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Abstract

Forming groups out of data is an essential problem in many areas, like psychology, biology and

computer science. With clustering, we can separate data points into distinct groups. There

are many clustering algorithms but in general, the clustering problem is NP-hard. The same

applies to anticlustering. In anticlustering, the goal is to minimize the dissimilarity between

anticlusters and maximize heterogeneity within each anticluster. Imagine you want to prepare

an exam with two different versions, so the students cannot copy from their neighbor. Your

data points are the possible questions in the exam and your anticlusters will be the actual

exams. The goal is to distribute the questions in a way, that the two different exams are

as similar in difficulty as possible. This is one example of a problem with two anticlusters.

We will analyze different polynomial-time algorithms for clustering and transform these into

algorithms, which solve the anticlustering problem in polynomial-time.
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1 Introduction

Distributing a pool of elements into groups is an essential problem in many areas, like psychol-

ogy, biology and computer science. However, there are many different goals that want to be

achieved by partitioning elements. Most often, a division into homogeneous groups is desired,

which corresponds to the problem of clustering. This implies, that elements within a group

should be as similar as possible, while they also should be as dissimilar as possible to elements

within other groups. The quality of these conditions can be measured in many different ways,

which we call the objective function of a given clustering algorithm. There already exists a

variety of clustering algorithms to solve these kinds of problems. However, there are some

cases, where high intra-group dissimilarity and low inter-group dissimilarity is desired. This

problem was first called anticlustering by Späth [1] and Valev [2].

A clustering problem is characterized by the number of clusters over which the data should be

distributed and the feature dimension. The clustering problem with K clusters and datapoints

with M dimensions is referred to as a K-clustering problem with an M-dimensional feature

space.

For clustering and anticlustering there are many objective functions, which determine the rules

on how to distribute the data into the clusters. The two objective functions we will look at

are diversity and dispersion. The diversity objective tries to minimize the sum of all distances

in one cluster. For the anticlustering case, it therefore tries to maximize this sum and is also

often referred to as ’Max Diversity’. The dispersion objective tries to minimize, respectively

maximize for the anticlustering case, the minimum distance between two elements in one

cluster. For the anticlustering case, this objective function is also often referred to as ’Max

Dispersion’.

The clustering problem and the anticlustering problem are both NP-hard problems, which

makes it difficult to find an optimal solution for bigger data [3]. Let’s take a 2-clustering

algorithm and try to find an optimal solution with the additional constraint, that the cluster

sizes should be equally big. This could be achieved through complete enumerations, which

would have a run-time of

O
� N�

N
2

��, (1)

with N being the number of data points. There are faster algorithms than complete enumera-

tion of clustering and anticlustering. Additionally, there are heuristics that try to find feasible

solutions as close as possible to the optimal solution in significantly less time. A heuristic that

will be compared to the algorithms presented in this thesis is bicriterion iterated local search

(BILS), which is explored in detail in Martin Breuers Bachelor Thesis [4].

There are special cases of clustering, for which there are polynomial-time exact algorithms. For
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example, Brucker [5] describes an algorithm for the 2-clustering special case with an arbitrary

amount of feature dimensions and the dispersion objective. The algorithm works for any

feature space, like for example the euclidean space. Because anticlustering is the opposite of

the clustering problem with regards to dispersion and diversity, it stands to reason that this

algorithm and several others described by Brucker [5] can be transformed into anticlustering

algorithms and still solve the problem in polynomial-time. In this thesis, we will focus on

transforming these algorithms and later perform an evaluation of the run-time.

We will implement three different algorithms for two special cases of anticlustering, which

solve the problems in polynomial time for a given objective function. With all these algorithms,

we assure a balanced distribution of data points, which means, that all anticlusters will contain

the same amount of elements. If the amount of data points is not divisible by the number of

clusters, we relax this constraint such that two clusters can deviate in their size by one element.
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2 Problem Specification

For anticlustering, there are different objective functions that can strongly influence the distri-

bution in the anticlusters. An objective function f : Π→ R+ aims to find a feasible partition

π∗ such that f (π∗) = max ( f (π)|∀π ∈ Π). A partition represents one possible distribution of

the elements over all clusters. The optimal partition π∗ is the one that maximizes the given ob-

jective function. The objective function associates a positive real number with each partition.

