
Solving Systematic Conservation

Planning using Integer Linear

Programming

Simon Schreinermacher

A thesis presented for the degree of

Bachelor of Science

Algorithmic Bioinformatics

Heinrich Heine University Düsseldorf

Germany

6th September, 2022



Acknowledgments

I am very grateful to Prof. Dr. Gunnar Klau for proposing this interesting topic to me and for

being the first assessor for this thesis. I would also like to thank Prof. Dr. Michael Leuschel as

the second assessor for this thesis. Finally, I would especially like to express my gratitude to

Eline van Mantgem for her feedback and advice during our weekly meetings.

ii



Abstract

Systematic Conservation Planning is a process that aims to efficiently implement conservation

actions in a nature reserve to conserve and protect the biodiversity in the area. One step in this

process is to find a suitable selection of space in which to apply the conservation efforts. To do

this, the area is divided into many different smaller tiles, called planning units. The goal is to

conserve a selection of planning units so that the conservation process results in the biodiver-

sity being preserved as intended while minimizing the conservation costs. In this thesis, we

implement an algorithm to solve this problem by formulating it as an instance of Integer Lin-

ear Programming (ILP). We conduct several different experiments that solve the base problem

and variants of it using mainly synthetic data and one real dataset. We compare our results

to the results of Marxan, another application that solves this problem by using Simulated An-

nealing. Furthermore, we propose options to generate synthetic data instances ourselves and

show how the realism of said synthetic data can be improved through the use of Perlin noise.

Our results show that while the ILP cannot find the optimal solution in a reasonable time and

while it displays a varying performance for different scenarios, it can reliably get much closer

to the optimum than Marxan when both use the same timeframe. We conclude that the ILP

implementation can be a useful alternative to Marxan for real conservation projects.
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1 Introduction

1.1 Scientific Background

Protecting valuable natural environments is an important task to conserve the biodiversity

that exists on Earth. Doing so can prove to be difficult, as many factors contribute to this

situation, and the required actions to achieve effective conserving can differ from area to

area. Margules and Pressey [1] introduced Systematic Conservation Planning, a multi-step

framework that aims to bring structure to this complex task. First, the given area is analyzed

to clearly define its specific conservation needs, namely the biodiversity features that need

to be protected. With this information, explicit actions that need to be implemented can be

formulated. Existing conservation areas, if present, are evaluated on their contribution to the

conservation needs, and the best new locations for effective conservation are identified. In

these new areas, the determined actions are applied. Ultimately, mechanisms are adopted to

maintain the conserving efforts over an extended period of time.

Applying this framework comes with several challenges during each phase of implementation

as it is still a complex task, even with careful planning and assessment. One of these problems

is the financial aspect. In most cases, it is not feasible to implement conservation efforts across

the entire natural reserve since it can extend over several thousands of square kilometers. A

crucial step in the planning process is to decide where to take actions to be as efficient and

inexpensive as possible. An idea is to divide the entire nature reserve into many smaller sub-

areas, i.e., planning units [2]. These can have arbitrary sizes and shapes, e.g., squares or

hexagons, to cover the entire area easily. Alternatively, their shape could be defined by the

landscape they contain, e.g. by mountains, forests, or man-made boundaries.

Figure 1 and Figure 2 show how a nature reserve could be divided into planning units and

display the selection of planning units for conservation to complement existing conservation

areas.

Planning units possess several attributes, such as the conservation cost for implementing con-

servation actions in the unit‘s area or the biodiversity, i.e., the conservation features contained

in the unit. The goal is to strategically select units where conservation measures will be im-

plemented to minimize the total conservation costs while satisfying target values regarding

several conservation features. This is known as the Reserve Selection Problem [2].

These features could include a minimum number of occurrences of a certain species or a valu-

able natural resource across all selected planning units. A marine conservation project could

for example demand that all selected units combined must contain at least 3000 individuals

of an endangered fish species and 5000 hectares of coral reefs.

Besides the conditions for conservation features, there could be additional criteria the selected

units need to satisfy. A few examples are mentioned in [2]. Due to the biological or geological

processes in the area, there could be situations, where conserving a unit A is only possible or

profitable, if another unit B is selected as well. In this case, we call the unit A to be dependent

on the unit B. Satisfying these dependencies is one such additional criterion. Additionally, we
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Figure 1: An example for a conservation planning project, located in the Cape Floristic Region in South Africa.

The figure shows how the area is divided into several planning units in a square-shaped grid. The blue squares

represent the already selected area, the other colors indicate the irreplaceability value for each non-selected unit

(a calculated probability for this unit to be included in extended conservation efforts). Reused with permission

from [3].

Figure 2: The reserve from Figure 1. Here, the results of a solution for extended conservation planning, found by

an algorithm, are shown. The orange, green and purple units represent the area that was excluded from the

initial conservation efforts but included in the extended planning to meet three additional conservation targets. It

is visible, that these areas coincide with the areas of high irreplaceability value from Figure 1. Reused with

permission from [3].
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could demand the boundary length of all selected units be as minimal as possible, in which

case clusters of selected units would be preferred over single selected units all over the area.

Therefore, the right selection of planning units is key to ensuring the efficiency of conservation

projects. However, depending on the demands on the planning units, this problem can get

complex very quickly.

In this thesis, we implement an algorithm that solves the Reserve Selection Problem by de-

ciding which planning units should be included in the conservation efforts to minimize the

conservation costs while satisfying all demanded criteria. For this, we transform the problem

into an instance of an Integer Linear Program (ILP) as described in [2], which is solved using

the optimizing software Gurobi [4]. Afterward, we compare the results and performance of

our implementation to the established software Marxan [5] which is also able to find solutions

for the Reserve Selection Problem.

1.2 Related work and problems

There are many scientific papers regarding the biological aspect of systematic conservation

planning ([1], [6]). Other publications focused on how to solve this problem algorithmi-

cally. One of the most common approaches is to formulate the problem as an ILP by minimiz-

ing the total expenses for all selected units while satisfying all conservation features through

(in)equations as seen in the paper by Beyer et al. [2], which is the formulation this thesis

builds upon as well. In their paper, they describe, how to formulate the basic problem of min-

imizing the cost for the selection of units that satisfy target values for biological features and

how to include boundary penalties and dependencies. We reproduce their discoveries and ex-

tend their investigations. They did not publish their code, therefore we needed to implement

our algorithm from scratch based on the mathematical formulation of the ILP they defined.

In addition to ILP, another approach is to use heuristic algorithms. A commonly used software

is Marxan [5], which uses Simulated Annealing (Section 2.2) to decide which planning units

should be selected. Marxan also incorporates the possibility to include potential boundary

costs in their calculations. As with every heuristic algorithm, it finds a solution fast, whereas

optimal algorithms would require much more time, but it can neither guarantee to find the

optimal solution nor guarantee to satisfy all conservation targets.

There are a few variants of the Reserve Selection Problem, e.g., one reformulation that only

searches for selections that cover each conservation feature at least once instead of demanding

a certain required target value for each conservation feature to be satisfied. This is an applied

instance of the Minimum Set Cover problem, whose related decision problem is known to be

NP-complete [7]. Other papers also formulated an optimization problem where the amount

of conservation features, that were covered at least once, is maximized while the total ex-

penses must be kept below a certain threshold ([8] and [9]). These two variants deserve to

be mentioned when introducing algorithmic approaches to systematic conservation planning,

but they are not the subject of this thesis.
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2 Preliminaries

2.1 Linear Programming

The following definition of linear programming is taken from the book “Understanding and

Using Linear Programming”, written by Jǐrí Matoušek and Bernd Gärtner [10]:

A linear program is the problem of maximizing a given linear function over the set of all vectors

that satisfy a given system of linear equations and inequalities. Each linear program can easily

be transformed to the form:

maximize cT x subject to Ax ≤ b (1)

Here, c ∈ Rn, b ∈ Rm and A∈ Rm×n are known constants with cT x being the objective function

that must be maximized and Ax ≤ b the linear constraints that need to be satisfied. x ∈ Rn

represents the solution vector, which is called feasible if it satisfies all linear constraints and

optimal if it simultaneously maximizes the objective function. Algorithms that can solve any

instance of a linear program in a polynomial runtime exist, e.g., the Simplex method [10],

which makes this optimization problem efficiently solvable.

If we restrict the solution vector to only allow integer values, i.e., if we define the solution

vector through x ∈ Zn, we face a different optimization problem called Integer Linear Pro-

gramming (short: ILP). Unlike regular linear programs, ILP is proven to be NP-hard [7].

Each maximization problem can also be formalized as a minimization problem by multiplying

the objective function cT x with −1. This is more useful in our case, as we wish to minimize the

total cost of the conservation efforts, which will be represented through the objective function

of the ILP.

