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Abstract

The quest to uncover the meaning of genomes has shone the spotlight onto k-mers. As a

result, there has been extensive research done on decoding the linkage between k-mers and

their impacts on biological functions. An interesting method that we found for determining

this linkage was to conduct linguistic analyses on the genome, which draw analogies between

keywords found in conventional texts and functional k-mers in genome sequences. By measur-

ing the clustering level of k-mers and their enrichment levels in important genomic regions, a

correlation can be made between k-mer clustering and functional elements, thus implying that

the function of the genomic region is tied to those k-mer clusters. In this thesis, we replicated

this method of identifying functional k-mers in genome sequences and applied it to human

and coronavirus genomes.
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1 Introduction

The genome is the cumulative sum of an organism’s hereditary materials. Goldman and

Landweber 2016 describes them as "the information repository of an organism". A genome se-

quence may be represented as a one-dimensional sequence of nucleotides (A, C, G, and T), and

a segment of k consecutive nucleotides is called a k-mer. K-mers are widely used in computa-

tional genomics and sequence analysis, performing a critical role in the elucidation of genome

functions. For instance, Chae et al. 2013 reported that certain k-mers characterize CpG island

sequences in humans which are known to regulate gene expression through transcriptional si-

lencing of genes (Deaton and Bird 2011, Jacinto and Esteller 2007). Therefore, the discovery

and extrapolation of functional k-mers in genomes have been a major topic of research in the

scientific community. In this thesis, we proposed and applied a method for finding important

(functional) k-mers in genome sequences using linguistic analyses.

In Ortuño et al. 2007, it was discovered that keywords in literary texts show a strong

clustering along the text, whereas common words are randomly distributed. Keywords are

used for topic detection and provide contextual and semantic meaning. Similarly, Durand and

Sankoff 2002 found that k-mers that have well-defined biological functions, as well as genome

elements such as genes and exons, are spatially clustered along the genome. This potentially

indicated that genome sequences are structured similarly to conventional texts and therefore

behave in the same way. This hypothesis is supported by Hackenberg, Carpena, et al. 2011,

who stated that such spatial clustering often translates into genome structures with a clear

functional and/or evolutionary meaning. To better portray this analogy, a k-mer can thereby

be referred to as a DNA "word" of length k, and their clustering level can be regarded as a

measurement of importance in biological sequences.

This thesis will look at the method and procedure first introduced by Hackenberg, Rueda,

et al. 2012, in which they developed an algorithm to compute the clustering coefficients of

k-mers in the genomes of humans and mice using the fluctuations of distances between con-

secutive k-mers. They observed that DNA words (k-mers) with strong clustering in the genome

elements are also highly enriched inside them, this implies that strongly clustered k-mers are

more likely to be associated with the biological function of the genome element. This led to

the discovery of a novel way of identifying functional k-mers in DNA, and the replication and

implementation of this procedure is the primary focus of this thesis. The procedure will be ap-

plied on the chromosome 1 sequence of the latest human genome assembly hg38, primarily on

exons. In light of the ongoing COVID-19 pandemic, we contemplated the viability of such an

approach on viral genomes. A potential dictionary of diagnostic k-mers can be built using this

method, and the successful identification of functional k-mers can help improve research on

viral vaccines. Hence, we conducted experiments on the SARS-CoV and SARS-CoV-2 genomes

to investigate this hypothesis.
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In Section 2, we will give a brief introduction to the context and relevancy of our experi-

ments with the SARS-CoV and SARS-CoV-2 genomes. The complete procedure, which includes

enrichment analyses and the word clustering algorithm, which we will refer to as the HCR al-

gorithm (Hackenberg, Carpena, Rueda), as well as the resources used in this thesis will be

discussed in-depth in Section 3. In Section 4 we will be showcasing the results on the human

genome hg38, as well as SARS-CoV and SARS-CoV-2 genomes.

Lastly, it is important to note that the fundamental concepts that will be discussed in this

thesis such as word clustering and word enrichment should be understood as k-mer cluster-

ing and k-mer enrichment. This naming convention stems from the linguistic models that the

procedure was derived from. This includes the terminologies "DNA words" and "words", they

should, unless specified, mean "k-mers". Throughout this thesis, "k-mers" and "words" will be

used interchangeably.
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2 Background Information

2.1 SARS-CoV and SARS-CoV-2

In December 2019, cases of patients suffering from a new type of respiratory disease started

to emerge in Wuhan, Hubei the People’s Republic of China. Symptoms of the disease included

fever, sore throat, and respiratory distress which was diagnosed to be caused by a novel coron-

avirus (nCoV-2019). It was later discovered that the virus shared a genetic resemblance to an

earlier known coronavirus SARS-CoV and was renamed SARS-CoV-2. The disease was highly

infectious and rapidly spreads across the globe. In March 2020, the World Health Organization

declared the coronavirus disease 2019 (COVID-19) a pandemic. As of June 2022, the COVID-

19 pandemic mounts over 500 million infected cases including 6 million deaths worldwide.

