
Converting Truth Tables to Minimized

Boolean Functions

Toni Nguyen

A thesis presented for the degree of

Bachelor of Science

Algorithmic Bioinformatics

Heinrich Heine University Düsseldorf

Germany

14th October, 2022

Acknowledgments

I would like to thank Prof. Gunnar Klau for his help with finding this interesting and appealing

topic and for making it possible to write this bachelor’s thesis in the first place. I owe a special

thanks to Eline van Mantgem for her guidance and patience throughout this work.

ii

Abstract

This bachelor’s thesis is about the improvement of the interpretability of gene regulatory net-

works. For this, gene regulatory networks can be displayed as Boolean networks in which

case the values are normalized and discretized to Boolean values. To make them more read-

able, those Boolean networks can be converted to truth tables which on the other hand can

be rewritten as Boolean functions. We look at different algorithms to minimize those Boolean

functions, implement those algorithms in Python, and then test and compare them to each

other.

The result is that the algorithms improve non-minimized Boolean functions regarding read-

ability and memory usage, but are very similar among themselves.

iii

Contents

1 Introduction 1

1.1 Background and Related Work . 1

1.2 Own Contribution . 2

2 Preliminary Knowledge 2

3 Methods 4

3.1 Karnaugh-Veitch-Algorithm . 4

3.2 Quine-McCluskey-Algorithm . 6

3.3 Petrick’s Method . 11

4 Implementation 12

4.1 In-/output . 13

4.2 Implementation of Karnaugh-Veitch . 14

4.3 Implementation of Quine-McCluskey . 16

4.4 Implementation of Petrick’s . 17

4.5 Obstacles . 18

4.6 Testing . 20

5 Results 22

6 Discussion 25

6.1 Improvements . 25

6.2 Future Work . 26

7 Conclusion 26

iv

1 Introduction

1.1 Background and Related Work

This bachelor’s thesis is based on Systems Biology. Systems Biology can be summarized as a

field that handles the analysis of complex interactions in biological systems. Two important

concepts originate from it. The holistic and reductionistic approach. Holistic refers to the idea

that complex systems cannot be fully understood by studying single modules. Reductionistic

on the other hand turn to the suggestion that bigger systems need to be divided into multi-

ple modules for better analysis. These two approaches seem opposing, but are combined in

the field of Systems Biomedicine. There, the main goal is to apply mechanistic information

to clinical applications and to improve the treatment for patients. A commonly used research

concept is the repeating steps of theoretical analysis, computational modelling, and experi-

mental validation of model hypotheses (Antony, Balling, and Vlassis 2012). For this work,

we take a closer look at the computational modelling of complex systems regarding gene reg-

ulatory networks (GRN). GRN are considered complex control systems that consist of many

thousand modular DNA sequences. These modules receive regulatory proteins and recognize

specific sequences within them that lead to the precise transcription control of associated genes

(Davidson and Levin 2005). Since these networks are very complex, we search for different

modelling approaches that allow us to better access their portrayed information. One of these

modellings was developed by Julio Saez-Rodriguez et al. in which they used the cell network

optimizer (CNO) software to turn signalling networks into logical models and calibrate them

against experimental data (Saez-Rodriguez et al. 2009). A different modelling approach was

developed by Roded Sharon and Richard M. Karp in which they learn Boolean models auto-

matically from data. To do that, they created an Integer Linear Program that minimized the

sum over all experiments of the number of experimental observations that differ from the pre-

diction of the model (Sharan and Karp 2013). The output that these approaches produce is still

complex and hard to interpret. This is why the motivation for this bachelor’s thesis is to work

on methods to simplify these outputs and allow them to be more interpretable. For Sharon

and Karp’s approach, the interpretability of the output can be improved by minimizing the

resulting Boolean functions derived from the logical models. Multiple algorithms deal with

the topic of minimizing Boolean functions. The most famous are the Karnaugh-Veitch algo-

rithm and the Quine-McCluskey algorithm. While the Karnaugh-Veitch algorithm approaches

the problem with a grid setup, in which you look for matching cells to combine, the Quine-

McCluskey algorithm relies on a more algebraic solution, that looks for complementary terms

that can be deleted, to form the function. Lastly, there is one more algorithm called Petrick’s

Method, which works with the row numbers of minterms and uses Boolean algebra to find the

minimized function. The Karnaugh-Veitch and Quine-McCluskey algorithms are both imple-

mented on multiple websites and there is a working Java implementation that was developed

with the Quine-McCluskey algorithm (Minimizing Boolean Functions 2021).

1

1.2 Own Contribution

The main goal is to increase the interpretability of given truth tables, which can be achieved

by generating legible Boolean functions and minimizing them. Usually, minimized functions

are half the size of their non-minimized version, which is shown in the Preliminary section.

To have terms with the same purpose, but a smaller function size increases the time efficiency

because the functions that need to be worked with are smaller. Furthermore, it increases

memory efficiency as smaller functions are stored. To explore this further, I want to work with

the different algorithms that deal with truth table minimization in more detail and compare

them concerning memory usage and runtime. This extends the work to finding special cases

the algorithms struggle with and types of input that take the longest to be calculated.

2 Preliminary Knowledge

To understand this thesis, some technical terms first need to be introduced. The most important

concept is truth tables because they are the main source of data input used in this thesis. What

this work wants to accomplish is to implement the best possible optimizer for truth tables.

Truth tables are represented as a table of all the combinations of values for inputs and their

matching outputs. These inputs are called variables and are binary, which means that they

can only be one or zero. In the first row of the truth table, the different variables are split up

into individual columns. The entries for one column represent the state of the variable of that

column, which means that every cell in a truth table displays the state for one variable. The

last column illustrates the output of a Boolean function that is built on the before-mentioned

variables. The output of this function depends on the combination of zeros and ones in the same

row, which is why rows are considered as groups. Every Row represents a unique combination

of states for the variables, which is why every row is different. The phrases minterm and

function output are often mentioned in this work. Minterm refers to a row in a truth table,

where the function column contains a one and the function output represent the values in

this function column. To go into further detail about Boolean functions, they are constructed

by connecting variables with different logical operators. All the different variables are called

literals, and their negation is symbolized by a ¬ in front of the literal. These literals are

connected with a logical AND which can be symbolized as ∧ or ∗ or logical OR, which are

symbolized by ∨ or +. Figure 1 shows an example truth table with a function output of 1011

1110. This truth table is represented by Figure 2, which is its non-minimized function and

Figure 3 which is the minimized version.