2.2 Simulated Annealing

This entire explanation is loosely based on the definition by Kathryn A. Dowsland and Jonathan

M. Thompson given in their book “Simulated Annealing” [11].

Simulated Annealing is a heuristic approach to minimize a given optimization function. It is

based on the Local Search heuristic, which searches for better solutions in the neighborhood

of the current solution. It expands Local Search by implementing a feature to escape local

optima. The procedure is inspired by the cooling process of molten materials into their solid

form, hence the name Simulated Annealing. Due to the laws of thermodynamics, a material,

that has been first heated up to a certain temperature at which the material has turned into

a liquid and afterward started to cool down has a certain probability of altering its internal
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energy by a value of δE. This probability is described by :

P(δE) = ex p(
−δE
kB T

) (2)

with temperature T and Boltzmann‘s constant kB. It can be seen, that the probability P(δE)

decreases when the temperature decreases.

Simulated Annealing uses this physical analogy by representing the solution of a minimization

problem, a cost function, through the energy of the material. In the beginning, a value T is

set, which is analogous to the temperature of the physical system that keeps decreasing over

time. In each iteration, with x being the currently selected solution, the algorithm inspects an

element x ′ from the neighborhood of x , which is defined as all solutions that are only slightly

different from x . This difference between the cost for x and x ′ is analogous to δE. P(δE) is

then calculated as above (although Boltzmann‘s constant is not required) and is used as the

probability of selecting x ′ as the new current solution. If x ′ costs less than x , then P(δE)> 1

in which case x ′ is guaranteed to be selected. If x ′ is not selected, then x remains the selected

solution, and another solution from the neighborhood of x is inspected.

As the algorithm progresses, the temperature T decreases, and so does P(δE). While there

is a good probability at the start to select a worse solution compared to the current solution,

over time the algorithm becomes less likely to do so and will only accept better solutions. This

means that during the first iterations, the algorithm tries to explore the different possible solu-

tions and might even escape local minimums in hopes of finding better selections elsewhere.

However, with the temperature slowly decreasing, the algorithm becomes more reluctant to

accept worse solutions than the currently selected one.

Since Simulated Annealing is based on randomness, the algorithm cannot guarantee anything

concerning the solution quality. The algorithm will continue to run until a stopping condition

is reached, e.g., a verification if the current solution is within certain acceptance bounds. Al-

ternatively, the algorithm could terminate after a set amount of iterations has passed. This

means the runtime cannot be explicitly described since the solution quality depends on ran-

domness. However, unlike ILP, it is not NP-hard, which makes Simulated Annealing especially

useful when dealing with large instances.

According to the Marxan User Manual [12], Marxan uses Simulated Annealing to generate its

solutions as results from a minimization function that calculates the total conservation cost

based on the selected planning units. A new solution is found in each iteration by randomly

flipping the state of one planning unit from selected to unselected or vice versa. The user

can configure, how many Simulated Annealing runs should be processed and also how many

iterations Marxan‘s Simulated Annealing should do in each run.
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3 Formulating Conservation Planning as an ILP

In this section, we transform the conservation planning problem into a mathematical optimiza-

tion problem in the form of an ILP. The ILP formulation is taken from the paper by Beyer et al.

[2]. We define the sets and variables used slightly differently than them for clarity reasons.

3.1 The cost function

Our objective function minimizes the sum of the costs for all selected planning units. We

define each planning unit i through a binary variable x i ∈ {0,1} in which x i = 0 means, that

the planning unit i is excluded for conservation. With ci , we define the cost associated with

planning unit i. Due to the decision variable x i , we can model the cost required for a single

planning unit i as ci · x i , regardless of whether i was selected. This brings us to the sum of all

costs for the selected planning units, which can be expressed through:

min
∑
i∈I

ci x i (3)

Here, I is the set of all planning units involved in the nature reserve. Thus, this function

minimizes the costs for all selected planning units.

3.2 Conservation features

The main focus of this biological problem is on the conservation features, which are the bio-

diversity goals we wish to accomplish with the conservation efforts. Let rik be the numerical

contribution of the planning unit i to the conservation feature k. rik x i therefore represents,

how much x i adds to this feature, regardless if i was selected or not. We define the target value

for conservation feature k as Tk. Summing up rik x i for each planning unit gets us the total

amount of occurrences of feature k gained from the conservation actions. This value must be

greater or equal to Tk. Therefore, we define the first inequation of the ILP as:

∑
i∈I

rik x i ≥ Tk,∀k ∈ K (4)

Note the ∀k ∈ K . Since we can have multiple conservation features, we require one inequation

for each feature in the set of all conservation features K . Therefore, we add ∀k ∈ K to the

constraint.

3.3 Boundary costs

In some cases, we might wish to apply a penalty for selecting non-adjacent units to encourage

finding solutions that select clusters of units, e.g., to reduce transportation costs. This penalty

is comparable to a cost for the total border length of our selected units. For two adjacent units

i and j, the border between i and j must count towards the total border length if exactly one

of i and j is selected for conservation. Additionally, for all selected planning units at the edge
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Figure 3: A sample instance with 18 planning units. The grey units were selected for conservation. The red

boundaries are the ones that count towards the boundary penalty, these are all the boundaries between two

adjacent units from which one unit is selected and one excluded. For example, the border between 8 and 9

counts towards the boundaries since 9 is selected and 8 is not. On the contrary, the border between 9 and 10

does not count because both 9 and 10 are selected. Additionally, for unit 6, all edges are included, even if the top

and right edges are not connected to another planning unit.

of the reserve, the boundaries these units share with the area outside of the nature reserve

must also be included in this penalty. Figure 3 shows a practical example of which boundaries

must be included. Hereinafter, we refer to the penalties as boundary costs, since this is a more

graspable concept.

If we define vi j as the border length between planning unit i and j, then x i · (1 − x j) · vi j

describes a formula, which results in vi j if i is included and j excluded. Otherwise, it equals

0. We can find the border length for one unit i by summing the border length between all its

neighbors j. Let N(i) be the set of all planning units adjacent to i. Therefore,

∑
j∈N(i)

x i(1− x j)vi j (5)

calculates the border length between unit i and all its neighbors j. For the total border between

any two planning units, we sum equation (5) for each planning unit:

∑
i∈I

∑
j∈N(i)

x i(1− x j)vi j (6)

With this, we covered all borders between two units. However, boundaries at the edge of

the reserve have not been included yet as they are not borders between two units but rather

borders between a unit and some area outside of the reserve. If we do not account for these

boundaries, the algorithm would be biased to select units at the edge of the reserve. We
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can account for these edge boundaries by adding their border length to the equation if the

belonging planning unit is selected. Let E be the set of all planning units that are adjacent to

the area outside of the reserve and vi,outside the length of the edge boundary a planning unit i

shares with the area outside of the nature reserve. With

∑
i∈E

x i · vi,outside (7)

we get the sum of all edge boundaries for all selected units. Therefore, adding both equations

gives us the total border length for the entire selected area as

∑
i∈I

∑
j∈N(i)

x i(1− x j)vi j +
∑
i∈E

x i · vi,outside (8)

Multiplying this equation with a parameter b gives us the possibility to control the importance

of the boundary cost. If we do not want to account for boundary cost at all, we set b = 0. If

boundary cost is very important, we set b to a high value. Unlike the conservation features,

we do not add these terms as constraints but rather append them to the cost function since we

wish to minimize the penalty of selecting non-adjacent units. The improved objective function

is now defined as:

min
∑
i∈I

ci x i + b
∑
i∈I

∑
j∈N(i)

x i(1− x j)vi j + b
∑
i∈E

x i · vi,outside (9)

However, we are now faced with an issue. The term x i(1− x j)vi j can be rewritten as x i vi j −
x i x j vi j and a multiplication between two binary variables is not allowed in linear programs.

We need to add a workaround to avoid the term x i x j .

x i x j will only be 1 if both x i and x j are 1. We can therefore substitute x i x j through a new

input variable zi j , which must be 1 if i and j are both selected and 0 otherwise. We cannot

simply define zi j like this since all our input variables are independent of each other. Instead

we need to add additional constraints that enforce zi j = 1 if and only if x i = 1 and x j = 1. To

ensure that zi j cannot be 1 if either x i or x j are not 1, we add the constraints

zi j − x i ≤ 0 (10)

zi j − x j ≤ 0 (11)

To enforce zi j to be 1 if both x i and x j are 1, we add

zi j − x i − x j ≥ −1 (12)

Substituting x i x j vi j in the equation above through zi j vi j and adding the three constraints to

enforce the properties of zi j will finally get us the linear constraints for the ILP that satisfy

any demands concerning the boundary cost of our solution. Note that we do not have just a

single additional input variable zi j but rather a zi j for each combination of two adjacent units

8



i and j. Looking at the constraints added for zi j , it is apparent, that zi j = z ji . To shorten

the mathematical requirements on the constraints, we introduce a set of neighboring units.