Therefore, accelerating research and innovations to combat SARS-CoV-2 is a contemporary

task, and the identification of important k-mers can be used for this purpose. For instance, Ali

et al. 2021 used a k-mer based sequence representation to classify SARS-CoV-2 variants. They

found that mutations of certain amino acids and amino acid positions in the spike S protein

are responsible for some variations of the SARS-CoV-2. Our quest of identifying functional

k-mers in genome sequences plays a similar role to this, as it allows the possibility of discover-

ing diagnostic k-mers which can be used to distinguish genome elements in the viral genome.

SARS-CoV will be used in the experiments primarily as a comparison.

2.2 Genome Structure

Due to time constraints, we needed to selectively decide on which genome element we

deemed to have more functional or evolutionary significance. To this end, we need to better un-

derstand the genome structure of the coronaviruses. Coronaviruses are spherical, enveloped,

single-stranded RNA viruses with multiple spike surface glycoproteins projected on their sur-

face, forming their defining corona appearance. Among the RNA viruses, coronaviruses have

the largest genome size. The genome size of SARS-CoV-2 is approximately 30.000 base in

length and it shares around 88% sequence identity with that of SARS-CoV (Wu et al. 2020).

There have been rigorous studies on understanding key stages of the SARS-CoV-2 life cycles

as well as identifying key protein structures. Figure 1 illustrates the genome structure for both

SARS-CoV and SARS-CoV-2.

Two classifications of proteins can be found in both coronavirus genomes, non-structural

proteins (nsps) and structural proteins. There are 16 nsps and 4 major structural proteins

present in both SARS-CoV and SARS-CoV-2 that are considered to be the main contributors that

run the RNA machinery. The overall mechanism of these nsps and major structural proteins

has been decoded and well understood by researchers such as Romano et al. 2020 and Arya

et al. 2020, and is outlined as follows. From the 5’ end, two main ORFs (Open Reading
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Figure 1: Genome structure of the coronaviruses SARS-CoV and SARS-CoV-2 genome. Some ORFs and accessory

proteins are not drawn. ORF stands for Open Reading Frames.

Frames), ORF1a and ORF1b, collectively classified as ORF1ab, encompass two-thirds of the

genome and are translated into polyproteins. These polyproteins are responsible for producing

the 16 non-structural proteins, nsp1 - nsp16, which are associated with the synthesis of viral

RNA. The other one-third of the genome encodes for four major structural proteins: spike (S),

Membrane (M), Envelope (E), and Nucleocapsid (N) as well as some accessory proteins. The

spike S glycoprotein is the largest of the structural proteins, it is made up of two subunits called

S1 and S2 and plays an essential role in binding to receptors on host cells. The membrane M

and envelope E proteins are collectively responsible for the regulation of virus assemblies and

are the smallest among the structural proteins. Lastly, the nucleocapsid N protein protects the

viral genome by packing it into a helical ribonucleocapsid. Other ORF accessory proteins are

located between or inside these structural proteins, often consisting of amino acid residues and

their interactions are currently not well understood. Chan, Choi, and Schork 2020 suggested

that the presence of unique sequence signatures in the 3’ untranslated region (3’-UTR) exists

in both SARS-CoV and SARS-CoV-2 which could contribute to the survival mechanism of the

viruses. Bojkova et al. 2020 also indicated that an extra ORF protein unique to SARS-CoV-2 was

found in infected cells, however, there has been no conclusive evidence on the functionality of

this protein.

2.3 Defining the Experiment Parameters

Now that we have an overview of the coronaviruses’ genome structure, we need to define

the experiment parameters:

1. The genome sequence

2. The target genome elements

3. The length of k-mers to be tested.
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As previously discussed, the experiments will be conducted on the human hg38, SARS-CoV,

and SARS-CoV-2 genome sequences. The target genome elements for humans are exons due

to their clustered nature. For coronaviruses, despite having the largest genome size out of

all RNA viruses, it is still relatively small when compared to human DNA. The human genome

has a length of∼3 billion nucleotides, approximately 100.000 times longer than coronaviruses

which are roughly ∼28.000−30.000 nucleotides long. As such, we selected 2 of the most sub-

stantial genome elements, the ORF1ab and Spike S genes.