To prove, the before mentioned claim, that minimized functions are half the size of their non-

minimized version, my idea was to calculate the average size of the non-minimized Boolean

function and minimized Boolean functions for a fitting amount of samples and compare them.

This idea is shown in Algorithm 1. For this pseudocode, DATA is a list of all possible combi-

nations for function output. If we take a truth table with three variables then DATA would

2

A B C Function

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Figure 1: Example truth table

f = ¬A¬B¬C ∨¬AB¬C ∨¬ABC ∨ A¬BC ∨ AB¬C ∨ AB¬C

Figure 2: Non-Minimized Boolean Function

fmin = B¬C ∨¬B ∧ C ∨¬A

Figure 3: Minimized Boolean Function

range from 0000 0000 to 1111 1111 which is why it would have a size of 28 since there are

28 possible combination to arrange the zeros and ones. What the algorithm does is calculate

the average length of non-minimized truth tables by using the property that a normal Boolean

function can be calculated by combining all minterms from a truth table. To do that Algorithm

1 goes through DATA and sums up all occurrences of one and in the end divides them by the

number of combination possibilities, which is the length of DATA. This code can be modified,

so it can calculate the average length for minimized Boolean functions as well, which is pos-

sible by changing Algorithm 1 in line 5. DATA[i].count(1) needs to be replaced by DATA[i]

being inputted into a minimization algorithm. If we run both codes for three variables, then

the average number of terms in the non-minimized Boolean function is 4, whereas it is 2.322

for minimized functions. This bisection is also the case for four variables, where the average

number of terms is 8 for non-minimized functions and 4.133 for minimized ones.

Algorithm 1 Calculate Average Function Length

1: function CALCAVGFUNCTIONLENGTH(DATA)

2: sum← 0.

3: len← leng th(DATA).

4: for i = 0; i < len(data; i++) do

5: sum← sum+ DATA[i].count(1)

6: end for

7: return sum/leng th

8: end function

In this work, we need to know about two specific types of normal-form representations. Firstly

3

the Disjunctive Normal Form representation (DNF), where the literals are separated into dif-

ferent terms which are signified by brackets. The literals in the terms are connected by logical

AND and those terms are then connected among themselves by logical OR. Secondly, there

is the Conjunctive Normal Form (CNF) representation, which is the opposite of the DNF in

regard to the fact that the literals in the terms are connected by logical OR, and the terms are

tied together by logical AND.

3 Methods

This section describes all algorithms that we use in the implementation, how they work, and

the limitations they have.

3.1 Karnaugh-Veitch-Algorithm

The Karnaugh-Veitch algorithm was first designed in 1952 by Edward W. Veitch and later in

1953 expanded by Maurice Karnaugh (Karnaugh 1953). The idea is to build a diagram that

depicts a given truth table and use it to find connected groups that can be summarized and

compressed. The structure of this diagram resembles the structure of a matrix, which has

multiple cells that can be accessed by the right row and column number. All rows and columns

represent either a literal or its negation so that all combinations of literals can be covered

in the diagram. Figure 4 displays how a truth table is transitioned into a Karnaugh-Veitch-

Diagram for three variables, and Figure 5 shows it for four variables. Every function output

is represented by one cell entry, which can be taken over from the truth table to the diagram

and is shown in the figures as the numbers in the last column. The number of entries in a

Karnaugh-Veitch-Diagram is always 2n, where n is the number of variables in the given truth

table. There is a small peculiarity in Figure 4 and Figure 5. For Figure 5 the last two columns

are swapped and for Figure 5 the last two columns, as well as the last 2 rows, are swapped.

This was done so that the same literals or their negations are beside each other and are not

alternating. In Figure 4 an example is that D in the second and third columns are next to each

other and that the ¬D columns are next to each other if you do not consider the edges. This

pairing is important in later parts of the algorithm.

4

A B C Function

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

¬B,¬C ¬B, C B, C B,¬C

¬A 0 1 3 2

A 4 5 7 6

Figure 4: Transition from Truth Table to Karnaugh-Veitch-Diagram for 3 Literals

A B C D Function

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

1 1 1 1 15

¬C ,¬D ¬C , D C , D C ,¬D

¬A,¬B 0 1 3 2

¬A, B 4 5 7 6

A, B 12 13 15 14

A,¬B 8 9 11 10

Figure 5: Transition from Truth Table to Karnaugh-Veitch-Diagram for 4 Literals

After finishing the conversion into the Karnaugh-Veitch-Diagram, groups of ones develop. In

this algorithm groups are defined as vertically and horizontally adjacent clusters of ones but

they cannot be connected diagonally. However, there are some rules to the grouping of the

ones.

(a) The size of the group can only be a multiple of 2

(b) All ones need to be in the biggest group they have available

5

(c) The grouping can exceed the edges of the diagram

(d) Every one needs to be in a group.

After all the ones are assigned to a group, those groups can be changed to function terms.

To do this conversion, it is important which space the group covers in the diagram. Since all

rows and columns represent one literal or their negation, it needs to be looked at if the group

covers both representations. If it does, the regarded literal can be deleted from the group and

If it does not, the literal needs to be incorporated into the final function term. Figure 6 shows

an example of how a group in a Karnaugh-Veitch-Diagram looks like. If we want to form a

function from this group, we can see that it covers the rows and columns: A,¬A, B,¬B, and

C . Since there are both representations for A and B, referring to the literal and their negation,

they can be deleted. As to C, there is no negation for it in the group, which means that it has

to be added to the final term. So the group in Figure 6 can be translated to the term C .

¬B,¬C ¬B, C B, C B,¬C

¬A 0 1 1 0

A 0 1 1 0

Figure 6: Example for Grouping in a Karnaugh-Veitch-Diagram

This needs to be done for all groups and afterward, all incorporated terms are connected with

logical OR to form the Disjunctive-Normal-Form representation. Unfortunately, this algorithm

works well for variable inputs from two-four, but for the numbers above, the algorithm gets

very complex, which is why these cases will not be addressed in this work. Algorithm 2 de-

scribes the sequence of the Karnaugh-Veitch algorithm.

Algorithm 2 Karnaugh-Veitch-Algorithm

1: function KVALGORITHM(INPUT)

2: kvDiagram← setupKV (IN PU T).

3: groups← grouping(kvDiagram).

4: f unct ion← t ranslateToFunction(groups).