Let B ⊂ I2. A set {i, j} ∈ I2 is part of B, if i and j are adjacent to each other. This way, our

constraints regarding zi j need to be added for each {i, j} ∈ B. Since we use {i, j} instead of

(i, j), the order of i and j does not matter, therefore zi j = z ji . In total, we get our new objective

function as

min
∑
i∈I

ci x i + b
∑
i∈I

∑
j∈N(i)

x i vi j − zi j vi j + b
∑
i∈E

x i · vi,outside (13)

and our added constraints as

zi j − x i ≤ 0,∀{i, j} ∈ B (14)

zi j − x j ≤ 0,∀{i, j} ∈ B (15)

zi j − x i − x j ≥ −1,∀{i, j} ∈ B (16)

3.4 Dependent units

There is a multitude of reasons why units would have a dependence on other units. A unit i is

dependent on unit j if unit j must be selected in the case unit i was selected for conservation.

Dependence is directional, i.e., j does not have to be dependent on unit i if i is dependent on

j. We can define D ⊂ I2 as the set of all dependencies, thus (i, j) ∈ D⇔ i is dependent on j.

Mathematically, we can express dependence through

x i − x j ≤ 0,∀(i, j) ∈ D (17)

This inequation therefore forces x j = 1 if x i = 1 but neither does it prevent j from being

excluded if i is not part of the conservation units, nor does it enforce i to be selected, if j was

selected.

3.5 The complete formulation

With this, we can present the entire ILP formulation through the terms and functions we de-

fined in the previous subsections:

min
∑
i∈I

ci x i + b
∑
i∈I

∑
j∈N(i)

x i vi j − zi j vi j + b
∑
i∈E

x i · vi,outside (18)

subject to

∑
i∈I

rik x i ≥ Tk,∀k ∈ K (19)
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zi j − x i ≤ 0,∀{i, j} ∈ B (20)

zi j − x j ≤ 0,∀{i, j} ∈ B (21)

zi j − x i − x j ≥ −1,∀{i, j} ∈ B (22)

x i − x j ≤ 0,∀(i, j) ∈ D (23)

with the variables x i , ci , rik, Tk, b, vi j , vi,outside, zi j and the sets I , N(i), K , E, B, D as defined

before.
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4 Methods

4.1 Implementation

This project is implemented in Python 3.10.5 using the optimization library Gurobi 3.9.5 [4]

as an ILP solver. The implementation can be found on GitLab 1.

Data can be input into the algorithm either through a single input file called master.dat or mul-

tiple input files. All files must contain one entry per line, with commas separating the values in

each line. If multiple input files are used, the following files are mandatory; pu.dat, which con-

tains a list of the planning units, spec.dat, which contains all conservation features and their

target values that need to be satisfied, and puvspr.dat, which lists information about which

planning units contain which features. Additionally to these files, an optional file bound.dat

may define the border length for each border between two adjacent units, and ultimately, an

optional file dependencies.dat contains the dependencies between the units.

If a single input file is used, the file must be called master.dat and list all the necessary infor-

mation from the multiple input files in sections. Each section starts with “=SECTIONNAME”

with SECTIONNAME being “pu”, “spec”, “puvspr”, “bound” or “dependencies”. Similar to the

multiple input files, the sections “pu”, “spec” and “puvspr” are mandatory, while “bound” and

“dependencies” are optional. The order of the sections does not matter. To further illustrate

this format, the code folder contains some sample inputs and more detailed explanations.

When all necessary input files to define the instance are present, the program can be executed

using

python main . py [OPTIONAL PARAMETERS]

The optional parameters may be added to configure the program to the user‘s needs:

-d: Include dependencies.

-b [INTEGER]: Sets the boundary multiplier (b in the ILP definition of Section 3.5). Setting

this to 0 will remove the boundaries entirely. (default: 0)

-g [FLOAT]: Sets an acceptance threshold, which causes Gurobi to prematurely terminate the

solving as soon as the percentage difference between the current best solution and the current

theoretical lower bound for the optimal solution is less than the value given. -g 5 represents

an acceptance threshold of 5 percent.

-t [FLOAT]: Sets a time limit in seconds that defines how long Gurobi may try to solve for the

optimal solution.

-w [DIRECTORY]: Working directory for input and output files. (default: empty = same di-

rectory as the source code files)

1https://gitlab.cs.uni-duesseldorf.de/albi/albi-students/ba-simon-schreinermacher
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-lp: Print the ILP instance into a .lp file. Will be inserted into the output folder.

-fmult: Force to use multiple input files (by default, the algorithm will prefer a master.dat if

one is present, and only if none is available, it uses multiple input files. Using this flag forces

the algorithm to use multiple input files, even when a master.dat is present).

-heatmap: Generate a heatmap that shows which units got selected in the solution. Will be

inserted into the output folder.

-multobj: Splits the objective function into two parts and solves this multi-objective function

hierarchically (see Section 5.4)

The algorithm will then process the input, create and solve the ILP instance and create an

output directory inside the input folder. This output will contain a file that lists for each

planning unit, whether it was selected (1) or excluded (0) from conservation planning, a file

that lists statistics about that run, and the .lp file or the heatmap if configured.

4.2 Data creation

There is only a very limited amount of suitable data publicly available. To be able to measure

different aspects of the algorithm and efficiently compare these to their Marxan equivalents,

input instances of several sizes and forms are required. To surpass this bottleneck, we need

to create data ourselves. Since the output consists solely of numbers, we can create synthetic

data using random number generation. For this, we have adopted the method presented in

the paper by Beyer et al. [2] and made slight adjustments. Here, we define how our data is

created:

The ids of planning units and conservation features are modeled through ascending numbers,

starting with 1. For the cost of each planning unit, we use a uniform distribution with lower

bound 100 and upper bound 10000.

The amount of how much a planning unit contributes to a conservation feature is listed in

puvspr.dat. This amount is generated by a normal distribution with expectation value µ = 0

and standard deviation σ = 5. In case of a negative value for a given conservation feature in

a given planning unit, this value is instead set to 0, i.e., this planning unit does not contribute

to this conservation feature at all. Due to the selection of µ and σ, roughly half of all units are

expected to contain a non-zero amount for a conservation feature.

The target value for each conservation feature is set to be 30 percent of the total contributions

of all planning units to the respective conservation feature.

To simplify the boundaries, the planning units are rectangular and the area itself is a rectan-

gular grid with a configurable amount of rows and columns, as well as width and height for

12



Figure 4: Comparison between both methods to create the feature distribution. Both instances consist of 10,000

planning units, arranged in a 100 × 100 rectangular grid. The left figure shows a feature distribution through

random number generation, the right figure shows a feature distribution through Perlin noise.

the units. Each planning unit is therefore adjacent to at most one planning unit each to the

left, right, top and bottom. Each unit‘s boundaries with its neighboring units are dependent

on the chosen unit width and unit height. In our case, we used a height of 50 and a width of 30.

Finally, the dependencies were also created at random. Each unit has a 25 % probability for

each neighbor to be dependent on them. In a real case scenario, a unit might be dependent

on non-adjacent planning units as well, but we wish to keep our data generation simple and

effective. Therefore, our synthetic data only considers adjacent units for possible dependen-

cies.

Alternatively, the data creation algorithm can use Perlin noise to create both the planning unit

costs and the conservation feature distribution, i.e., how much each unit contributes to each

conservation feature. Perlin noise is a random number generator commonly used for synthetic

terrain generation, e.g., mountains and oceans by creating different elevation levels for each

coordinate on a two-dimensional plane. Unlike simple random number generation, two ad-

jacent coordinates will have similar elevation levels to create realistic-looking terrain. Here

we use these elevation levels as numbers for conservation features and costs for our planning

units. The motivation behind this alternative approach is to generate more realistic datasets,

as we would expect real data to have similar values for adjacent units. In Figure 4, we dis-

play an exemplary feature distribution for both approaches. Hereinafter, we will refer to the

instances as random number instances or Perlin instances, depending on the creation method

used to generate these instances.
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4.3 Configuring instances and tests

As mentioned in Section 1.2, Marxan features the possibility to find solutions that may not

fully satisfy all conservation features in exchange for an added penalty to the solution value.

There is a configuration option that controls, how much the penalty affects the total solution

cost. We have the option to raise this variable to a value at which point it would be highly un-

likely that the solution does not meet all target values for the conservation feature. However,

this considerably increases the result value, even for solutions that satisfy all targets, which is

most likely due to the way the Simulated Annealing iterates between neighboring solutions.

This is why we set this value to 1, which means that most of Marxan‘s solutions will not meet

all targets, but in exchange, we get better solution values that are more comparable to the

solutions of our algorithm.

Furthermore, multiple parameters control the calculation effort of Marxan while searching for

solutions, namely the number of iterations the Simulated Annealing algorithm performed in

each run and the number of runs. Marxan lists the final result for each run and highlights the

best results across all runs. We ran all instances first with 1 million iterations per run and ten

runs total, then with 10 million iterations per run and 100 runs total.