The third and last requirement is unique to the HCR algorithm that will be described in sec-

tion 3.3. The shorter sequence of RNA posed an issue as the number of k-mer counts drastically

reduces as the length of the k-mer increased. Using Jellyfish by Marçais and Kingsford 2011

and a python script, we compared the number of high-frequency k-mers from chromosome-1

of the human hg38 genome, and the complete genomes of SARS-CoV and SARS-CoV-2:

k-mer with frequency > 2

k-mer length

(k)

Human hg38

(chr1)

SARS-CoV

(complete)

SARS-CoV-2

(complete)

2 16 16 16

3 64 64 64

4 256 256 256

5 1024 1005 988

6 4096 3121 2894

7 16384 4672 4538

8 65536 1824 2190

9 262137 290 378

10 1048568 34 41

Table 1: List of the number of valid k-mer candidates (k-mer with count > 2) for hg38, SARS-CoV, SARS-CoV-2

genomes

As expected, the k-mer frequencies for both viral genomes lack in comparison to a sin-

gle chromosome from the human genome. Initial testing showed that the clustering level of

some k-mers is higher than expected, indicating the experiments might still produce viable

results. The size of the human genome posed a different problem, namely high computational

demand, therefore we limited our testing to k-mers of length k = 2− 9.

To sum it up, we will be running our experiments on k-mers of length k = 2 − 9. The

genome elements that will be tested for in SARS-CoV and SARS-CoV-2 are the ORF1ab and

Spike S genes, and the genome element that will be tested for in human hg38 will be exons.
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3 Methods

In this section, we will be diving deeper into the principles and guidelines from the Hack-

enberg, Rueda, et al. 2012 and outline the methodology and procedure described in it. All of

the code written for this project are in Python. We made use of Python’s extensive bioinfor-

matic tools such as Biopython for reading FASTA data files and Matplotlib for plotting results.

Jellyfish by Marçais and Kingsford 2011 was used for fast high-frequency k-mer counting. Fig-

ure 2 shows the general workflow of the project.

Figure 2: Workflow of the project.

3.1 Datasets

All of the genome assemblies (Human hg38, SARS-CoV, and SARS-CoV-2) and genome el-

ement reference sequences (Human exons, CoV ORF1ab gene, and CoV Spike S gene) were

downloaded from the NCBI GenBank and RefSeq databases. RefSeq is a non-redundant set

of reference sequences (Pruitt, Tatusova, and Maglott 2005) of genomic regions, transcripts,

and proteins that have been curated. These reference sequences commonly contain the entire

clusters of genome elements within them.

Figure 3: General overview of a genome sequence, the genome element here is a cluster of exons.
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3.2 Cleaning the Genome Dataset

Since we will be measuring the clustering levels of k-mers, we need to first remove low-

frequency k-mers such as k-mers with a count of 1, as a single k-mer copy cannot form a

cluster by itself. Jellyfish offers a fast and efficient solution to achieve this goal. There are

two ways to count high-frequency k-mers using Jellyfish, a one-pass method and a two-pass

method. Both methods are based on using Bloom filters. The one-pass method provides an

approximate count for some percentage of the k-mers whereas a two-pass method provides an

exact count but uses more memory. For this thesis, we performed a two-pass method on the

genome datasets. In the two-pass method, a Bloom counter is first created using the command:

jellyfish bc -m 8 -s 100M -t 16 -o sars_cov_2.bc sars_cov_2.fa

This creates a Bloom counter of 8-mers from the SARS-CoV-2 genome dataset. We then

pass this Bloom counter into the jellyfish count command to insert only k-mers that have been

seen at least twice in the first pass into the hash.

jellyfish count -m 8 -s 3M -t 16 --bc sars_cov_2.bc sars_cov_2.fa

This method of counting takes only k-mers of count greater than 1 and reduces memory

usage significantly. However, the HCR algorithm requires a minimum k-mer frequency of 3. A

python script was used to filter out any left-over k-mers that have a count of 2 and a Snake-

make (Köster and Rahmann 2018) pipeline is built to automate the whole dataset cleaning

process (see Figure 4).