5: return f unct ion

6: end function

3.2 Quine-McCluskey-Algorithm

The Quine-McCluskey-Algorithm was first designed in 1952 by Williard V. Quine and later in

1956 extended by Edward J. McCluskey (McCluskey 1956). The concept behind this Algorithm

is to generate terms from all minterms of a given truth table and combine them to filter out

redundant variables. The algorithm makes use of the complement law X + ¬X = 1 and the

idempotent law X ∗X = X . In Figure 7 the only minterms are the first two terms, which means

6

A B C Function

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

Figure 7: Example for Combining 2 Minterms

that only they are being used for the algorithm. To use the complement law, the minterms first

need to be combined into a Boolean function. Figure 7 can be converted into:

f = (¬A∧¬B ∧¬C)∧ (¬A∧¬B ∧ C)

which can then be rewritten into:

(¬A∧¬B ∧¬C)∧ (¬A∧¬B ∧ C)

≡ (¬A∧¬A)∧ ((¬B ∧ C)∨ (¬B ∧ C))

≡ ¬A((¬B ∧¬B)∧ (C ∨ C))

≡ ¬A∧¬B ∧ (C ∨¬C)

≡ ¬A∧¬B

So the rule for combining two minterms is to examine them and see if they are the same except

for one literal. This has to be done for all possible pairings of minterms in the truth table,

and they need to be stored in order to keep working with them. Since there is a possibility

that terms from the newly created list can also be paired, this process needs to be repeated

until there are no combination possibilities anymore. Literals that can be deleted are then

replaced by a −. Figures 8 to 11 show what a fully executed combination process looks like.

What remains is a list of all the prime implicants, which are the terms that can not be further

minimized. To get the final minimized function, the essential prime implicants need to be

calculated. Therefore, the list of prime implicants needs to be converted into a prime implicant

chart, which is a tabular representation of them. Here, it is important that every combination

still has its respective row number from the truth table. Every prime implicant chart contains

the modified terms on the first column and all the row numbers that are represented by the

modified terms in the first row. The prime implicant chart is now filled by verifying if the row

number is in the viewed modified term. Figure 12 displays the prime implicant chart for Figure

11.

7

A B C D Function

(0) 0 0 0 0 1

(1) 0 0 0 1 1

(2) 0 0 1 0 1

(3) 0 0 1 1 1

(4) 0 1 0 0 0

(5) 0 1 0 1 0

(6) 0 1 1 0 0

(7) 0 1 1 1 0

(8) 1 0 0 0 0

(9) 1 0 0 1 1

(10) 1 0 1 0 0

(11) 1 0 1 1 1

(12) 1 1 0 0 1

(13) 1 1 0 1 1

(14) 1 1 1 0 1

(15) 1 1 1 1 1

Figure 8: Example Truth Table

A B C D Function

(0) 0 0 0 0 1

(1) 0 0 0 1 1

(2) 0 0 1 0 1

(3) 0 0 1 1 1

(9) 1 0 0 1 1

(11) 1 0 1 1 1

(12) 1 1 0 0 1

(13) 1 1 0 1 1

(14) 1 1 1 0 1

(15) 1 1 1 1 1

Figure 9: Filtering out all Non-Minterms

A B C D Function

(0,1) 0 0 0 − 1

(0,2) 0 0 − 0 1

(1,3) 0 0 − 1 1

(1,9) − 0 0 1 1

(2,3) 0 0 1 − 1

(3,11) − 0 1 1 1

(9,11) 1 0 − 1 1

(9,13) 1 − 0 1 1

(12,13) 1 1 0 − 1

(12,14) 1 1 − 0 1

(11,15) 1 − 1 1 1

(13,15) 1 1 − 1 1

(14,15) 1 1 1 − 1

Figure 10: Truth Table after the First Combining

A B C D Function

(0,1,2, 3) 0 0 − − 1

(1,3, 9,11) − 0 − 1 1

(9, 11, 13,15) 1 − − 1 1

(12, 13,14, 15) 1 1 − − 1

Figure 11: Truth Table after Second Combining

8

A B C D 0 1 2 3 9 11 12 13 14 15

(0,1,2, 3) 0 0 − − X X X X

(1,3, 9,11) − 0 − 1 X X X X

(9,11, 13,15) 1 − − 1 X X X X

(12,13,14, 15) 1 1 − − X X X X

Figure 12: Prime Implicant Chart for Figure 12

All terms that have a unique row number incorporated are considered essential prime impli-

cants that have to be included in the final term. These are highlighted in red in Figure 12. After

finding all the essential prime implicants, the next iterations need to be prepared, in which

you remove all row numbers that are already included in all the essential prime implicants

and filter the remaining non-essential prime implicants. The goal is to cover all row numbers,

that were not covered by the found essential prime implicants. The following steps are not

documented and were discovered by testing out different approaches and analyzing which

delivered the best results. The best technique to filter the remaining prime implicants, was

to compare the remaining row numbers and if at least two values of those row numbers are

matching with all the row numbers that have to be covered, the prime implicant can be added

to the next iteration, otherwise, it needs to be deleted. This step is repeated until there are no

row numbers left to cover. For Figure 12 the remaining row numbers are 9 and 11. To cover

them both, either the second or third row would need to be included. At last, all extracted

essential prime implicants can be converted to a function and connected with a logical OR to

form the minimized Boolean function. For Figure 12 the minimized Boolean function is:

f1 = ¬A∧¬B ∨¬B ∧ D ∨ A∧ B or f2 = ¬A∧¬B ∨ A∧ D ∨ A∧ B

In some cases, there are no essential prime implicants left. If there are five or more indices

left to cover, you would need to make use of the Petrick’s method. This threshold of five was

also discovered by testing it with different values. Other than the Karnaugh-Veitch-Algorithm

the Quine-McCluskey-Algorithm can also be used for more than four variables. Algorithm 3

describes the structure of the Quine-McCluskey algorithm.

9

Algorithm 3 Quine-McCluskey-Algorithm

1: function QMALGORITHM(INPUT)

2: minterms← f il terMinterms(IN PU T)

3: allRowNumbers← rowNumbers(minterms)

4: modi f ied ← True

5:

6: while modified do

7: tmp← []
8: modi f ied ← False

9: for i=0;i<minterms.length();i++ do

10: if minterms[i].canBeCombined() then

11: tmp.append(combining(minterms))

12: modi f ied ← True

13: end if

14: end for

15: minterms← tmp

16: end while

17:

18: while allRowNumber.length() != 0 do

19: newEpi← epiThroughChar t(minterms) ▷ EPI = essential prime implicants

20: if newEpi.length() == 0 and allRowNumber > 4 then

21: Pet rick′sMethod

22: end if

23: noEpi← nonEpiThroughChar t(minterms)

24: allRowNumbers← allRowNumbers− allRows(newEpi)

25: for i=0;i<noEpi.length();i++ do

26: if noEpi[i] in allRowNumbers twice then

27: newEpi.append(noEpi[i])