[4]

2.1 Preliminaries

In this section, we will go into detail on the preliminaries of this thesis. This thesis builds on the

clustering problem and the derived anticlustering problem, first coined by Späth [1] and Valev

[2]. An anticlustering problem is called K-anticlustering problem, when the desired number

of anticlusters is K . An (anti)cluster is a set ck of data points x1, . . . , xS ∈ X , where X is the set

of all N data points x1, . . . , xN . These data points will be represented through M-dimensional

vectors, which will follow the rules of the euclidean space. All following implementations will

focus on the euclidean space, where a distance between two points is defined as:

d(i, j) = || j − i||2 =
Æ
( j1 − i1)2 + · · ·+ ( jn − in)2 =

√√√ n∑
i=1

( ji − ii)2

We will use an example data set, which we want to anticluster to explain the general procedure.

First, we will describe the input data. The data will be given as an N x M data matrix, with N

rows for the data points and M columns for the dimension of the data.

x y

1 3 2

2 1 4

3 0 1

4 1 3

5 3 4

6 2 3

Table 1: six 2-dimensional datapoints in a 6x2 matrix

These N data points, or elements, need to be distributed over K clusters c, where k ∈ 1, . . . , K

represents the index of a cluster c. A partition π= (c1, . . . , cK) represents a complete distribu-

tion of N elements over K clusters, with every element being in only one cluster.
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⋃
ck = X ,
⋂

ck = ; (2)

The anticlustering problem can be modeled as a graph structure. This is used in the al-

gorithms by Brucker and Papenberg. Let G = (V, E) be an undirected graph with vertices

V = (v1, . . . , vN ) = X and a set of edges E = (e1, . . . , eL) that connect pairs of vertices. The

weight of an edge el between vertices i and j is the euclidean distance d(i, j) between these

points. The N xN matrix D is the distance matrix between all vertices vi ∈ V and describes the

dissimilarity between two elements.

D =



0 2.83 3.16 2.24 2 1.41

2.83 0 3.16 1 2 1.41

3.16 3.16 0 2.24 4.24 2.83

2.24 1 2.24 0 2.24 1

2 2 4.24 2.24 0 1.41

1.41 1.41 2.83 1 1.41 0


In many cases, there are multiple optimal solutions for one anticlustering problem. In figure

1, two optimal solutions for the dispersion objective of the 2-anticlustering special case are

shown. One of these solutions was generated using the adapted Brucker algorithm, examined

in section 3, which always generates optimal solutions, as proven in Brucker’s paper [5]. The

second one was then generated through trial and error since the optimal dispersion value

for this instance was given through the Brucker algorithm. In the figure, the two most distant

points switch their anticluster allocation. This does not influence the dispersion value, because

of how far away these points are from every other point.
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Figure 1: Different optimal solutions for a 2-anticlustering problem

The BILS heuristic and also the exchange method, which will be compared to the algorithms

implemented in this paper, are part of the anticlust package for R made by Papenberg et al.

[6]. We will use anticlust version 0.6.1 for this thesis. For the computations we will use a

computer with an Intel(R) Core(TM) i7-7700K CPU 4.20GHz processor and 16 GB RAM.

2.2 The Dispersion Objective

The first objective function we will look at is ’Max Dispersion’. In anticlustering, we want to

maximize the dispersion objective, which describes the minimum difference of two elements

in one anticluster, while in clustering the dispersion will be minimized [7]. The dispersion

objective is computed as the minimum distance between two vertices of the same anticluster

ck. The dispersion value of a partitioning π is therefore:

dispersion(π) = max
k∈1,...,K

min
i, j∈ck;i< j

di j (3)

A use case can be the assignment of students to learning groups [7] or the distribution of

questions on two versions of an exam. Since the maximum dispersion objective describes
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the worst-case pairwise dissimilarity over all groups, it is a good objective function for the

exam problem. This is due to the fact, that the questions should be as dissimilar as possible

in one exam, to cover as many different areas as possible for each student. In most cases,

the difference between two data points is described through the distance between these data

points, on some M-dimensional space. Because for most cases where we use the dispersion

objective only the distance is of interest, the actual dimension of the feature space has only a

limited impact on the run time of the algorithm by Brucker [5]. This is a convenient feature

of the dispersion objective since the dimension of the feature space can be an ejecting factor

for the run time of a possible solution.

2.3 The Diversity Objective

’Max Diversity’ is another objective function, which distributes data into anticlusters. It corre-

sponds to the sum of the distances within groups. Therefore it is an extension of the dispersion

objective, which aims to enhance the quality of the solution [8]. By maximizing these distances

we solve an anticlustering problem and when minimizing, the resulting partition will be a dis-

tribution in clusters. The diversity is computed as the sum of all the weights of edges with

vertices in one cluster ck:

diversi t y(π) =
K∑

k=1

∑
i, j∈ck;i< j

di j (4)

A use case for the anticlustering problem is the distribution of students into equal groups. Each

student has different attributes like age, gender and more, which influence the distribution

of the algorithm [9]. This problem could be used for classroom division, to get a diverse

environment for students to learn and grow in, or division into sports teams, to eliminate any

unfair advantage or disadvantage to other teams.
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3 2-anticlustering algorithm

In this section, we will elaborate on the 2-clustering algorithm, for an arbitrary M-dimensional

space with the dispersion objective function, as described in Brucker’s paper [5]. For the

clustering case, this problem can be solved in polynomial time. We will describe the necessary

changes for the anticlustering case, derive the run-time and test the algorithm on different sets

of data.