When creating instances for testing, it was important to choose instance sizes comparable to

real-world applications. Unfortunately, early tests proved that the algorithm takes too long to

search for the optimal solution, even when it finds an almost perfect solution early on. An

instance with 10,000 planning units and ten conservation features ran over 11 hours before

being manually interrupted after it had not made any progress towards better solutions or

lower bounds for over two hours. This resulted in a solution that was 0.0172% off the pos-

sible lower bound for an optimal solution after it had reached 0.02% difference already after

360 seconds of running, which means that the remaining 11 hours of runtime brought a neg-

ligible improvement to the solution found. Since the instance with 10,000 planning units and

ten conservation features was supposed to be one of the smaller test instances, as most real-life

applications use larger instances, it became clear that searching for the optimal solution for

each test was impossible. Instead, we reconfigured Gurobi to use two alternatives. First, we

conducted experiments in which Gurobi terminated solving after finding a solution less than

0.05 percent away from the lower bound for the optimal solution. Furthermore, we repeated

these tests with a time limit instead of a gap percentage. We chose 40 seconds for our time

limit as this is the time Marxan requires for its Simulated Annealing for 100 runs with 10 mil-

lion iterations each.
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5 Results

After introducing the theoretical background and the mathematical interpretation, we now

evaluate the runtime and solution quality of our algorithm and compare our results to Marxan‘s

solutions.

Our goal was to identify the influence of a single instance size with all other factors isolated.

We created instances that only change single attributes compared to the other instances, each

instance once using random number generation and once using Perlin noise. For our planning

units, we used numbers between 10,000 and 1,000,000. We limited our boundary multiplier

to values between b = 0 and b = 100. Since the boundary multiplier is a configuration of

our algorithm and Marxan instead of a fixed attribute of our instance, we can use different

boundary multipliers with the same instance. We used the same instance for all boundary

tests to see how increased boundaries affect the solution for the same instance. We did not

know a good upper limit for our conservation features in advance. Therefore, we started

with ten conservation features and steadily increased the number per instance by 1. The

goal was to continue until we reached an instance that would take over eight hours to finish

solving. The first instance that surpassed this runtime had 18 conservation features. For all

our different numbers of planning units, we measured the instance once without dependencies

and once with dependencies included. We did not conduct any tests with Marxan regarding

dependencies as Marxan does not support those. Each of these tests was conducted once with

a gap percentage and once with a time limit (see Section 4.3).

All tests were run on a desktop computer with an Intel (R) Core(TM) i7-4790K CPU @ 4.00

GHz x 8 and 16 GB DDR3 RAM on Windows 10 Pro.

5.1 Solution analysis

First, we evaluate the solution quality for different instances and compare the results of our

implementation with different configurations for Marxan. Some selected results from our tests

are represented in Table 1 and Table 2. Tables with all solutions for all tests can be found in

the Appendix.

As mentioned in Section 4.3, we tested all instances once with an acceptance gap threshold for

our ILP algorithm of 0.05 percent and once with a time limit of 40 seconds to allow suboptimal

solutions in exchange for a reasonable runtime. We can see that the time limit results in better

solutions on most occasions, albeit with only minor differences. There are instances where 40

seconds were not enough to finish preprocessing. Those instances would have resulted in very

large solution values. We adjusted the time limit for these instances to be just enough to finish

preprocessing. These instances are listed in Table 1 in bold font and the number in brackets

signifies the necessary amount of seconds to finish preprocessing.

We can observe multiple properties when we compare the results of our implementation and

Marxan. Solutions found by Marxan had higher costs of up to 30 percent compared to the ILP.
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Gap: ≤ 0.05 % Time limit: 40 seconds

Instance Solution Value Gap to lower bound Solution Value Gap to lower bound

PU10000_F10_B0 3.726e06 0.0408% 3.725e06 0.0234%

PU100000_F10_B0 3.934e07 0.0032% 3.934e07 0.0016%

PU500000_F10_B0 1.959e08 0.0174% 1.959e08 0.0174%

PU1000000_F10_B0 3.914e08 0.0073% 3.914e08 (67) 0.0073%

PU10000_F10_B0_Perlin 6.906e06 0.0181% 6.905e06 0.0128%

PU100000_F10_B0_Perlin 8.658e07 0.0198% 8.656e07 0.0021%

PU500000_F10_B0_Perlin 3.791e08 0.0029% 3.791e08 0.0005%

PU1000000_F10_B0_Perlin 7.574e08 0.0014% 7.574e08 0.0014%

PU10000_F12_B0 3.96e06 0.0478% 3.96e06 0.0337%

PU10000_F14_B0 4.234e06 0.0467% 4.233e06 0.0349%

PU10000_F16_B0 4.32e06 0.0474% 4.32e06 0.0608%

PU10000_F18_B0 4.258e06 0.0509% 4.259e06 0.0754%

PU10000_F12_B0_Perlin 8.938e06 0.0197% 8.938e06 0.0108%

PU10000_F14_B0_Perlin 7.426e06 0.0227% 7.425e06 0.0118%

PU10000_F16_B0_Perlin 6.831e06 0.0234% 6.83e06 0.0110%

PU10000_F18_B0_Perlin 6.744e06 0.0353% 6.743e06 0.0259%

PU10000_F10_B10 6.427e06 0.0386% 6.426e06 0.0202%

PU10000_F10_B20 8.611e06 0.04% 8.611e06 0.0327%

PU10000_F10_B50 1.29e07 0.0486% 1.29e07 0.0475%

PU10000_F10_B100 1.502e07 0.0499% 1.587e07 5.5063%

PU10000_F10_B10_Perlin 7.156e06 0.0403% 7.156e06 0.0352%

PU10000_F10_B20_Perlin 7.381e06 0.0420% 7.381e06 0.0365%

PU10000_F10_B50_Perlin 7.979e06 0.0388% 7.978e06 0.0330%

PU10000_F10_B100_Perlin 8.927e06 0.0405% 8.936e06 0.2866%

PU10000_F10_B0_D 6.827e06 0.0401% 6.827e06 0.0287%

PU100000_F10_B0_D 7.048e07 0.0284% 7.046e07 0.0033%

PU500000_F10_B0_D 3.519e08 0.0110% 3.519e08 (155) 0.0110 %

PU1000000_F10_B0_D 7.035e08 0.0127% 7.035e08 (420) 0.0127 %

PU10000_F10_B0_D_Perlin 6.959e06 0.0379% 6.958e06 0.0185%

PU100000_F10_B0_D_Perlin 8.686e07 0.0067% 8.686e07 0.0028%

PU500000_F10_B0_D_Perlin 3.792e08 0.0304% 3.792e08 (112) 0.0304 %

PU1000000_F10_B0_D_Perlin 7.576e08 0.0178% 7.576e08 (330) 0.0178 %

Table 1: Solutions for different instances for the ILP implementation, each once for an acceptance gap of 0.05

percent and once for a time limit of 40 seconds. The instance names are abbreviated through a unique string

defining the instance sizes. The number after PU represents the number of planning units, the number after F

represents the number of conservation features and the number after B represents the boundary multiplier. If “D”

or “Perlin” is appended to the instance name then the instance includes dependencies or Perlin noise generation

respectively. Values in bold font required more than 40 seconds to finish preprocessing, the number in the

brackets signifies the required amount of seconds for those cases.
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10 runs 1M iterations 100 runs 10M iterations

Instance Solution Value Gap to ILP Solution Value Gap to ILP

PU10000_F10_B0 3.831e06 2.846% 3.769e06 1.181%

PU100000_F10_B0 4.205e07 6.889% 4.074e07 3.559%

PU500000_F10_B0 2.278e08 16.284% 2.075e08 5.921%

PU1000000_F10_B0 4.746e08 21.257% 4.185e08 6.924%

PU10000_F10_B0_Perlin 7.207e06 4.374% 7.032e06 1.839%

PU100000_F10_B0_Perlin 9.604e07 10.952% 9.211e07 6.412%

PU500000_F10_B0_Perlin 4.384e08 15.642% 4.064e08 7.201%

PU1000000_F10_B0_Perlin 9.438e08 24.611% 8.324e08 9.902%

PU10000_F12_B0 4.097e06 3.460% 4.017e06 1.439%

PU10000_F14_B0 4.41e06 4.181% 4.307e06 1.748%

PU10000_F16_B0 4.509e06 4.375% 4.393e06 1.690%

PU10000_F18_B0 4.429e06 3.992% 4.340e06 1.902%

PU10000_F12_B0_Perlin 9.405e06 5.225% 9.144e06 2.305%

PU10000_F14_B0_Perlin 7.75e06 4.377% 7.564e08 1.872%

PU10000_F16_B0_Perlin 7.171e06 4.993% 6.986e06 2.284%

PU10000_F18_B0_Perlin 8.809e06 30.639% 8.505e06 26.131%

PU10000_F10_B10 6.788e06 5.633% 6.571e06 2.256%

PU10000_F10_B20 9.25e06 7.421% 8.855e06 2.834%

PU10000_F10_B50 1.445e07 12.016% 1.346e07 4.341%

PU10000_F10_B100 1.933e07 21.802% 1.615e07 1.764%

PU10000_F10_B10_Perlin 7.554e06 5.562% 7.269e06 1.579%

PU10000_F10_B20_Perlin 7.778e06 5.379% 7.493e066 1.517%

PU10000_F10_B50_Perlin 8.601e06 7.809% 8.081e06 1.291%

PU10000_F10_B100_Perlin 1.014e07 13.474% 9.038e06 1.141%

Table 2: Solutions for different instances for Marxan using ten runs and 1 million iterations per run as well as

100 runs and 10 million iterations per run. The column “Gap to ILP” shows the relative difference between the

Marxan solution value and the ILP time limit solution value for the respective instance. For each instance,

dependencies are excluded and the amount of features is set to ten. The abbreviations used for the instance

names are the same as in Table 1.