28: end if

29: end for

30: minterms← newEpi

31: end while

32:

33: return minterms

34:

35: end function

10

3.3 Petrick’s Method

The Petrick’s method is described by Stanley R. Petrick in 1956 (Petrick 1956). The main idea

for this algorithm is to use a prime implicant chart to build a Boolean function and simplify it

with Boolean algebra. To ease the work with the prime implicants, we substitute them with

representative variables. The algorithm then starts by building the function in DNF represen-

tation. It goes through every column and connects the representative variables that share the

same column with a logical OR. All the terms get connected by logical AND. After generating

the function it needs to get simplified to a CNF representation, as all the terms in this form are

representative of the truth table and the goal is to find the smallest term to have the optimal

minimization. Boolean algebra rules that are needed:

(1.) (distributive law): X ∗ (X + Y) = X ∗ X + X ∗ Y

(2.) (idempotent Law): X ∗ X = X

(3.) (idempotent Law): X + X = X

(4.) (absorbation law): X + X ∗ Y = X

Finally, when the CNF representation is built and the smallest term is chosen, it still needs

to be resubstituted. Figure 13 shows an example of how the Petrick’s method is used for the

sample function output 01111110.

A B C 1 2 3 4 5 6

(1,3) 1 − 0 X X

(1,5) 1 0 − X X

(2,3) − 1 0 X X

(2,6) 0 1 − X X

(4,5) − 0 1 X X

(4,6) 0 − 1 X X

Figure 13: Prime Implicant Chart with No Essential Prime Implicants

(1) (1,3)≡ X0

(2) (1,5)≡ X1

(3) (2,3)≡ X2

(4) (2,6)≡ X3

(5) (4,5)≡ X4

(6) (4,6)≡ X5

11

The calculation would look like this:

(X0 ∨ X1)(X2 ∨ X3)(X0 ∨ X2)(X4 ∨ X5)(X1 ∨ X4)(X3 ∨ X5)

≡ (X0X2 ∨ X0X3 ∨ X1X2 ∨ X1X3)(X0X4 ∨ X0X5 ∨ X2X4 ∨ X2X5)(X1X3 ∨ X1X5 ∨ X4X3 ∨ X4X5)

≡ ...

≡ (X0X2X4X5 ∨ X0X3X4 ∨ X1X2X3X4 ∨ X0X1X3X5 ∨ X1X2X5)

So you would either take X0X3X4orX1X2X5 and after resubstituting it from the prime implicant

chart the result would be:

f 1= A∧¬C ∨¬A∧ B ∨¬B ∧ C or f 2= A∧¬B ∨ B ∧¬C ∨¬A∧ C

4 Implementation

The code for this implementation can be found on gitlab1. Firstly, the idea of the implemen-

tation is that input is given to the input folder and after the code runs, the output is placed in

a folder called output. This code should be run from the main file, where every column of the

CSV file is separated and checked for its number of literals, to determine which algorithm is

needed. Two to four literals are solved with Karnaugh-Veitch, while more than four are solved

with Quine-McCluskey. I assumed that Karnaugh-Veitch has a better runtime for up to four

variables, and since it does not work for more than four variables, Quine-McCluskey is used

for these situations. The project is divided into multiple packages and is bound together by

the main functions. The structure of the project is shown in Figure 15. The first package that

is used when running the application is the formatHandler package. It contains the folder

for the input and output and is responsible for converting columns of a CSV table to a usable

tuple. This tuple is composed of two elements. Firstly the topology of the nodes and secondly

the function output for the matching truth table. This is further explained in the In-/Output

section. Figure 14 presents what a tuple would look like.

(′ f < −A, B, C , D′,′ 0000011100001101′)

Figure 14: Example Tuple created from CSV

1https://gitlab.cs.uni-duesseldorf.de/albi/albi-students/ba-toni-nguyen

12

Figure 15: Project’s package structure

Then, there is the helpFunctions package which assists both algorithms, with basic functional-

ity. This includes sorting and removing duplicate list elements, to convert matrices to strings

and functions to help with the grouping in Karnaugh-Veitch. Lastly, the Karnaugh-Veitch and

Quine-McCluskey packages incorporate the implementations of the algorithms. These algo-

rithms get tested by the test files in the testing package. Both algorithms return a list, con-

taining strings that represent the terms for the end function. This is displayed in Figure 16.

Noticeable is that in the end lists the terms are connected with a ’+’ which normally presents

a logical OR but in this case represents a logical AND.

[’C + A’ , ’-D + C + B’ , ’D + C + -B’]

Figure 16: Output of Both Algorithms for Figure 15

4.1 In-/output

For input and output, the chosen format is CSV due to its universal use. These CSV tables

contain two rows, where the first row describes the topology of the nodes and the second row

is the output of a truth table, which is its last column. The format for the topology in the first

row is split up into two halves. The first part is the left side of <-, which is the child node,

and the right side describes the parent nodes. These topologies are comma separated. The

13

second row on the other hand is just a sequence of ones and zeros without any separation.

For the output, the first row is the same as the input but the second row then displays the

minimized boolean function. In this format, negations are represented by ¬, logical OR with

∨, and logical AND with ∧. Essentially every column describes one truth table that needs to

be optimized. The main function reads out every column of the CSV file and selects the fitting

algorithm for it. Both input and output formats can be seen in Figure 17 and Figure 18.

f1 <– A,B f2 <– A,B,C f3 <– A,B,C,D

1100 11101000 1011110111000100

Figure 17: Example CSV Input File

f1 <– A,B f2 <– A,B,C f3 <– A,B,C,D

¬B ¬B ∧¬A∨¬C ∧¬B ∨¬C ∧¬A ¬B ∧¬A∨¬C ∧¬B ∨¬C ∧¬A∨¬C ∧¬A

Figure 18: Example CSV Output File

4.2 Implementation of Karnaugh-Veitch

The implementation of the Karnaugh-Veitch-Algorithm is divided into four Python scripts. The

most important data structures are two different matrices. One functions as the Karnaugh-

Veitch-Diagram, which is implemented as a binary NumPy matrix and is used for all tasks

regarding the grouping. The second matrix is used to store which combination of literals is

dedicated to which cell of the other matrix. The format that is used to save the combinations

of literals is strings. Figures 19 and 20 display examples of the two different types of matrices.

Figure 19: Example for KV-diagram

Figure 20: Example for KV-frame

This assembling of matrices was implemented in setupFunctions.py. To construct the strings of

literals, FrameFunctions.py is used. There, the fitting frame is created for the given input data.