3.1 Introduction

The clustering algorithm takes advantage of a feature of graphs, namely bipartitioning. A sub-

graph Gsub = (V1, V2, E) of another Graph G = (V, E) with vertices V and edges E is bipartite,

if ∀ edges e = (v, w) ∈ E | v ∈ V1 and w ∈ V2 or w ∈ V1 and v ∈ V2. This means, that all edges

are only between V1 and V2, and no edges are within one set. To solve the clustering problem,

Brucker [5] proposed an algorithm, which constructs bipartite subgraphs Gi = (Ai , Ci , E) from

which the optimal partitions B∗1 and B∗2 can be derived.

Figure 2: Incomplete bipartite graph https://commons.wikimedia.org/wiki/File:Simple-bipartite-graph.svg

B1∗ ←−
⋃

Ai , B∗2←− V B∗1 (5)

The general idea of the algorithm is to put elements in different clusters if they are far away

from each other, therefore ensuring that these distances do not influence the dispersion value.

At the beginning he sorts the distances between all vertices v1, ..., vr such that

di1 j1 ≥ ...≥ dir jr . (6)

After that, he describes an algorithm for computing these bipartite subgraphs and proves the

polynomial-time solvability for the 2-clustering case. For the proof, he uses the distance be-

tween two vertices to measure a lower bound for the value of the objective function. This is a
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crucial realization for the anticlustering problem, because with this if one could easily maxi-

mize the dispersion instead of minimizing it, one would get an optimal solution regarding the

dispersion objective of the anticlustering case.

The algorithm by Brucker is not the only clustering algorithm that explores the idea of graph

partitioning to find a polynomial-time algorithm. Caraballo et. al. [10] describe an algorithm

that uses the same idea however, they use a maximum spanning tree to compute the optimal

solution.

3.2 Implementation

For the anticlustering case, the algorithm has to be modified. Due to the fact, that we want

to maximize the dispersion, instead of minimizing it, a possible way could be to reverse the

order of distances to

di1 j1 ≤ ...≤ dir jr .

Just with this modification, the algorithm produces optimal solutions for the anticlustering case

in regards to the dispersion objective. The algorithm works as follows: First, the distances will

be sorted as explained before and the first i and j will be added to A1 and C1 respectively. The

following implementation is written in R and describes the first setup for the algorithm.

d <- d[order(d$d),]

i <- 1

j <- 1

Ai <- list(d[i, 2])

A <- list(Ai)

Ci <- list(d[j, 3])

C <- list(Ci)

k <- 2

The variable k describes the current amount of Ai and Ci plus 1. It is used to instantiate new

Ai and Ci if the right conditions are met. The dataframe d, contains all the distances between

two elements and their indices. d[t, 1] is the distance between the elements written in d[t, 2]

and d[t, 3].
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distances i j

0.52343 30 72

0.59991 2 44

0.91728 2 13

2.00134 17 99

... ... ...

The lists A and C itself will contain lists, which will represent the Ai and Ci . The algorithm of

Brucker [5] initially uses a graph notation to solve the problem however, this only benefits for

the proof that the algorithm solves the special case in polynomial time and not for the actual

implementation. Therefore we will not use graphs for the implementation of the anticlustering

version. The algorithm runs, until every i and j is ether in A or C and until that condition is

met, it iterates over all distances di2 j2 to dir jr . The actual decision, how i and j are distributed

over which Ai or Ci , is determined by five if statements. These statements will not be explained

in detail, because the most interesting is the first one and the others just move the elements

between the Ai and Ci under certain conditions, which are listed below in table 3.2. The first

if statement can be described as follows:

If the current i and j are both not yet in any Ai or Ci , i will be added to a newly instantiated

Ak and j to Ck. After that, the counter k is set higher. Here is the implementation of this if

statement in R:

contained <- FALSE

for(var in 1:k){

if(d[v, 2] %in% A[[var]] | d[v, 2] %in% C[[var]] |

d[v, 3] %in% A[[var]] | d[v, 3] %in% C[[var]]){

contained = TRUE

}

}

if(!contained){

A[[k]] <- d[v, 2]