Figure 4: Snakemake pipeline of the data cleaning process. On the top level - first pass of the two-pass method,

the Bloom counter of each k-mer file is being created. Second level - bloom counters of the k-mer files are passed

into the jellyfish count command to count only k-mers that have been seen at least twice. Third level - the

jellyfish count results are dumped into readable FASTA files and processed by a python script to remove left-over

k-mers in each file that has a frequency of 2. On the lowest level - the Snakemake rule produces all files required

to create the final output file.
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3.3 Measuring Word Clustering using HCR Algorithm

Coming back to the literary text analogy, let’s assume that DNA words behave similarly

to words in a text. Carpena et al. 2009, who investigated the word clustering in literary

texts, mentioned that the distance distribution P(d) can be used to "characterize the spatial

distribution of a particular word, as well as to show the relationship between word clustering

and word semantic meaning." We can directly translate this to our biological context and use

P(d) as a measurement of clustering. When a word is distributed randomly along the sequence,

P(d) follows the geometric distribution:

P(d) = (1− p)d−1p (1)

where d is the set of distances between consecutive words and p is the probability of oc-

currence. However, if the word distribution is not random, P(d) will take different forms. In

order to measure the clustering level of a k-mer in non-random word distributions, the nor-

malized clustering measure σnor is used. The HCR algorithm calculates σnor of each k-mer by

performing the following steps:

For each k-mer:

1. Detect all k-mer copies with a count greater than 3 in the genome sequence and store

their start and end coordinates. The copies should not be overlapping each other, i.e.

once a copy is found the search is resumed one index after the end of the copy.

2. Calculate the set of distances d = (d1, d2, d3, ..., dn−1, dn) between consecutive copies.

The distance is defined as:

di = star tCoordinate(di+1)− endCoordinate(di) (2)

A minimum distance of 1 can occur when two copies are located directly next to each

other. Hence, when there are only 2 copies of the k-mer, it may result in false positives,

where the distance between the copies is 1, thus giving an impression of high clustering

but may actually be random.

3. Calculate the probability p that the k-mer occurs in the genome using the following

formula:

p =
N

(Ls − k+ 1)− N · (k− 1)
(3)

with N being the number of non-overlapping occurrences of the k-mer in the sequence,

k the length of the k-mer and Ls the sequence length. The formula is simply the number

of target k-mer in the sequence divided by the total number of k-mers in the sequence.
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4. Calculate the standard deviation of P(d) and the coefficient of variation CV :

σ =
Æ〈d2〉 − 〈d〉2 (4)

CV =
σ

〈d〉 (5)

〈d〉 refers to the mean distance and CV is a form of P(d) and a high CV indicates clus-

tering. However, different k-mers of the same length can have different distance dis-

tributions and thus fluctuating CVs. Therefore it is important that these CV values are

normalized.

5. Calculate the normalized clustering measure σnor :

σnor =
CVp
1− p

(6)

σnor is a non-bias estimate of the clustering level of a k-mer. A σnor = 1 indicates

randomness, the coefficient of variations is close or equal to the mean distance and no

substantial meaning can be inferred. When σnor > 1, the coefficient of variations is

greater than the mean distance, and as previously mentioned, this indicates clustering.

When σnor < 1, the coefficient of variations is lesser than the mean distance, indicating

a repulsion.

3.4 Enrichment Analyses

Strong word clustering is insufficient to prove that a link between a k-mer and its biological

function exists. In order to establish concrete evidence, enrichment or depletion analyses are

required. In enrichment/depletion analyses, the word enrichment/depletion percentages of

the k-mers are used to quantify the association between the k-mers and a given genome ele-

ment. This was done by measuring the enrichment ratio ri of each k-mer and then calculating

the enrichment/depletion percentages as a function of ri and σnor .

For a given i-th k-mer, we can calculate its enrichment ratio by first defining the k-mer

density within the genome as:

Denin
i =

nin
i

Lenin
(7)

with nin
i being the number of copies of the k-mer located within the genome element, and

Lenin the total length of the genome element. Afterward, we define the k-mer density outside

the genome in the same manner:
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Denout
i =

nout
i

Lenout
(8)

with nout
i being the number of copies of the k-mer located outside the genome element,

not overlapping a single base with the genome element, and Lenout the total length of the rest

of the genome sequence outside of the genome element.

The enrichment ratio ri is then measured by:

ri =
Denin

i

Denout
i

(9)

This ratio can then be interpreted as:

• ri = 1: The k-mer can occur either inside or outside the genome element with equal

probability, i.e. random.

• ri > 1: The k-mer is enriched inside the genome element.

• ri < 1: The k-mer is depleted inside the genome element.

The ratio ri is an attribute of each individual k-mer and is measured independently for a

given genome sequence and genome element reference sequence. For instance, the enrich-

ment ratio for the first 6-mer "AAAAAA" of the SARS-CoV-2 genome will be different when

measured within the ORF1ab and the spike S genes. Similarly, every subsequent 6-mers will

have its own enrichment ratios.