14

The idea is to go through the NumPy array in different ways to get all the possible groups that

can be built and save them in lists of tuples, where each tuple contains the row and column

number for the position of a one in the matrix. Since this algorithm is only meant to work for

up to 4 variables the maximum size of the matrices is 4x4 which means the only possible size

of groups are groups of one, two, four, eight, and 16. The functions vCheck() and hCheck()

both run between all rows and columns to find groups of two. For situations with groups

bigger than two, there is a function for every group size, that stores all possible groups for that

group size. So after collecting all possible groups and saving them in a list, this list needs to be

filtered of all duplicate and redundant groups, which happens in the function filterGroups().

It goes through the list of all groups and compares if all the tuples of the considered group are

already in different groups. If so, the viewed group can be deleted. All those functions are

located in groupFunctions.py. In Figure 21 are three different Karnaugh-Veitch-Diagrams that

show all the possible groups collected by the algorithm for a function output of 0000 1010

0000 1010. The end list would contain all groups depicted in (a), (b) and (c) but only (c)

would be kept since it represents all other groups shown in (a) and (b).

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

(a) vCheck() Build Groups

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

(b) hCheck() Build Groups

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

(c) Correct Grouping

Figure 21: Example for Filtering Groups

Furthermore, it is important to note that there can be multiple optimal solutions to minimiza-

tion. Figure 22 shows such a case, for which Karnaugh-Veitch-Algorithm can find two different

solutions for the same Karnaugh-Veitch-Diagram.

1 0 0 1

0 0 1 1

0 1 1 0

1 1 0 0

1 0 0 1

0 0 1 1

0 1 1 0

1 1 0 0

Figure 22: Example for Filtering Groups

As there are some cases where it matters in which the sequence groups are deleted, there is also

a function that returns multiple versions of the same list in a different order. This collection

of the different ordered lists is put into the filtering function, and the result with the smallest

amount of terms is chosen as the output of the algorithm. This is further explained in the

Obstacle section. All those steps are done in the KarnaughVeitch package, which also converts

the group format to the actual list format that the formatHandler demands. In the case that

15

all output values in the truth tables were one, the entire KV-diagram is a group, so all literals

can be reduced, which gives us a minimized Boolean function of 1.

4.3 Implementation of Quine-McCluskey

The implementation of the Quine-McCluskey-Algorithm is divided into multiple Python scripts.

To start the algorithm, a fitting truth table for the input is generated by using a NumPy array, to

find all minterms. These minterms then get stored as strings in a directory with their matching

row number, where the minterm is used as a key for the row number. Figure 24 is an example

of such a dictionary.

{ ’000’ : ’0’ , ’010’ : ’2’ , ’011’ : ’3’ , ’100’ : ’4’ , ’101’ : ’5’ , ’110’ : ’6’ }

Figure 23: Example of dictionary

After that, every minterm is compared to all other minterms and if a possibility for combination

is found, the combination will be saved in a new list. Instead of deleting the literal that

is combined, it gets replaced by a −1 for later distinctions between minterms. The initial

minterm list gets replaced by the new list, and the process gets repeated until there are no

more possible combinations. The last list that is constructed contains all prime implicants.

Even though the prime implicants are combinations of minterms, they have to adopt their

literals row numbers, which are also kept in a dictionary. The row numbers are stored as

strings and are separated with + to make sure that they are more distinguishable and not

error prone with two-figure numbers. Since there is a way to reduce the number of terms even

more, the prime implicant chart needs to be replicated. This is done by going through the prime

implicants and comparing them to the row numbers that need to be covered. To compare them

the combined row numbers of the prime implicants are used and if a row number should be

unique it is considered an essential prime implicant. We have to repeatedly search for these

essential prime implicants. If there are no essential prime implicants and the number of rows

that have to be covered is above four, the Petrick’s method is used to solve the remaining part.

Figure 24 displays a situation where the minimized function can be found without the Petrick’s

method and Figure 25 where Petrick’s method is necessary.

A B C 0 2 3 4 5 6

(0,2,4, 6) 0 − − X X X X

(2,3) − 1 0 X X

(4,5) − 0 1 X X

Figure 24: Prime Implicant Chart with Essential Prime Implicants

There are two different packages to deal with the possibility that at least one essential prime

16

A B C 1 2 3 4 5 6

(1,3) 1 − 0 X X

(1,5) 1 0 − X X

(2,3) − 1 0 X X

(2,6) 0 1 − X X

(4,5) − 0 1 X X

(4,6) 0 − 1 X X

Figure 25: Prime Implicant Chart with No Essential Prime Implicants

implicant was found or no essential prime implicants were found. Both are split up into With-

Epi.py and WithoutEpi.py. WithEpi.py also includes different functions to determine if an-

other iteration is necessary or not. For that, it examines the list of remaining row numbers

that need to be covered and uses the situation fitting function. In withoutEpi.py only Petrick’s

method and its rules are located. Afterward, all the functions get summed up in the QuineM-

cCluskey.py. Lastly, the Quine-McCluskey function uses the resulting NumPy array as input for

the translateToFunction() method, to generate the end list and pass it to the main function.

Looking further at the structure of the implementation, the generating of truth tables and find-

ing all minterms are all done by setupQM.py. CalcAndRedu.py is responsible for all filtering

and reduction functions. This includes calculating the essential prime implicants and filtering

the row numbers for withEpi() and withoutEpi().

4.4 Implementation of Petrick’s

In this application, the Petrick’s method is only implemented as an engine for the Quine-

McCluskey-Algorithm, to calculate the cases in which the Quine-McCluskey-Algorithm does

not find any essential prime implicants. The implementation is located in the withoutEpi pack-

age, and it gets all the information it needs from the Quine-McCluskey part of the code. To

get the needed terms, withoutEpi calculates the terms needed for Patrick’s method by building

a matrix that represents the prime implicant chart. They are saved with a key in a dictionary

and this key is used as a substitution for the groups, which can be seen in Figure 26.

Figure 26: Example of dictionary for substitution

17

This pairing of keys is the input for the Petrick’s method, where the format uses terms in the

form of strings. In these strings, literals are separated with+ as logical OR and with ∗ as logical

AND. Following the build of the function, the algorithm takes a pair of two terms and combines

them into one. After merging them together, a set of rules need to be applied to those terms

and these rules are located in rules(). It makes sure that if the same variables are connected

with an ∗ or a term is already existing in another one, the spare literal will be deleted. This

will be done until there are no brackets anymore and you get a final function. To find the

minimized version with the Petrick’s method, you look for the term with the smallest size and

resubstitute it back with the mentioned dictionary. Since this function is only a plug-in into

the QuineMcCluskey algorithm, it is possible that the Petrick’s method has to be used after

the second or higher iteration, which causes it to have essential prime implicants in earlier

iterations. If that is the case, these essential prime implicants also have to be added to the

final function.