17



This suggests that the ILP might be more suited to find solutions closer to the optimum. We

also see that if we increase the number of runs and iterations per run for Marxan‘s Simulated

Annealing, we find solutions closer to the optimal value at the cost of an increased runtime.

Instances with more planning units result in higher solution values. Doubling the planning

units also roughly doubles the cost of the solutions, both for the random number instances

and the Perlin instances. Judging by the solution value of our different test sets, the number

of planning units seems to be the most important factor for increases in the solution values.

If we also include dependencies while increasing the number of planning units, the solution

value is increased even further, although for the Perlin instances much less than for the random

number instances. It must also be mentioned that with different numbers of dependencies, we

would see a different relative increase in runtime. In our synthetic data, each planning unit

has a 25 percent chance for each adjacent unit to be dependent on them.

We only see a slight increase in the solution value if we keep the number of planning units

constant and slowly raise the number of conservation features that must be satisfied, both for

the random number instances and the Perlin instances, with some exceptions. This implies

that with only minor increases in the expenses, a conservation project could achieve to protect

additional conservation features.

Increasing the boundary multiplier also raises the costs. However, as we increase the boundary

multiplier, the increase in solution value becomes weaker. This is both visible for the random

number instance and the Perlin instance. While the initial expenses for including boundaries

are too high to be effective, increasing the boundary penalty even further when it is already

a high value becomes much cheaper. We deduce that it is best to either exclude boundaries

completely or to use high boundary values. This enables us to make efficient use of border-

related cost increases.

Altering the boundary multiplier can drastically change which planning units are selected.

With a higher value, the algorithm tends to find solutions where the selected planning units

are more clustered, as adjacent selected units reduce the boundary length. Figure 5 shows

solutions for the same instance only with different boundary penalties in which the progres-

sive clustering is visible. Without any boundary penalty, the algorithm cherry-picks the best

single planning units as it does not need to pay attention to boundaries. With rising boundary

penalty, finding larger clusters becomes more important and selecting single planning units

becomes less frequent. Figure 6 shows the same experiment with a Perlin instance. Here we

see clusters of selected units even for lower boundary values.
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(a) ILP, b = 0 (b) ILP, b = 20 (c) ILP, b = 50 (d) ILP, b = 100

(e) Marxan, b = 0 (f) Marxan, b = 20 (g) Marxan, b = 50 (h) Marxan, b = 100

Figure 5: Map of selected units for boundary multipliers b on a quadratic planning unit grid consisting of

100× 100 planning units. The top row shows the results of the ILP, and the bottom row shows the results of

Marxan with 100 runs and 10 million iterations per run. The purple units are selected, and the blue units are

excluded from conservation. The instance was generated using simple random numbers for the conservation

feature distribution.

(a) ILP, b = 0 (b) ILP, b = 20 (c) ILP, b = 50 (d) ILP, b = 100

(e) Marxan, b = 0 (f) Marxan, b = 20 (g) Marxan, b = 50 (h) Marxan, b = 100

Figure 6: Map of selected units for boundary multipliers b on a quadratic planning unit grid consisting of

100× 100 planning units. The top row shows the results of the ILP, and the bottom row shows the results of

Marxan with 100 runs and 10 million iterations per run. Here we used an instance generated with Perlin noise

for the conservation feature distribution and the cost.
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Figure 7: Comparison of runtime for different numbers of planning units. The left graph shows the random

number instances, the right graph shows the Perlin instances.

5.2 Runtime analysis

Apart from solution quality, it is equally important to consider the runtime of each algorithm.

For this, we used all the instances that we have also used in Table 1 and Table 2. We only

used the acceptance gap percentage for runtime tests, as the time limit tests all required the

same time, i.e., the time limit itself. We split these tests into four categories, each with random

number instances and Perlin instances.

First, we investigate how the runtime changes with increasing numbers of planning units.

This is shown in Figure 7. We see that the ILP approach is faster than Marxan in both cases

for all numbers of planning units. We expected our algorithm to take longer for instances with

more planning units but did not expect Marxan to increase its runtime as well since Simulated

Annealing is configured to run for a fixed number of iterations. The reason for this increase

in runtime is a preprocessing step Marxan does before even starting the annealing. While the

annealing takes about the same time for each instance, the preprocessing time seems to be

scaling with the number of planning units. Figure 7 shows that on a logarithmic scale, the

curve for the runtime of Marxan with ten runs and 1 million iterations per run seems to be a

straight line which highly suggests that Marxan‘s total runtime is polynomially correlated to

the number of planning units. The results for 100 runs and 10 million iterations per run are

very similar to the other Marxan tests, only with an offset of roughly 40 seconds, which is the

increased time for the annealing due to the use of more iterations and more runs.

We identify a straight line for both graphs of the ILP as well, which suggests that the ILP run-

time is also polynomially correlated to the number of planning units. The slope of this curve

is in both cases less steep, i.e., the degree of the polynomial function is smaller for the ILP

than for the Marxan curves, e.g., linear compared to quadratic. It must be mentioned that the

runtime for our ILP is also affected by an increased time of creating the ILP, which is noticeable

for instances with large numbers of planning units. We can also see that the Perlin instances

behave similarly but are slightly faster than the random number instances.
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Figure 8: Comparison of runtime for different numbers of conservation features. The left graph shows the

random number instances, the right graph shows the Perlin instances.

Figure 8 shows the results of our tests with different numbers of conservation features. During

these tests, we noticed that different instances of the same size, i.e., the same amount of plan-

ning units, conservation features, and boundary multiplier could require drastically different

solving times. For a random number instance with 18 conservation features, we conducted

three tests which resulted in 32,800, 5,200, and 1,500 seconds of runtime. We found that

Gurobi can solve some instances “easier” than others based on additional factors, i.e., the ran-

dom distribution of the conservation features to the planning units. In some instances, Gurobi

may find good solutions quickly and ignore a lot of obvious worse solutions while other very

similar instances might even require several times that amount of runtime.

Due to the fluctuations, the results for this experiment, depicted in Figure 8, should not be

relied on without using additional sources. Repeating this experiment might lead to different

results. Still, we can notice a steep increase in runtime for the ILP measures concerning the

random number instances. We can also see the significant difference in runtime for the Perlin

instances. These instances are even faster than Marxan. Therefore, this experiment under-

lines how much the cost and feature distribution can influence how easily Gurobi can find

the desired solutions. Marxan shows little to no increase in runtime for these instances at all.

Here, Marxan‘s preprocessing time does not increase with different numbers of conservation

features, and the annealing always requires the same amount of time for each instance.

Figure 9 shows a constant runtime for the Marxan results again and slow growth in runtime

for an increasing boundary multiplier with a jump between b = 50 and b = 60 for our imple-

mentation for the random number instance. We assume that a higher boundary penalty makes

it more complicated for Gurobi to find the best solutions and might therefore be correlated to

an increase in runtime. For this specific instance, boundary multiplier values of b = 60 and

upwards seem to be much more complicated for Gurobi to solve.

We see that, again, the Perlin instance tests terminated much earlier compared to the boundary

tests of the random number instance. This is further proof of our suggestion that increases
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Figure 9: Comparison of runtime for different boundary multiplier values. The left graph shows the random

number instance, the right graph shows the Perlin instance.

Figure 10: Comparison of runtime for instances with and without dependencies. The left graph shows the

random number instances, the right graph shows the Perlin instances.

in runtime for larger boundary multipliers may be due to Gurobi being able to solve some

instances easier than other similar ones. The case for b = 0 was already clustered, as seen in

Figure 6. Therefore, here it is easy for Gurobi to find suitable solutions for larger boundary

penalties, which results in lower runtimes compared to the boundary tests for random number

instances.

Another interesting observation is the jump in runtime when comparing the time required for

b = 0 and b = 10, both for the random number instance and the Perlin instance. Our algo-

rithm is designed to append the boundary penalty sum to the objective function and to include

the zi j constraints, defined in Section 3.3, only if the boundary penalty multiplier is above 0.