We then calculate the enrichment/depletion percentage by generalizing ri based on the

normalized clustering measure σnor . First, we ordered all k-mers by its σnor value. Next,

we divided them into 20 groups {g1, g2, ..., g20}, with each group gi having roughly an equal

amount of k-mer members.

For each group, we define

• nenriched as the number of k-mers with ri ≥ 2 (twice as likely to appear inside the genome

element), and

• ndepleted as the number of k-mers with ri ≤ 0.5 (half as likely to appear inside the genome

element)

A k-mer is then said to be highly enriched when it appears twice as frequently inside a

genome element as it is outside of the genome element, i.e. the rest of the genome sequence.

Likewise, a k-mer is highly depleted when it appears half as frequently inside the genome

element as it is outside of it. Finally, for a given group gi with length ngi
we calculate its

enrichment percentage fenrichment as:

10



fenrichment =
nenriched

ngi

· 100(%) (10)

The depletion percentage fdeplet ion can analogously be calculated using:

fdeplet ion =
ndepleted

ngi

· 100(%) (11)

3.5 Implementation

The code implementation, as well as supplementary resources, can be found at:

https://gitlab.cs.uni-duesseldorf.de/albi/albi-students/ba-vincent-wilantara
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4 Results

4.1 Word Clustering in hg38

The hg38 genome is currently the latest human reference genome that is published by

NCBI and has a higher DNA quality than the hg18 genome which was used by Hackenberg,

Rueda, et al. 2012 during the development of the HCR algorithm. Testing it this way has two

advantages: the human genomes hg38 and hg18 differ slightly from one another due to the

diversity found in some parts of the human genome. This not only gives us a unique result but

also more accurate results. Moreover, the hg18 genome contained a lot of unidentified regions

in the genome sequence due to low DNA quality. The higher quality of hg38 resulted in fewer

of these unidentified regions, and potentially newer exon regions that hg18 was not able to

uncover. This was an idea that was proposed by Lindblad-Toh et al. 2011 when discussing

the limitations of hg18. For our null hypothesis, we will assume that k-mers and functional

elements are not associated with each other and that no correlation between word clustering

level and word enrichment percentages exists. Using the HCR algorithm, we calculated the

normalized clustering measures σnor for k-mers (k = 2−9) of the chromosome 1 sequence of

hg38:

k-mer

length

N Min σnor Mean σnor Max σnor

2 16 1.091 1.415 1.506

3 64 1.079 1.455 1.823

4 256 1.054 1.330 2.128

5 1024 1.029 1.278 2.635

6 4096 0.982 1.222 2.991

7 16384 0.795 1.161 4.538

8 65536 0.000 1.143 7.190

9 262137 0.000 1.125 15.378

Table 2: Statistics of the normalized clustering measures for k = 2−9 in hg38 (chr1) genome. N is the number of

k-mers that satisfies the frequency requirement (k-mer count >2).

As shown in Table 2, all k-mers in hg38 are mostly clustered, with mean σnor > 1. The

distribution of σnor values in the genome sequence shows an increasing positive skewness as

the k-mer length increases. Longer k-mer sequences tend to be more distinct due to their larger

sequence permutations and therefore relatively less likely to have clusters compared to shorter

k-mers, which translates to lower mean σnor and min σnor . However, this distinctness inflates

their max σnor values as strongly clustered long k-mers will occupy more space in the genome

sequence, this tendency is very apparent on k-mers with k > 6. To incorporate a balanced

12



spectrum of short- and long-length k-mers in our test, we will use k-mers of length k = 5− 8,

this range utilizes a balanced ratio of k-mer frequency and overall clustering level.

4.2 Enrichment/Depletion Analyses of hg38

Enrichment analyses were performed on the k-mers of length k = 5− 8 in human exons.

We measured the enrichment ratio for each k-mer inside the genome element, then divided

them into 20 groups and calculated their enrichment percentages (see Section 3.4). We then

plotted the enrichment percentages of each k-mer group against their σnor mid values:

Figure 5: Enrichment percentage versus clustering level in exons. Results for 4 k-mers are shown (k = 5− 8). In

the figure, the y-axis shows the percentage of k-mers that are enriched (ri ≥ 2) inside the exons, and the x-axis

represents the clustering level of k-mers partitioned into 20 groups of similar sizes.