C[[k]] <- d[v, 3]

k <- k + 1

next

}

All the if statements are listed here in a simplified version:

1 If iv and jv are neither in an Ai or Ci for 1≤ i ≤ k, then Ak← (iv); Ck← ( jv); k++
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2 if iv ∈ As, jv ∈ At or iv ∈ Cs, jv ∈ Ct for some s 6= t then As ← As ∪ Ct ; Cs ← Cs ∪ At ;

At = Ct ← ∅
3 if iv ∈ As, jv ∈ Ct or iv ∈ Cs, jv ∈ At for some s 6= t then As ← As ∪ At ; Cs ← Cs ∪ Ct ;

At = Ct ← ∅
4 If iv ∈ As and jv nowhere then Cs← Cs ∪ ( jv) (respectively if i and j are swapped)

5 If iv ∈ Cs and jv nowhere then As← As ∪ ( jv) (respectively if i and j are swapped)

In the original algorithm, Brucker describes it with a graph and also adds edges in every if

statement, which we omitted since it had no impact on the computation.

However, there is one issue with the Brucker algorithm that we have not touched on since now.

The algorithm does not necessarily distribute the data into equal-sized (anti)clusters. This is

because of statements 4 and 5, since in these statements only one of i and j is distributed into

a cluster. This is a problem, because in applications we mostly want clusters with equal size,

for example for test-question distribution. Also the BILS heuristic always only looks at equal-

sized groups, therefore a comparison would be pointless. Since the dispersion objective is

being used, we are only interested in the smallest distance between two elements in the same

cluster, therefore there is a simple solution, where we change the cluster assignment of some

elements which do not influence the dispersion objective. After the algorithm is complete, it

returns the cluster distribution as a vector. Then we count the elements in the clusters and if

they are not equal we will execute this R code:

disp <- dispersion_objective(Vdata[,1:m], cppvector)

for(c in 1:length(cppvector)){

if(cppvector[c] == 1){

cppvector[c] = 2

newDisp <- dispersion_objective(Vdata[,1:m], cppvector)

if(newDisp < disp){

cppvector[c] = 1

}

}

if( (table(cppvector)[1] -1) <= table(cppvector)[2]){

break

}

}

This is now for the case that the anticluster with label 1 is bigger than the other one. The func-

tion dispersion_objective computes the dispersion objective for the current instance cppvector
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in O(N2). If the new dispersion is smaller than the current dispersion, then the current ele-

ment will not change its cluster. This code guarantees an equal anticluster distribution with

optimal dispersion and has an overall run time of O(N3).

The complete implementation as well as the version written in C++ can be found on the Git

repository, which is linked at the end of this thesis (Chapter B). An implementation in C++ is

used to later compare this implementation with algorithms from the anticlust package, which

are written in C. However the R implementation is easier to understand, therefore all code

excerpts in this thesis are written in R. The reason we also implemented a C++ version, is that

C and C++ are considerably faster than R. So to get comparable results of algorithms, they

have to be in the same language. In table 2 you can see the time difference between R and

C++ for different amounts of data points.

datapoints R - Time in sec. C++ - Time in sec.

10 0.002447897 0.000012944

100 2.111562505 0.001984816

Table 2: Time differences - R vs. C++

3.3 Conclusion

The anticlustering version of the Brucker algorithm also solves the special case for two an-

ticlusters in polynomial time. The run time of the algorithm depends on multiple factors.

First, the number of the distances between all possible pairs of elements, which are
�N

2

�
many.

However, the for-loop over all distances only runs
�N

2

�− (N − 1) times, because it stops if all

i and j are distributed in either A or C. Every time a vertex is not contained in A or C, it will

be added to either one and because every vertex is contained N times in the distance-matrix,

every vertex is distributed at the latest after
�N

2

�− (N −1) loops. The second factor for the run

time is the maximum number of Gi generated. The maximum amount of Gi can be
N
2

, since

a new Gi is only created, if the vertices i and j of the currently examined distance are neither

in an Ai or Ci . Since a vertex can only be in one Ai or Ci the worst case would be if the first
N
2

distances contain all N elements. The sorting algorithm for the distances has a run time of

O(
�N

2

� ∗ log(
�N

2

�
)). This combined with the other loops and the balancing of the cluster sizes

the run-time of this algorithm is
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O((
�

N
2

�
− (N − 1)) ∗ (((N − 1)2

2
+

N − 1
2
) +
�

N
2

�
∗ log(
�

N
2

�
) + N3)

= O((1+
N ∗ (N − 1)

