: 0305-1048. DOI: 10.1093/

nar/gky1015. eprint: https://academic.oup.com/nar/article - pdf/47/D1/D941/

27441712/gky1015.pdf. URL: https://doi.org/10.1093/nar/gky1015.

[7] Debyani Chakravarty et al. “OncoKB: A Precision Oncology Knowledge Base”. In: JCO

Precision Oncology 1 (2017), pp. 1–16. DOI: 10 .1200/PO.17 .00011. eprint: https :

//doi.org/10.1200/PO.17.00011. URL: https://doi.org/10.1200/PO.17.00011.

[8] D Tamborero et al. “Cancer Genome Interpreter annotates the biological and clinical

relevance of tumor alterations. Genome Med 10 (1): 25”. In: (2018).

[9] Abel Gonzalez-Perez et al. “IntOGen-mutations identifies cancer drivers across tumor

types”. In: Nature methods 10.11 (2013), pp. 1081–1082.

[10] Francisco Sanchez-Vega et al. “Oncogenic Signaling Pathways in The Cancer Genome

Atlas”. In: Cell 173.2 (2018), 321–337.e10. ISSN: 0092-8674. DOI: https://doi.org/10.

1016/j.cell.2018.03.035. URL: https://www.sciencedirect.com/science/article/pii/

S0092867418303593.

16

https://doi.org/10.1093/bib/bbz171
https://academic.oup.com/bib/article-pdf/22/1/360/35934938/bbz171.pdf
https://academic.oup.com/bib/article-pdf/22/1/360/35934938/bbz171.pdf
https://doi.org/10.1093/bib/bbz171
https://doi.org/10.1093/bib/bbz171
https://doi.org/10.1038/srep36812
https://doi.org/10.1038/srep36812
https://doi.org/10.1093/bioinformatics/btab546
https://academic.oup.com/bioinformatics/article-pdf/37/21/3881/41091860/btab546.pdf
https://academic.oup.com/bioinformatics/article-pdf/37/21/3881/41091860/btab546.pdf
https://doi.org/10.1093/bioinformatics/btab546
https://doi.org/https://doi.org/10.1016/j.cell.2016.06.017
https://doi.org/https://doi.org/10.1016/j.cell.2016.06.017
https://www.sciencedirect.com/science/article/pii/S0092867416307462
https://www.sciencedirect.com/science/article/pii/S0092867416307462
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1093/nar/gky1015
https://academic.oup.com/nar/article-pdf/47/D1/D941/27441712/gky1015.pdf
https://academic.oup.com/nar/article-pdf/47/D1/D941/27441712/gky1015.pdf
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1200/PO.17.00011
https://doi.org/10.1200/PO.17.00011
https://doi.org/10.1200/PO.17.00011
https://doi.org/10.1200/PO.17.00011
https://doi.org/https://doi.org/10.1016/j.cell.2018.03.035
https://doi.org/https://doi.org/10.1016/j.cell.2018.03.035
https://www.sciencedirect.com/science/article/pii/S0092867418303593
https://www.sciencedirect.com/science/article/pii/S0092867418303593


[11] Mölder F, Jablonski KP, Letcher B et al. Sustainable data analysis with Snakemake. 2021.

DOI: https://doi.org/10.12688/f1000research.29032.1.

[12] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2022. URL: https ://

www.gurobi.com.

[13] Nguyen Khoa Tran. “Logic models to classify cancer types based on tumor DNA sam-

ples”. MA thesis. Heinrich Heine University, 2021. URL: https ://www. cs . hhu . de/

fileadmin/redaktion/Fakultaeten/Mathematisch- Naturwissenschaftliche_Fakultaet/

Informatik/Algorithmische_Bioinformatik/Bachelor-_Masterarbeiten/2436588_ms_

ifo_AbschlArbeit_klau_marscht_ngtra102_20210105_1914.pdf.

17

https://doi.org/https://doi.org/10.12688/f1000research.29032.1
https://www.gurobi.com
https://www.gurobi.com
https://www.cs.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Informatik/Algorithmische_Bioinformatik/Bachelor-_Masterarbeiten/2436588_ms_ifo_AbschlArbeit_klau_marscht_ngtra102_20210105_1914.pdf
https://www.cs.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Informatik/Algorithmische_Bioinformatik/Bachelor-_Masterarbeiten/2436588_ms_ifo_AbschlArbeit_klau_marscht_ngtra102_20210105_1914.pdf
https://www.cs.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Informatik/Algorithmische_Bioinformatik/Bachelor-_Masterarbeiten/2436588_ms_ifo_AbschlArbeit_klau_marscht_ngtra102_20210105_1914.pdf
https://www.cs.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Informatik/Algorithmische_Bioinformatik/Bachelor-_Masterarbeiten/2436588_ms_ifo_AbschlArbeit_klau_marscht_ngtra102_20210105_1914.pdf

	Introduction
	Preliminaries
	Integer Linear Programming
	k-Fold Cross Validation
	Evaluation Metrics

	Methods
	Data and Preprocessing
	LOBICO
	MERIDA

	Results
	Runtime Analysis
	Statistical Performance
	Specificity and Sensitivity


	Discussion
	Data and Preprocessing
	Methods
	Results
	Runtime Analysis
	Statistical Performance


	Conclusion