We can clearly see from Figure 5 that there is a strong positive trend. To be precise, the

figure indicates that k-mer groups that have higher clustering levels are more enriched inside

exons and thus more likely to play a significant role in their biological function. It can then

be implied that word clustering level and word enrichment percentage are strongly correlated

to each other, therefore supporting the notion that k-mers are linked to functional elements

of the genome. A depletion analysis is not necessary here because of the strong and apparent

relationship between σnor and fenrichment . Thus we concluded that functional k-mers can be

identified in human exons by measuring the clustering level of k-mers. The top 20 clustered

6-mers in exons are listed on Table 4. We can use the result that was gained here as a litmus

test for the experiments on SARS-CoV and SARS-CoV-2 genomes.
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4.3 Word Clustering in SARS-CoV and SARS-CoV-2

In our research, there have been no other studies that used clustering levels to classify

k-mers in the viral genomes. Given that the coronaviruses are less explored in this regard, our

null hypothesis for this experiment is that no relation between k-mer clustering and biological

function exists. Just as with the human genome previously, we measured the normalized

clustering level σnor of each k-mer in SARS-CoV and SARS-CoV-2 using the HCR algorithm:

Genome k-mer length N Min σnor Mean σnor Max σnor

SARS-CoV

2 16 0.943 1.029 1.239

3 64 0.926 1.068 1.465

4 256 0.769 1.048 1.455

5 1005 0.000 0.937 1.980

6 3121 0.000 0.723 1.955

7 4672 0.000 0.444 1.858

8 1824 0.000 0.160 1.620

9 290 0.000 0.058 1.620

SARS-CoV-2

2 16 0.943 1.030 1.239

3 64 0.926 1.068 1.465

4 256 0.769 1.048 1.455

5 988 0.043 0.959 1.980

6 2894 0.000 0.822 1.955

7 4538 0.000 0.670 1.857

8 2190 0.000 0.575 1.652

9 378 0.000 0.539 1.620

Table 3: Statistics of the normalized clustering levels of SARS-CoV and SARS-CoV-2 complete genomes. N is the

number of k-mers that satisfied the frequency requirement (k-mer count >2).

Immediately, a stark contrast from the results in humans can be seen in Table 3. We noticed

that the overall word clustering levels for SARS-CoV and SARS-CoV-2 k-mers are significantly

lower than hg38’s. This is expected due to the smaller genome size of the coronaviruses as

discussed in Section 2.3. Both genomes have very close results, and we can infer from the table

that most of the k-mers show signs of repulsion (σnor < 1) or no clustering at all (σnor = 0/1).

Moreover, the results deviate from the pattern that we saw in Table 2. First, the minimumσnor

reaches 0.000 on k-mers with much shorter lengths, this then resulted in an overall lower mean

σnor on those k-mers. Second, we see that in longer k-mers (k ≥ 6) the max σnor of the k-

mers decreases unlike in the human genome, most likely due to the lower number of k-mer

candidates N that meets the k-mer frequency requirement. The findings thus far support our

null hypothesis.
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4.4 Enrichment/Depletion Analyses of SARS-CoV and SARS-CoV-2

This section will go into detail about the outcomes of our experiments with the ORF1ab

and Spike S genes in SARS-CoV and SARS-CoV-2 genomes. Enrichment analyses were first

performed on the entirety of the genome elements. We measured the enrichment ratio of

each k-mer of length k = 2− 9 and then divided them into 20 groups each according to their

clustering level σnor . For each k-mer group, their word enrichment percentage fenrichment was

calculated and then plotted against its corresponding σnor mid-values. Figure 6 shows the

plots for 5-mers to 8-mers:

(a) (b)

(c) (d)

Figure 6: Plots of the word enrichment percentages against the mid-values of its corresponding word clustering

levels for k-mers of length k = 5− 8. 6a and 6b show the plot results for ORF1ab and Spike S in SARS-CoV-2

respectively. 6c and 6d show the plot results for ORF1ab and Spike S in SARS-CoV respectively. In the figure, the

y-axis shows the percentage of k-mers that are enriched (ri ≥ 2) inside the genome element, and the x-axis

represents the word clustering levels partitioned into 20 groups of similar sizes.

The plots 6a and 6c indicate an overall positive trend between word enrichment and clus-

tering level in ORF1ab. We can see that fenrichment increases as σnor increases, indicating that

stronger clustering equates to a higher word enrichment percentage in the genome element.

On the other hand, plots 6b and 6d show no significant impact between word enrichment per-

centage and clustering level in Spike S. Unlike the results from the hg38 genome and ORF1ab
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gene, there was no clear distinction here that directly supports or negates our null hypothesis.

To investigate this further, we performed enrichment analyses on the top 200 clustered k-mers

in the Spike S gene in SARS-CoV-2.

(a) (b)

(c) (d)

Figure 7: 7a, 7b, 7c, 7d shows the enrichment percentage versus the clustering level for the top 200 clustered

5,6, 7,8-mers in SARS-CoV-2 respectively. Curve fitting was used to calculate the plot trend (marked by the red

line). In the figure, the y-axis shows the percentage of k-mers that are enriched (ri ≥ 2) inside the Spike S gene,

and the x-axis represents the word clustering levels partitioned into 20 groups of similar sizes.