This is done for efficiency reasons since all boundary terms would disappear regardless when

multiplied by 0.

Ultimately, we see in Figure 10 that for each instance, the run with dependencies takes longer

than the run without dependencies, both for the random number instances and the Perlin

instances. This is expected, as dependencies add further constraints to the ILP model. Just

like for the planning unit tests without dependencies, the Perlin instances terminate faster for
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the case with dependencies as well.

5.3 Real instances compared to synthetic instances

There are only a few instances of real conservation projects publicly available online, but

we found one real dataset consisting of 12,179 planning units and 59 conservation features.

This dataset is part of a project in British Columbia in Canada, which was carried out by the

BCMCA organization [13]. We can use this instance to determine how realistic the synthetic

Perlin instances are by comparing them to a real instance. The nature reserve in question is

not rectangular. Therefore, we can not use our simple heatmap algorithm we used to create

the heatmaps from the past chapters. Instead, we used the GIS software QGIS [14] to create

a graphic representation of the planning units. Figure 11 and Figure 12 display the cost and

some exemplary conservation features on these representations.

(a) Feature 2 (b) Feature 29

(c) Feature 42 (d) Feature 50

Figure 11: Feature distribution of the real instances for four different conservation features. The grey planning

units do not contain the respective feature at all, the yellow planning units contain a value of above 0 for the

respective feature.
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Figure 12: Cost distribution of the real instance. The grey planning units have a cost of 400, which was the

lowest cost, the yellow planning units have a cost of above 400.

We can see that adjacent units indeed seem to have similar cost and feature values in real

instances. This supports our theory that Perlin instances might be an improvement in realism

compared to the random number instances.

We can also use this real instance to evaluate the usefulness of our synthetic data creation.

For this, we created synthetic datasets of the same size, twenty random number instances,

and twenty Perlin instances. We adjusted the multiplier for the cost and feature distribution

so that the ILP coefficients of our synthetic datasets would be close to the ILP coefficients for

the real instance since these values may influence the runtime as well. We set a time limit of

40 seconds for each of these instances to find their best solution possible. Table 3 shows the

results for the real instance as well as the mean and variance for the twenty random number

instances and the twenty Perlin instances.

We can see that the Perlin instances were closer to their optimum, and the random number

instances were farther away from their optimum compared to the relative gap of the real
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Instance Gap to lower bound

Real instance 0.1058%

Random number generation Mean: 0.1244%, Variance: 3.323e-05

Perlin noise generation Mean: 0.0497%, Variance: 4.562e-05

Table 3: Comparison of a real dataset to synthetic datasets. For both the random number generation and the

Perlin generation, twenty instances were run to calculate mean and variance. Each of these instances consisted of

12,179 planning units and 59 conservation features and used a time limit of 40 seconds for solving. Boundaries

and dependencies were disabled.

instance to its optimum. However, these relative gaps are all fairly similar, although the data

creation is kept simple. Additionally, we have a low variance for both the random number

instances and the Perlin instances, which implies that different synthetic instances of the same

size tend to get similarly close to their optimum. Therefore, synthetic data seems to be a

meaningful alternative to real data. We can assume that the Perlin instances might be too

simplified and the random number instances might be too abstract, but both form bounds for

how the algorithm performs on a real instance of the same size. However, since we only have

one real instance to test this, we cannot conclude this as a clear statement.

5.4 A failed concept: Multi-objective boundary penalty

One of the main issues with the boundary multiplier is how aggressively it influences the solu-

tion quality. Selecting clusters of units keeps boundary penalty low but simultaneously comes

with a great increase in unit selection cost. We have to keep in mind that the unit selection

cost is a real expense the conservation project has to pay if they implement the selection of

the algorithm, while the boundary penalty is an imaginary cost we use to force more clustered

solutions. Selecting clusters of units certainly has advantages and most likely saves money on

important processes like transportation, but it is financially not as important as the planning

unit selection cost. In our current model, the boundary penalty influences the unit selection

cost too much. This is why we examined an alternative ILP formulation. Gurobi offers the

possibility of a hierarchical multi-objective function. Our objective function, which consists of

the selection cost and the boundary penalty, is split into two parts, then the ILP is solved twice.

First, only the selection cost is used as our objective function and the best solution is searched

that minimizes the selection cost. Next, Gurobi uses the boundary penalty as our objective

function but adds a linear constraint to ensure that the selection cost may only be a certain

percentage higher than the value it found earlier. We set this percentage to 10 percent. This

means that our algorithm searches for a selection that minimizes the boundary penalty under

the condition that the selection cost differs from the optimal selection cost of a boundary-less

scenario by less than 10 percent. The algorithm is only allowed to raise the selection cost by

less than 10 percent to find more clustered solutions.
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Unfortunately, this promising concept yielded results that were below our expectations. Due

to the added constraint, the complexity increased and we were unable to get a result within

eight hours, even for low boundary penalty values. We had to manually terminate all tests

after each used an entire night of solving and ended up with solutions that all had roughly

0.07 percent difference from the optimal solution. Additionally, the selections we got after

manually terminating the algorithm showed little to no clustering. Allowing to deviate from

the optimal selection cost by only a small percentage is not enough for the algorithm to search

for larger clusters of selections, but allowing it to deviate further will make it too expensive

again. Therefore, we concluded this idea to have failed. With more enhancement, it might be

useful in real application projects, but in the scope of this thesis, it proved to be nothing more

than an interesting concept.
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6 Discussion

6.1 Evaluation of results

The results of our tests give us great insight into the performance of both our ILP and Marxan

and enable us to compare the two different approaches based on the several different scenar-

ios we investigated. Using the ILP can get us results that have a lower cost for all our tests,

because, through the acceptance gap percentage, we can configure how close our results have

to be to the optimal solution. Our ILP would even be able to find an optimal solution. How-

ever, this would take too much time for the instances we investigated. Marxan sometimes

finds solutions close to the optimum, but especially for larger solution values, the relative

difference becomes greater. With more iterations for the Simulated Annealing, Marxan finds

better solutions, but even then, these solutions are inferior to the solutions found by the ILP.

If we only care about solution quality, the ILP approach would almost always be the best choice.

However, in reality, we would most certainly also care about finding the solution fast. We first

compare Marxan to the ILP formulation with the acceptance gap percentage. For our random

number instances, Marxan was faster than the ILP when we increased the number of conser-

vation features or the boundary multiplier. Our ILP performed better for the Perlin instances,

sometimes even faster than Marxan. This proves that Gurobi can solve some instances eas-

ier than others based on the cost and feature distribution. Through the comparison to a real

dataset, we evaluated the performance for a real instance to be better than the performance

of random number instances but worse than the performance of Perlin instances that both use

the same amount of planning units and conservation features. Therefore, a limitation of our

ILP is the potential for increases in runtime for real instances with many conservation features

or large boundary penalties, i.e., the ILP with an acceptance gap is only of limited suitability

for some instances.

Comparing our results with the conclusion of Beyer et al. in their paper [2], we see similari-

ties and differences. We agree with them about their assessment of the ILP‘s superior solution

quality and the advantage of being able to estimate how close the found solution is to the

optimum. However, our results include several investigations they did not conduct. These

additional results demonstrate that the runtime of the ILP for the gap percentage runs is not

always better than Marxan, for example for increasing numbers of conservation features.

We also investigated what happens to the solution if we remove the acceptance gap, replace

it with a time limit, and let each ILP instance run for 40 seconds, which is the average time

Marxan needs for its solving. Even then, our ILP still returned better results, with the few

exceptions in which additional time was required to even finish preprocessing. Therefore, the

ILP can be considered to be more time-effective than Marxan. For most tests, we also need

to consider a few seconds of setup time for our ILP but this setup time is acceptable for in-
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stances with realistic numbers of planning units and conservation features. Marxan, on the

other hand, requires hours of preprocessing time for large numbers of planning units, render-

ing it unsuitable for such instances. Meanwhile, the ILP with a time limit is suitable for all

evaluated scenarios, especially for the Perlin instances.

Comparing the acceptance gap approach and the time limit approach, we find that for the time

limit approach, we get better results for most of our instances. For those instances in which

the gap termination did result in better solutions, the ILP spent several hours to only reach a

slightly better solution compared to the time limit solutions, which each took 40 seconds. We

also have the advantage to know the calculation time in advance. If a conservation project

requires the algorithm to find solutions within a certain percentage to the optimum, then the

acceptance gap approach should be used. In all other cases, the time limit approach is more

suitable.

Both the ILP and Marxan also have their limitations. One such problem is the complexity of the

input data, a lot of different information is required for a complete instance, and realistically

sized instances consist of tens of thousands or even millions of variables. This is noticeable

in the ILP setup time and Marxan‘s preprocessing time. Additionally, due to this complexity,

measuring real geological data is only possible as a member of an official conservation project,

and there is only very limited real data available online. This increases the demand for syn-

thetic data creation. Due to the complexity, it is not trivial for synthetic data to approximate

realistic data.