4.5 Obstacles

There were many problems regarding both implementations. For the Karnaugh-Veitch algo-

rithm, it started with choosing the right format because there was no universal method to

depict multiple groups. As the work progressed, more and more data structures got added to

the code which made it increasingly difficult to monitor all the relations. The most difficult

task was not to build the groups, but to filter them. Since all possible groups were stored

in one list, some criteria were needed to differentiate between important and non-important

groups. These criteria seemed very intuitive, but were hard to establish. Figure 29 is an ex-

ample of such a filtering problem. It represents the Karnaugh-Veitch-Diagram for the function

output 1111 1111 1110 0111. Groups are represented by a list of tuples, where each tuple is

composed of a row number and a column number. Every column and row starts with zero and

ends with three. In this example, the import groups are:

(a) [(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1, 2), (1,3)]

(b) [(0,0), (0,1), (3,0), (3,1)]

(c) [(1,1), (1,2), (2,1), (2,2)]

(d) [(1,2), (1,3), (2,2), (2,3)]

(e) [(0,0), (0,1), (0,2), (0,3)]

(f) [(0,3), (1,3), (2,3), (3,3)]

Figure 27 and Figure 28 show the difference between deleting group (d) and group (c) first. In

Figure 27 group (d) gets deleted first which causes cell (2,2) to only be viable through group

18

(c). This causes group (e) to be redundant and deletable. This gives us a total number of four

groups. In Figure 28 on the other hand, group (c) gets deleted first, which causes cell (2,1) to

only be viable by group (e) so that it cannot be deleted like in Figure 27. This gives us a total

number of five groups. So even though we have the same groups, the order in which they get

deleted matters.

Figure 27: (d) gets deleted first Figure 28: (c) gets deleted first

Figure 29: Example, where the order of deletion matters

Since this problem was mostly connected to one group, the problem could be solved by shuf-

fling the groups. This increased the runtime drastically but made sure it always found the

optimal solution, so it was essentially trading runtime for accuracy. There was another prob-

lem that needed to be fixed. The ruling for grouping stated that the groups have to be as big

as possible, but in one instance this was not the case. This problem can be seen in Figure 32.

The groups here are:

(a) [(1,1), (1,2), (2,1), (2,2)]

(b) [(0,2), (1,2)]

(c) [(2,2), (2,3)]

(d) [(1,0), (1,1)]

(e) [(2,1), (3,1)]

In Figure 30, there is a total number of five groups while in Figure 31 there are only four. This is

caused because all the tuples in group (a) are also in other groups that need them. Therefore,

group (a) could technically be deleted which is shown in Figure 31. This is a contradiction to

the before-mentioned rule. To fix this, all the cases that had this problem needed to have their

biggest group deleted.

Due to the Quine-McCluskey being the second algorithm that was implemented, there were

fewer problems. After the first step of combining all the minterms, I realized that the row

19

Figure 30: Non-Optimized Grouping Figure 31: Opimized Grouping

Figure 32: Example where a basic rule needs to be broken

numbers were needed to do the following steps, and so I needed to fit this information into

the model, which was through the use of the dictionaries. This caused more problems, as the

previously missing row numbers need a lot more functionality to be added to withEpi.py and

withouEpi.py. This is the reason dictionaries were included in the first place, to make sure that

the row numbers can always be easily accessed for the prime implicant chart. This resulted in

it being more complex than it was supposed to be. Based on some misconceptions about the

algorithm, there were a lot of edge cases uncovered that needed to be addressed. The biggest

problem was the deleteWithoutOccurence() function because it had no description of which

prime implicants needed to be removed so it had to be determined without any algorithm

and through experimenting. The last big problem was the transition from withEpi() to with-

outEpi(). Since there is a possibility that in the while-loop of withEpi() a provisional result is

calculated with no essential prime implicant it needs to be changed to the withoutEpi() func-

tion. Therefore, the best solution was to just give the provisional result to the other function

when the remaining row numbers that had to be covered were below five because up to four

variables could easily be solved without using the Petrick’s method. These cases are distinct

and solved by the allIndCases(). Figures 34 and 35 show prime implicant charts for the func-

tion output 0000 0100 1101 1011 and their transition from a chart that is used for withEpi()

to a chart that is used for withoutEpi(). In Figure 33 there is a single essential prime implicant

which after getting removed forms the prime implicant chart in Figure 34. This essential prime

implicant chart contains no essential prime implicant, which is why withoutEpi() needs to be

used for it.

4.6 Testing

There were a couple of things that the code had to be tested on. Firstly if it works correctly

and secondly how fast the algorithms are. To test these problems, sample files were needed,

which setupTest.py is responsible for. There, all the possible outputs a truth table can produce

are generated for any number of variables. To test if the algorithms work correctly, the sample

data is used as input for the two different algorithms and the resulting lengths of the outputs

20

A B C D 5 8 9 11 12 14 15

(8,9) − 0 0 1 X X

(8,12) 0 0 − 1 X X

(9,11) 1 − 0 1 X X

(11,15) 1 1 − 1 X X

(12,14) 0 − 1 1 X X

(14,15) − 1 1 1 X X

(5) 1 0 1 0 X

Figure 33: Example for withEpi() prime implicant chart

A B C D 8 9 11 12 14 15

(8,9) − 0 0 1 X X

(8,12) 0 0 − 1 X X

(9,11) 1 − 0 1 X X

(11,15) 1 1 − 1 X X

(12,14) 0 − 1 1 X X

(14,15) − 1 1 1 X X

Figure 34: Example for withoutEpi() prime implicant

are compared. Since both algorithms were not implemented simultaneously, and they did

not work for all situations during their development. The comparison between them always

showed, which function output did not work for which algorithm. Therefore, If the length of

all the outputs were the same in the end, it would guarantee that the codes work correctly.