Due to the different fluctuation of distances between the different lengths of k-mers, we

plotted them separately. Using curve fitting (marked by the red line), we discovered that the

top 200 clustered 6-mers (7b) have a positive trend in regards to word enrichment percentage

and clustering level. In comparison, the top 200 5-mers (7a) , 7-mers (7c), and 8-mers (7d)

showed neutral or negative trends. The mixed results signify that depletion analyses might

be required in order to get more conclusive results. If depletion analyses indicate that the

k-mers are more strongly depleted inside the genome element than they are enriched, then

it is likely that functional k-mers are more enriched in other genome elements. However,

if the depletion percentages are similar to the enrichment percentages, then we can conclude

that no functional k-mers can be identified in the genome element using our analysis methods.
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Enrichment analyses on k-mers of length k = 2,3, 4, 9 were also attempted. However, each

of them presented their own issues. Short-length k-mers did not respond to enrichment anal-

yses at all, as shown in Figure 8. In the same vein, 4-mers and 9-mers are not shown here

because they behaved too randomly and/or have no k-mer groups whose σnor mid-value is

greater than 1.

(a) (b)

(c) (d)

Figure 8: plots of the word enrichment percentages for 2-mers and 3-mers in the ORF1ab (8a and 8c) and Spike

S (8b and 8d) gene respectively. In the figure, the y-axis shows the percentage of k-mers that are enriched

(ri ≥ 2) inside the genome element, and the x-axis represents the word clustering levels partitioned into 20

groups of similar sizes.

We concluded that enrichment analyses were not sufficient in determining functional k-

mers inside the genes. As mentioned previously, depletion analyses will dictate whether this

was due to unfortunate genome element selections or the inefficacy of the clustering procedure

on viral genomes. A stronger correlation between depletion percentages and clustering level

corresponds to the k-mer clusters being more concentrated elsewhere in the genome, i.e. in

other genome elements such as the Nucleocapsid N, Envelope E, and Membrane M genes. To

confirm this we conducted depletion analyses on the ORF1ab and Spike S genes:
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(a) (b)

(c) (d)

Figure 9: Plots of the word depletion percentages against the mid-values of its corresponding word clustering

levels for k-mers of length k = 5− 8. 9a and 9b show the plot results for ORF1ab and Spike S in SARS-CoV-2

respectively. 9c and 9d show the plot results for ORF1ab and Spike S in SARS-CoV respectively. In the figure, the

y-axis shows the percentage of k-mers that are enriched (ri ≥ 2) inside the genome element, and the x-axis

represents the word clustering levels partitioned into 20 groups of similar sizes.

Figure 9 shows that the word depletion percentage fdeplet ion is overall greater than the

word enrichment percentage found in Figure 6. In enrichment analyses, we see that the k-

mers are enriched by ∼ 0 − 20% in ORF1ab (6a, 6c) and ∼ 10 − 40% in Spike S (6b, 6d)

whereas the depletion percentages are ∼ 10 − 70% in ORF1ab (9a, 9c) and ∼ 20 − 70% in

Spike S (9b, 9d). This verifies our assumption that the k-mers are much more depleted in the

coronavirus genes than they were enriched, suggesting that the k-mers are highly enriched

elsewhere in the genome.
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4.5 Conclusion

In summary, we demonstrated that it is possible to quantitatively distinguish the biolog-

ically important k-mers by observing their clustering levels and enrichment percentages in

human exons. Empirical data of the clustering levels indicate that k-mers in SARS-CoV and

SARS-CoV-2 genomes are much less clustered compared to that in humans. Moreover, we

found that k-mers are highly enriched inside human exons and highly depleted in SARS-CoV

and SARS-CoV-2 ORF1ab and Spike S genes. Although no functional k-mers were identified

in the SARS-CoV and SARS-CoV-2 genes, our experiments suggest that the functional k-mers

are enriched in other areas of the genome. Preliminary tests on the 3’ untranslated region

of SARS-CoV and SARS-CoV-2 support this claim, with an average of 50% word enrichment

percentage inside the genome element. This finding hopefully helps to illuminate some of the

lesser-known functional regions of SARS-CoV-2.
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5 Discussion