Throughout the thesis, we considered the “best” solution to be the solution that minimizes the

cost while satisfying all demands to the conservation features and dependencies. In reality,

projects might prefer to move away from the cheapest solution to reach additional milestones

such as conserving another conservation feature that was not listed in the instance or select-

ing units that are more expensive but still preferred over the cheapest solution due to their

location, e.g., because they are better accessible. This can also be seen as a further limitation

to our implementation. The ILP can only work with what is given through the instance, but

ultimately, it is humans who decide where conservation actions should be implemented. The

algorithm should always only serve as a decision-supporting tool and should never be the only

deciding factor.

After comparing Marxan with the ILP as well as both ILP-solving approaches, we can now also

take a look at some additional observations. We saw that the Perlin instances resulted in con-

siderably higher solution values. This can be explained by overlaps between patches of high

feature concentration and patches of high cost. Since we need to satisfy 30 percent of each

conservation feature, we would be forced to select some rather expensive planning units.
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For higher boundary penalties, we get solutions in which the selected units form clusters.

Improving our data creation through Perlin noise gave us clusters in the solution for much

smaller boundary multipliers compared to random number instances. The reason for this

remarkably early clustering is the pattern of the Perlin noise distribution. There are larger

areas that have both similar conservation feature values and costs. To find efficient solutions,

we focus on finding patches in which areas with high conservation feature density and areas

with low cost density overlap. In these larger patches, several planning units get selected.

Therefore, our selection looks clustered, even for lower boundary penalties. Higher boundary

multipliers do not change much on the selection of Perlin instances, therefore, the solution

value does not increase much for higher boundary penalties.

6.2 Future work

With our examinations, we only investigated a few possible scenarios. Several other aspects

may be changed in our implementation or added from scratch, which would give us additional

insight into the topic and might even enable completely new future theses.

Since real, publicly available instances are very limited, synthetic data creation is a crucial

step in the development of such an algorithm. The data should test the algorithm for its cor-

rectness and give us an idea of what to expect from solution value and runtime for real data

instances. We made the first step towards more realistic data with the Perlin noise. However,

there is much more that might be done to generate better data, e.g., even more realistic cost

and conservation feature creation. In reality, the different conservation features could also

influence each other, e.g., in areas with large numbers of coral reefs, there would be few trees.

We could have conservation features that go well together and some that are not compatible

with each other. Such feature dependencies are not supported by our current data creation.

We also strictly limited ourselves to synthetic data in which the planning units are rectangles in

a rectangular nature reserve. Different unit shapes and nature reserve shapes might influence

the boundary calculations.

In our thesis, we implemented boundaries as a way to find solutions in which the selected

planning units form clusters. This is done by introducing a penalty for adjacent units that are

not both selected or excluded, resulting in the algorithm minimizing the frequency of such

occurrences. Alternatively, we could try to minimize the total area that contains all selected

planning units, hence increasing the compactness of our selection. Such solutions would not

necessarily be clustered, but all selected planning units would be close to each other instead

of spreading out across the entire nature reserve. In their paper, Beyer et al. mention sev-

eral different mathematical ways to implement compactness, e.g., by expanding the objective

function through the sum of all euclidean distances between any two planning units [2].
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We also did not investigate how different the runtime of our ILP might be when we make

changes to our acceptance threshold. The choice of the acceptance gap defines the runtime

for our ILP. Varying this gap may help to find the right balance between good results and a fast

runtime.

We had to abandon our experiments regarding the hierarchical multi-objective function due

to the high runtime and the disappointing results. However, we still believe that this imple-

mentation could be made useful with the right configurations or computing power.

7 Conclusion

In this thesis, we implemented an algorithm based on ILP to solve the optimization problem of

finding the best selection of planning units that minimizes cost while satisfying other criteria.

Our goal was to investigate whether our implementation can compete with the established

software Marxan.

We judge our algorithm to be an adequate alternative to Marxan based on our results, with

the time limit being even more efficient than the acceptance gap. Our implementation con-

sistently returned better solutions. For the gap termination tests, some instances with more

conservation features or higher boundary penalties significantly increased the runtime of the

algorithm. However, for the Perlin noise instances, the runtime of those test cases got much

shorter. Based on one exemplary real instance, we assume that the performance of real projects

would be better than the performance of random number instances but worse than the perfor-

mance of Perlin noise instances. Therefore, both the random number instances and the Perlin

instances are useful to form lower and upper bounds for the performance of a real instance of

the same size.

If the ILP uses the same runtime as Marxan, it still consistently finds better results than Marxan.

Therefore, we consider the ILP to be a more efficient algorithm. Through additional criteria, we

observed additional insights, such as more clustered selections for an increase in the boundary

penalty or altered solution values when dependencies were included. Both these additional

criteria come at the cost of an increase in runtime.
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A Full tables of solution values

ILP solutions

Gap: ≤ 0.05 % Time limit: 40 seconds

Instance Solution Value Gap to lower bound Solution Value Gap to lower bound

PU10000_F10_B0 3.726e06 0.0408% 3.725e06 0.0234%

PU20000_F10_B0 7.575e06 0.0179% 7.574e06 0.0102%

PU30000_F10_B0 1.145e07 0.010% 1.145e07 0.0099%

PU40000_F10_B0 1.564e07 0.0065% 1.564e07 0.0065%

PU50000_F10_B0 1.956e07 0.0076% 1.956e07 0.0044%

PU100000_F10_B0 3.934e07 0.0032% 3.934e07 0.0016%

PU200000_F10_B0 7.777e07 0.0420% 7.774e07 0.0011%

PU500000_F10_B0 1.959e08 0.0174% 1.959e08 0.0174%

PU1000000_F10_B0 3.914e08 0.0073% 3.914e08 (67) 0.0073%

PU10000_F10_B0_Perlin 6.906e06 0.0181% 6.905e06 0.0128%

PU20000_F10_B0_Perlin 1.472e07 0.0095% 1.472e07 0.0059%

PU30000_F10_B0_Perlin 2.010e07 0.0383% 2.010e07 0.0040%

PU40000_F10_B0_Perlin 2.261e07 0.0265% 2.260e07 0.0037%

PU50000_F10_B0_Perlin 2.578e07 0.0491% 2.577e07 0.0037%

PU100000_F10_B0_Perlin 8.658e07 0.0198% 8.656e07 0.0021%

PU200000_F10_B0_Perlin 1.453e08 0.0088% 1.453e08 0.0012%

PU500000_F10_B0_Perlin 3.791e08 0.0029% 3.791e08 0.0005%

PU1000000_F10_B0_Perlin 7.574e08 0.0014% 7.574e08 0.0014%

PU10000_F11_B0 3.913e06 0.0486% 3.913e06 0.0303%

PU10000_F12_B0 3.96e06 0.0478% 3.96e06 0.0337%

PU10000_F13_B0 4.100e06 0.0475% 4.100e06 0.0399%

PU10000_F14_B0 4.234e06 0.0467% 4.233e06 0.0349%

PU10000_F15_B0 4.137e06 0.0500% 4.137e06 0.0512%

PU10000_F16_B0 4.32e06 0.0474% 4.32e06 0.0608%

PU10000_F17_B0 4.331e06 0.0482% 4.332e06 0.0655%

PU10000_F18_B0 4.258e06 0.0509% 4.259e06 0.0754%

PU10000_F11_B0_Perlin 6.762e06 0.0182% 6.762e06 0.0107%

PU10000_F12_B0_Perlin 8.938e06 0.0197% 8.938e06 0.0108%

PU10000_F13_B0_Perlin 7.756e06 0.0327% 7.755e06 0.0190%

PU10000_F14_B0_Perlin 7.426e06 0.0227% 7.425e06 0.0118%

PU10000_F15_B0_Perlin 8.510e06 0.0390% 8.509e06 0.0195%

PU10000_F16_B0_Perlin 6.831e06 0.0234% 6.83e06 0.0110%

PU10000_F17_B0_Perlin 7.451e06 0.0377% 7.450e06 0.0199%

PU10000_F18_B0_Perlin 6.744e06 0.0353% 6.743e06 0.0259%

Table 4: ILP table containing all measurements for the planning units and conservation features
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Gap: ≤ 0.05 % Time limit: 40 seconds