Unfortunately, you can not test the algorithms if the solution contains the same terms, because

the minimization is not unique, and it is possible for one truth table to be represented by

multiple minimized Boolean functions. To test the runtime of both algorithms, I used the

defaultTimer() function from the timeit module to calculate the start and end times of every

calculation in the sample file. End and start time can then be subtracted to calculate the

runtime for one sample. To see how much memory space the result for both algorithms take,

I used the asizeof() function from the pympler module, which returns the size for Python

objects in Bytes. Karnaugh-Veitch only works for two to four variables, therefore the cases

for five or above are not tested for Quine-McCluskey. Since there are 232 possible function

outputs for truth tables with five literals and even 264 for six literals, it would take too long to

run Quine-McCluskey for all possible function outputs. So I used reverse engineering to test for

some samples. In this case, reverse engineering meant using a minimized Boolean function

to create a new truth table by hand and inputting it into the algorithm to see if the result

21

remains unchanged. What was also important when testing the memory use was to compare

non-minimized Boolean functions and the result the algorithms returned. Thus, a function

needed to be implemented that calculated all Boolean functions without minimization. This

is done in TestMemory().

5 Results

In this section, we discuss all results gained from the implementation of the minimizing algo-

rithms. These results were all calculated by using the sample files mentioned in the testing

section but can vary depending on the used device. If we take a look at an algorithm regard-

ing x literals, that means we take a look at the algorithm with the sample file as input, which

would contain 2x input tuples. The first thing to talk about is the storage consumption. Figure

35 shows how much memory is used for the different combinations of literals and used algo-

rithms. The Y-axis represents the storage used in Byte and the X-axis which method was used.

For all three graphs (a), (b) and (c) the most memory is used when not running a minimization

algorithm. This increase in storage seizure is up to 50% in comparison to both algorithms for

two and three literals. For four literals, it is even close to 100%. The minimizing Algorithms

on the other hand only vary a small amount. For two literals the memory usage is the same

with 2584 Byte, for three literals Karnaugh-Veitch’s memory usage is 60864 Byte and Quine-

McCluskey’s is 60872 Bytes and for four variables the Karnaugh-Veitch takes 24444472 Bytes

of storage, while Quine-McCluskey takes 24445232 Bytes. Karnaugh-Veitch has the small-

est memory consumption regarding any number of literal, beating Quine-McCluskey only by

around 1%. The average size for a single minimized Boolean function with two literals is 160

Byte, for three literals it is 240 Byte and for four literals it is 370 Byte. All in all the statistics

show that there is not a big difference in memory consumption between both algorithms and

for a bigger sample size the memory use is still reasonable, since the 216 minimized Boolean

functions only use around 25 MegaByte of storage.

The next topic to look at is the different runtimes of both algorithms for each number of literals.

Figures 36 to 39 represent all the combinations possible. The Y-axis describes the runtime in

seconds and the X-axis is the function outputs of the sample file. Karnaugh-Veitch is plotted

in red, while Quine-McCluskey is presented in blue. Figure 36 starts with the runtime for 2

Literals. Karnaugh-Veitch has an average runtime of 3, 9 ∗ 10−5 seconds, a minimum of 2,4 ∗
10−5 seconds, and a maximum of 5, 6 ∗ 10−5 seconds, while Quine-McCluskey has an average

runtime of 1, 06∗10−4 seconds, a minimum of 6,6∗10−5 seconds, and a maximum of 1, 6∗10−4

seconds. This means that Karnaugh-Veitch’s average runtime is faster than Quine-McCluskey’s

and even the output with the biggest runtime in Karnaugh-Veitch is around the speed of the

fastest output in Quine-McCluskey. The gap between both average times is 6,7 ∗ 10−5.

Figure 37 describes the runtime for three literals. Karnaugh-Veitch has an average runtime of

9,8∗10−5 seconds, a minimum of 3, 2∗10−5 seconds, and a maximum of 8,03∗10−4 seconds,

while Quine-McCluskey has an average runtime of ∗2,24−4 seconds, a minimum of 8,58∗10−5

22

NoMin KV QM

2,600

2,800

3,000

3,200

(a) 2 Literals

NoMin KV QM

6

7

8

9

·104

(b) 3 Literals

NoMin KV QM

2.5

3

3.5

4

4.5

5
·107

(c) 4 Literals

Figure 35: Storage Use for Different Number of Literals

0 2 4 6 8 10 12 14
2

3

4

5

6

7
·10−5

(a) Karnaugh-Veitch

0 2 4 6 8 10 12 14
0.6

0.8

1

1.2

1.4

1.6

1.8

·10−4

(b) Quine-McCluskey

Figure 36: Runtime for 2 Literals

seconds, and a maximum of 5, 6∗10−4 seconds. Karnaugh-Veitch’s runtime is mostly between

0 seconds and 2∗10−4 seconds with some exceptions that reach up to 8∗10−4 seconds, while

Quine-McCluskey is equally distributed between 1 ∗ 10−4 seconds and 5 ∗ 10−4 and doesn’t

have a single time above 6 ∗10−4 seconds. Here the average runtime for Karnaugh-Veitch still

beats Quine-McCluskey by 1,26 ∗ 10−4 seconds but the gap is significantly bigger than with

two literals.

Figure 38 describes Karnaugh-Veitch with four literals. It has an average runtime of 5,4∗10−4

seconds, a minimum of 4,6 ∗ 10−5 seconds, and a maximum of 0,015 seconds. Figure 39

on the other hand describes Quine-McCluskey with four literals. Quine-McCluskey has an

average runtime of 7,04 ∗ 10−4 seconds, a minimum of 1, 25 ∗ 10−5 seconds, and a maximum

of 8,82∗10−3 seconds. Here it is clearly visible that both algorithms fluctuate a lot. Karnaugh-

23

0 50 100 150 200 250
0

2

4

6

8

·10−4

(a) Karnaugh-Veitch

0 50 100 150 200 250

1

2

3

4

5

·10−4

(b) Quine-McCluskey

Figure 37: Runtime for 3 Literals

Veitch and Quine-McCluskey both stagnate at 0.01 seconds. The graphs look very similar, in

consideration of their distribution between 0 seconds and 0,005 seconds but Karnaugh-Veitch’s

average time is still faster with 2 ∗10−4 seconds. To conclude this section both algorithms are

rather fast and only differentiate between 100 microseconds which is why they can both be

used equally. However, the Karnaugh-Veitch algorithm is just slightly faster.

Figure 38: Runtime for Karnaugh-Veitch with 4 Literals

24

Figure 39: Runtime for Quine-McCluskey with 4 Literals

6 Discussion

6.1 Improvements

This implementation is not optimized and can be improved in different areas. Starting with

the Karnaugh-Veitch-Algorithm it would be more efficient to only store the important groups

and not save all unimportant ones when building them. By filtering the groups there is a lot

of runtime and storage lost, because the list of important groups has to be shuffled, and then

they have to all be used as input for the last part of the code which increases the runtime by

the number of extra lists that were added. A way to improve that would be to avoid reshuffling

at all and find a way to detect the best list of the groups without filtering them. Furthermore,

there is a lot of typecasting involved, so it would make the code more understandable by

optimizing it and leaving out unnecessary data structure conversion. In Quine-McCluskey

some things can be improved as well. The use of dictionaries, where minterms are used as

keys to store their matching row numbers, is redundant because the minterms can be seen as

binary numbers that can be converted to decimal values, which would then represent the row

numbers. Lastly, If Quine-McCluskey runs with six Variables and a lot of function outputs of

25

one, the algorithm takes a lot of time to calculate the result. This can be refined by finding

ways to exit the while-loop in withEpi() faster.