We proposed and replicated in this thesis a method of procuring functional k-mers by mea-

suring their global clustering levels based on fluctuations in distances between consecutive

k-mers and then analyzing them in genome elements. Based on our results with SARS-CoV

and SARS-CoV-2, it can be argued that the HCR algorithm can be improved upon for smaller

genomes such as the viral genomes. The algorithm was developed with large DNA sequences

in mind, and since the experimentation using this method on the SARS-CoV-2 genome was a

novel case study as far as our research has found, there were bound to be limitations to the

results. One example would be false positives or false negatives, the HCR algorithm takes only

k-mers of frequency > 3 into account, in large genomes, this makes perfect sense, as most

k-mers will likely have more than 3 copies and any k-mer that has less than that should be

regarded as random. However, in shorter genomes, the possibility of falsely filtering out po-

tential functional k-mers is much higher, as the number of valid k-mer shrinks exponentially,

as shown in Table 1. In our case, this locks our experiments from using k-mers of length k > 9,

therefore the algorithm needs to be adapted in this regard. Alternatively, other studies have

used machine learning to discern k-mer sequences (Manjunath, Prashanth, and Guru 2022),

suggesting that perhaps integration with machine learning could improve upon our clustering

algorithm.

Despite the low clustering levels in the coronaviruses, "conserved" k-mers were discovered

between SARS-CoV and SARS-CoV-2. Hackenberg, Rueda, et al. 2012 shared the notion of

"conserved words" where a set of clustered k-mers are shared amongst genomes, in order to

preserve the biological functions of a genome element. Much like phylogenetic footprints,

these conserved k-mers can be used to improve predictions on the functionality of genome

elements. This further lends support to our hypothesis that the k-mers are enriched in other

genome elements. A list of the top conserved 6-mers can be found in Table 5.
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A Appendix

Top 20 clustered 6-mers in human exons

Rank k-mer σnor

1 CCCGCG 2.623409800557543

2 CGCGGC 2.55420818633698

3 CGGCGG 2.428537971056736

4 CGCGGG 2.4236820692687906

5 CCGCCG 2.416741378851082

6 CCGCGG 2.346190924187146

7 GCCGCG 2.343884955319045

8 CGCCGC 2.3403243635684734

9 GCGGCG 2.337908102240944

10 CGGCGC 2.321990067979185

11 GCGCCG 2.3183014803701005

12 CGCCGG 2.2764591382631325

13 CCGGCG 2.225221418520838

14 CGCGCG 2.2179717838918984

15 GCCCCG 2.2075372013591714

16 GCGCGC 2.1290856406303016

17 CGGGGC 2.070907159931333

18 GCGGCC 2.058350820425071

19 GGCCGC 2.058252380192431

20 CGGGCG 2.0554544111924256

Table 4: Ranked list of the top 20 clustered 6-mers with their normalized clustering level σnor in human hg38

exons.
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Top conserved 6-mers in SARS-CoV and SARS-CoV-2

k-mer σnor (SARS-CoV) σnor (SARS-CoV-2)

ACGAAC 1.9553092627965805 1.9599921812615817

CCAAAA 1.9234806306617496 1.2972042750896853

AACTTC 1.8944767107370326 1.2321169468423012

GTTTAA 1.8778404023614057 1.1300621940437037

TAATTA 1.8773148628322618 1.5041662512194676

AAACGA 1.632460769640049 1.7904563930818866

TTTGGC 1.6252376046649477 1.1446911493051137

AAGTGT 1.6235444441641163 1.54823214952956

AACGAA 1.6188367443941758 1.1510601604225774

ACAAGG 1.6155668053205157 1.033957577183929

TAGTCA 1.6086259352226482 1.0183375043733132

CGAACT 1.6015924200522496 1.3275451587975804

CACCAA 1.5977845339179513 1.616097715673185

AGGAAC 1.5854188634132538 1.4335106992067415

CTCTTA 1.5763783386030537 1.1801310728599583

ACCAAA 1.545334041538119 1.207577974561995

CTTGGA 1.5244729581095935 1.1042965592109963

CGAACA 1.519921667150104 1.3302702026466457

AAGGAA 1.5150164715626762 1.1883519611148547

ACCAGT 1.5145364647409019 1.0527874107574808

AGAAGT 1.5110563540609272 1.0666153897329518

AAAAAA 1.4919427676510495 1.731235388474932

ACAAAA 1.4873857995896549 1.1719799325143536

AACCAT 1.468868991543019 1.1152825406287754

ACTTCT 1.4653366155991494 1.1674004188685732

TGTACT 1.449547510269564 1.151150803844315

ATGACA 1.4466175633364278 1.3709033521595477

Table 5: List of top shared 6-mers that formed clusters in SARS-CoV and SARS-CoV-2 (sorted by the σnor value of

SARS-CoV in descending order).
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