Instance Solution Value Gap to lower bound Solution Value Gap to lower bound

PU10000_F10_B10 6.427e06 0.0386% 6.426e06 0.0202%

PU10000_F10_B20 8.611e06 0.0400% 8.611e06 0.0327%

PU10000_F10_B30 1.038e07 0.0431% 1.038e07 0.0431%

PU10000_F10_B40 1.180e07 0.0401% 1.180e07 0.0401%

PU10000_F10_B50 1.290e07 0.0486% 1.290e07 0.0475%

PU10000_F10_B60 1.367e07 0.0456% 1.367e07 0.0628%

PU10000_F10_B70 1.422e07 0.0492% 1.423e07 0.1296%

PU10000_F10_B80 1.460e07 0.0500% 1.461e07 0.1298%

PU10000_F10_B90 1.485e07 0.0415% 1.577e07 5.9072%

PU10000_F10_B100 1.502e07 0.0499% 1.587e07 5.5063%

PU10000_F10_B10_Perlin 7.156e06 0.0403% 7.156e06 0.0352%

PU10000_F10_B20_Perlin 7.381e06 0.0420% 7.381e06 0.0365%

PU10000_F10_B30_Perlin 7.586e06 0.0421% 7.586e06 0.0421%

PU10000_F10_B40_Perlin 7.784e06 0.0476% 7.782e06 0.0209%

PU10000_F10_B50_Perlin 7.979e06 0.0388% 7.978e06 0.0330%

PU10000_F10_B60_Perlin 8.173e06 0.0434% 8.171e06 0.0121%

PU10000_F10_B70_Perlin 8.365e06 0.0498% 8.366e06 0.0845%

PU10000_F10_B80_Perlin 8.555e06 0.0476% 8.557e06 0.1343%

PU10000_F10_B90_Perlin 8.743e06 0.0481% 8.744e06 0.1535%

PU10000_F10_B100_Perlin 8.927e06 0.0405% 8.936e06 0.2866%

PU10000_F10_B0_D 6.827e06 0.0401% 6.827e06 0.0287%

PU20000_F10_B0_D 1.365e07 0.0137% 1.365e07 0.0122%

PU30000_F10_B0_D 2.083e07 0.0087% 2.083e07 0.0086%

PU40000_F10_B0_D 2.815e07 0.0087% 2.815e07 0.0075%

PU50000_F10_B0_D 3.521e07 0.0073% 3.521e07 0.0068%

PU100000_F10_B0_D 7.048e07 0.0284% 7.046e07 0.0033%

PU200000_F10_B0_D 1.408e08 0.0448% 1.407e08 (127) 0.0109%

PU500000_F10_B0_D 3.519e08 0.0110% 3.519e08 (155) 0.0110 %

PU1000000_F10_B0_D 7.035e08 0.0127% 7.035e08 (420) 0.0127 %

PU10000_F10_B0_D_Perlin 6.959e06 0.0379% 6.958e06 0.0185%

PU20000_F10_B0_D_Perlin 1.478e07 0.0145% 1.478e07 0.0114%

PU30000_F10_B0_D_Perlin 2.016e07 0.0087% 2.016e07 0.0046%

PU40000_F10_B0_D_Perlin 2.274e07 0.0061% 2.274e07 0.0030%

PU50000_F10_B0_D_Perlin 2.593e07 0.0102% 2.593e07 0.0082%

PU100000_F10_B0_D_Perlin 8.686e07 0.0067% 8.686e07 0.0028%

PU200000_F10_B0_D_Perlin 1.455e08 0.0070% 1.455e08 0.0019%

PU500000_F10_B0_D_Perlin 3.792e08 0.0304% 3.792e08 (112) 0.0304 %

PU1000000_F10_B0_D_Perlin 7.576e08 0.0178% 7.576e08 (330) 0.0178 %

Table 5: ILP table containing all measurements for the boundary multiplier and dependencies
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Marxan solutions

10 runs 1M iterations 100 runs 10M iterations

Instance Solution Value Gap to ILP Solution Value Gap to ILP

PU10000_F10_B0 3.831e06 2.846% 3.769e06 1.181%

PU20000_F10_B0 7.909e06 4.423% 7.693e06 1.571%

PU30000_F10_B0 1.197e07 4.541% 1.166e07 1.834%

PU40000_F10_B0 1.648e07 5.731% 1.600e07 2.302%

PU50000_F10_B0 2.063e07 5.470% 2.002e07 2.352%

PU100000_F10_B0 4.205e07 6.889% 4.074e07 3.559%

PU200000_F10_B0 8.500e07 9.339% 8.131e07 4.592%

PU500000_F10_B0 2.278e08 16.284% 2.075e08 5.921%

PU1000000_F10_B0 4.746e08 21.257% 4.185e08 6.924%

PU10000_F10_B0_Perlin 7.207e06 4.374% 7.032e06 1.839%

PU20000_F10_B0_Perlin 1.591e07 8.084% 1.521e07 3.329%

PU30000_F10_B0_Perlin 2.195e07 9.204% 2.094e07 4.179%

PU40000_F10_B0_Perlin 2.396e07 6.018% 2.328e07 3.009%

PU50000_F10_B0_Perlin 2.697e07 4.657% 2.632e07 2.134%

PU100000_F10_B0_Perlin 9.604e07 10.952% 9.211e07 6.412%

PU200000_F10_B0_Perlin 1.625e08 11.838% 1.537e08 5.781%

PU500000_F10_B0_Perlin 4.384e08 15.642% 4.064e08 7.201%

PU1000000_F10_B0_Perlin 9.438e08 24.611% 8.324e08 9.902%

PU10000_F11_B0 4.048e06 3.450% 3.964e06 1.303%

PU10000_F12_B0 4.097e06 3.460% 4.017e06 1.439%

PU10000_F13_B0 4.249e06 3.634% 4.164e06 1.561%

PU10000_F14_B0 4.410e06 4.181% 4.307e06 1.748%

PU10000_F15_B0 4.287e06 3.626% 4.206e06 1.668%

PU10000_F16_B0 4.509e06 4.375% 4.393e06 1.690%

PU10000_F17_B0 4.510e06 4.109% 4.408e06 1.754%

PU10000_F18_B0 4.429e06 3.992% 4.340e06 1.902%

PU10000_F11_B0_Perlin 7.030e06 3.963% 6.866e06 1.538%

PU10000_F12_B0_Perlin 9.405e06 5.225% 9.144e06 2.305%

PU10000_F13_B0_Perlin 8.219e06 5.983% 7.964e06 2.695%

PU10000_F14_B0_Perlin 7.750e06 4.377% 7.564e08 1.872%

PU10000_F15_B0_Perlin 9.155e06 7.592% 8.838e06 3.866%

PU10000_F16_B0_Perlin 7.171e06 4.993% 6.986e06 2.284%

PU10000_F17_B0_Perlin 7.889e06 5.893% 7.646e06 2.631%

PU10000_F18_B0_Perlin 8.809e06 30.639% 8.505e06 26.131%

Table 6: Marxan table containing all measurements for the planning units and conservation features
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10 runs 1M iterations 100 runs 10M iterations

Instance Solution Value Gap to ILP Solution Value Gap to ILP

PU10000_F10_B10 6.788e06 5.633% 6.571e06 2.256%

PU10000_F10_B20 9.250e06 7.421% 8.855e06 2.834%

PU10000_F10_B30 1.127e07 8.574% 1.073e07 3.372%

PU10000_F10_B40 1.294e07 9.661% 1.221e07 3.475%

PU10000_F10_B50 1.445e07 12.016% 1.346e07 4.341%

PU10000_F10_B60 1.581e07 15.655% 1.432e07 4.755%

PU10000_F10_B70 1.687e07 18.552% 1.497e07 5.200%

PU10000_F10_B80 1.757e07 20.260% 1.548e07 5.955%

PU10000_F10_B90 1.846e07 17.058% 1.603e07 1.649%

PU10000_F10_B100 1.933e07 21.802% 1.615e07 1.764%

PU10000_F10_B10_Perlin 7.554e06 5.562% 7.269e06 1.579%

PU10000_F10_B20_Perlin 7.778e06 5.379% 7.493e066 1.517%

PU10000_F10_B30_Perlin 8.042e06 6.011% 7.673e06 1.147%

PU10000_F10_B40_Perlin 8.293e06 6.566% 7.893e06 1.426%

PU10000_F10_B50_Perlin 8.601e06 7.809% 8.081e06 1.291%

PU10000_F10_B60_Perlin 8.870e06 8.555% 8.283e06 1.371%

PU10000_F10_B70_Perlin 9.213e06 10.124% 8.467e06 1.207%

PU10000_F10_B80_Perlin 9.380e06 9.618% 8.661e06 1.215%

PU10000_F10_B90_Perlin 9.686e06 10.773% 8.846e06 1.167%

PU10000_F10_B100_Perlin 1.014e07 13.474% 9.038e06 1.141%

Table 7: Marxan table containing all measurements for the boundary multiplier

37


	Introduction
	Scientific Background
	Related work and problems

	Preliminaries
	Linear Programming
	Simulated Annealing

	Formulating Conservation Planning as an ILP
	The cost function
	Conservation features
	Boundary costs
	Dependent units
	The complete formulation

	Methods
	Implementation
	Data creation
	Configuring instances and tests

	Results
	Solution analysis
	Runtime analysis
	Real instances compared to synthetic instances
	A failed concept: Multi-objective boundary penalty

	Discussion
	Evaluation of results
	Future work

	Conclusion
	References
	Full tables of solution values