6.2 Future Work

There are some parts of this work that can be extended. To make the application more user-

friendly, a GUI can be developed for it. Then you can try to implement the Karnaugh-Veitch

algorithm for five or more variables. As a foundation, this code can be expanded by replacing

minor parts of the code in KarnaughVeitch(), adding more cases to the groupFunction as well

as expanding the frameFunctions. The Input and Output could be worked on and instead of

using CSV files as the format of choice, a more fitting form can be selected to represent the

truth tables more intuitively.

7 Conclusion

The goal of this work was to implement the presented algorithms and compare them regarding

specific efficiency criteria. To decide which algorithm should be used for which case of literal

numbers, both algorithms were tested for runtime and memory usage. My hypothesis was that

the Karnaugh-Veitch-Algorithm would work the best for situations with two to four variables

regarding runtime, which was the case. The problem is that the samples for five to six literals

are not implemented for Karnaugh-Veitch, therefore these cases can only be solved with Quine-

McCluskey. When talking about faster, the results are only 100 microseconds apart, which is

very small even for higher amounts of samples. Nevertheless, the average runtime for two to

four variables is calculated faster with Karnaugh-Veitch. The difference between the runtime

is still surprisingly close which is most likely caused by the shuffling of the list in Karnaugh-

Veitch. Some parts of the algorithm had to unnecessarily run multiple times, which increased

the original runtime by the number of different lists of groups the shuffling produced. To

take memory usage into consideration when talking about the use cases, we can say that

using any of the two mentioned algorithms to minimize Boolean functions lowers the storage

consumption by 50% and up to 100%. Among themselves, the difference between memory

usage is very little. For four variables, Karnaugh-Veitch has around 800 Bytes less memory

usage than Quine-McCluskey. Finally, it can be said that using Karnaugh-Veitch for two to four

variables is more efficient since it is faster and takes less memory to store. In case they are

above four literals, it needs to be solved with Quine-McCluskey because these cases are not

implemented with Karnaugh-Veitch. In conclusion, debugging was more time-consuming than

expected, which is why some features, that were mentioned in the Future Work section, are

missing. Nevertheless, the results are as expected and everything works as it was planned.

26

References

[1] Paul MA Antony, Rudi Balling, and Nikos Vlassis. “From Systems Biology to Systems

Biomedicine”. In: Current Opinion in Biotechnology 23.4 (2012). Nanobiotechnology Sys-

tems biology, pp. 604–608. ISSN: 0958-1669. DOI: https://doi.org/10.1016/j.copbio.

2011.11.009. URL: https://www.sciencedirect.com/science/article/pii/S0958166911007208.

[2] Eric Davidson and Michael Levin. “Gene regulatory networks”. In: Proceedings of the Na-

tional Academy of Sciences 102.14 (2005), pp. 4935–4935. DOI: 10.1073/pnas.0502024102.

eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.0502024102. URL: https://www.

pnas.org/doi/abs/10.1073/pnas.0502024102.

[3] Julio Saez-Rodriguez et al. “Discrete logic modelling as a means to link protein signalling

networks with functional analysis of mammalian signal transduction”. In: Mol Syst Biol

5.331 (2009). DOI: 10.1038/msb.2009.87. URL: https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC2824489/.

[4] Roded Sharan and Richard M. Karp. “Reconstructing Boolean Models of Signaling”. In:

Journal of Computational Biology 20.3 (2013). PMID: 23286509, pp. 249–257. DOI: 10.

1089/cmb.2012.0241. eprint: https://doi.org/10.1089/cmb.2012.0241. URL: https:

//doi.org/10.1089/cmb.2012.0241.

[5] Minimizing Boolean Functions. Dr. Christoper Vickery. 2021. URL: https://babbage.cs.qc.

cuny.edu/courses/Minimize.

[6] M. Karnaugh. “The map method for synthesis of combinational logic circuits”. In: Transac-

tions of the American Institute of Electrical Engineers, Part I: Communication and Electronics

72.5 (1953), pp. 593–599. DOI: 10.1109/TCE.1953.6371932.

[7] E. J. McCluskey. “Minimization of Boolean functions”. In: The Bell System Technical Jour-

nal 35.6 (1956), pp. 1417–1444. DOI: 10.1002/j.1538-7305.1956.tb03835.x.

[8] Stanley R Petrick. “A direct determination of the irredundant forms of a Boolean function

from the set of prime implicants”. In: Air Force Cambridge Res. Center Tech. Report (1956),

pp. 56–110.

27

https://doi.org/https://doi.org/10.1016/j.copbio.2011.11.009
https://doi.org/https://doi.org/10.1016/j.copbio.2011.11.009
https://www.sciencedirect.com/science/article/pii/S0958166911007208
https://doi.org/10.1073/pnas.0502024102
https://www.pnas.org/doi/pdf/10.1073/pnas.0502024102
https://www.pnas.org/doi/abs/10.1073/pnas.0502024102
https://www.pnas.org/doi/abs/10.1073/pnas.0502024102
https://doi.org/10.1038/msb.2009.87
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824489/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824489/
https://doi.org/10.1089/cmb.2012.0241
https://doi.org/10.1089/cmb.2012.0241
https://doi.org/10.1089/cmb.2012.0241
https://doi.org/10.1089/cmb.2012.0241
https://doi.org/10.1089/cmb.2012.0241
https://babbage.cs.qc.cuny.edu/courses/Minimize
https://babbage.cs.qc.cuny.edu/courses/Minimize
https://doi.org/10.1109/TCE.1953.6371932
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x

	Introduction
	Background and Related Work
	Own Contribution

	Preliminary Knowledge
	Methods
	Karnaugh-Veitch-Algorithm
	Quine-McCluskey-Algorithm
	Petrick's Method

	Implementation
	In-/output
	Implementation of Karnaugh-Veitch
	Implementation of Quine-McCluskey
	Implementation of Petrick's
	Obstacles
	Testing

	Results
	Discussion
	Improvements
	Future Work

	Conclusion