2
− N) ∗ ((N − 1)2

4
+

n− 1
2
) +
�

N
2

�
∗ log(
�

N
2

�
) + N3)

= O((−N +
N2 − n

2
+ 1) ∗ (N2 − 2N + 1

4
+

2N − 2
4
) +
�

N
2

�
∗ log(
�

N
2

�
) + N3)

= O((−N +
N2 − N

2
+ 1) ∗ N2 − 1

4
+
�

N
2

�
∗ log(
�

N
2

�
) + N3)

= O(
N4 − 3N3 + N2 + 3N − 2

8
+
�

N
2

�
∗ log(
�

N
2

�
) + N3)

= O(N4)

(7)

3.4 A different approach

The issue with the transformation of the implementation of the algorithm from Brucker is that

it produces more bipartite mappings than it has to. An optimal solution can also be derived

much faster with the approach of Papenberg, which he developed during the supervision of

this thesis. The idea is the same as Brucker’s, to use bipartite graphs to separate the vertices

with the smallest distances. However, in Papenbergs implementation the algorithm terminates

after the x smallest distances are no bipartitioning anymore, for a graph Gi = (V, E)with edges

E of the x smallest distances.

The procedure of the algorithm is as follows:

1. Initiate an empty, unweighted graph G = (V, E)

2. Compute the minimial distance between all elements

3. Add all elements that have the distance D between them as nodes in V

4. Add an edge e to E between all nodes that have the minimum distance D between them

5. check if the graph is bipartit

5.1. If no: the max dispersion has been found and every unassigned node can be sorted

to a random cluster

5.1. If yes: set D to the next lower distance and restart at (4)

The algorithm repeats steps (3)-(5) for a maximum of
�

N
2
− 1
�

times because after that every

vertex is already part of a pair in E. A bipartitioning can generally be found in O(N ∗ log(N)),

therefore the algorithm has a run-time of
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O

��
N2

2
− N

�
∗ log(N) +
�

N
2

�
∗ log
��

N
2

���
= O
�

N2 ∗ log(N) +
�

N
2

�
∗ log
��

N
2

���
, (8)

with O
��N

2

� ∗ log
��N

2

���
being the run time of a sorting algorithm for the distances. This is con-

siderably faster than the transformed implementation of Brucker for the anticlustering case.

In figure 3 the runtime of the algorithms for growing data sets is visualized. The data used for

this analysis was 2-dimensional normal distributed. For each amount of data points, the mean

of ten iterations is used to determine the run time. For a small number of data points, the algo-

rithm of Brucker is faster, however, with about 120 data points and more, the implementation

of Papenberg is faster due to the slower growth of the curve.

Figure 3: A run-time comparison between the Brucker and Papenberg implementation

3.5 Proof of correctness

The dispersion objective concerns the minimum distance between two elements in an anticlus-

ter. Therefore all other distances in an anticluster are irrelevant. Through this property, it is

possible to solve special cases in polynomial time. The algorithm of Papenberg and also the

algorithm of Brucker use this property. Papenbergs algorithm goes from the smallest distance

between two elements to the largest distance. However, it terminates before it can reach the

largest distance. It terminates if no bipartitioning can be found between all elements that are

currently looked at. These elements are all previous elements and the ones with the current

minimum distance between them. Therefore one may conclude, that the algorithm terminates

after three or more elements are connected in a circle, as seen in figure 4, made by Martin Pa-

penberg.
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Figure 4: A graph, that is not bipartite anymore

All other points can be distributed to any cluster. The check for a bipartitioning is polynomial-

time solvable since we only need to check all edges. If then some edges form a circle, it is no

longer a bipartitioning. However a partitioning into three or more groups is not polynomial-

time solvable, therefore it is not possible to find an optimal solution for the K-anticlustering

case with an M-dimensional feature space in polynomial time.
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4 K-anticlustering algorithm

For the K-clustering problem in the 1-dimensional Euclidean space, Brucker [5] describes two

polynomial-time algorithms. Both algorithms use the shortest path problem for a network W

= (V, E, d) with vertices V, edges E and distances d as basis and only differ in the calculation of

the distances d. For the anticlustering case, we will look at a solution for the max dispersion

objective because the algorithms of Brucker can not be transformed into an anticlustering

algorithm. The algorithm of Brucker searches for a point on the number line, where the data

can be split into the right cluster and the left cluster. This is not possible for the anticlustering

case, since the anticlusters can not be separated in left and right but rather in alternating

order.

4.1 Introduction

The anticlustering algorithm we will evaluate maximizes the dispersion of the data. On the 1-

dimensional euclidean space, this is trivial, because every point has up to two direct neighbors

- left and right. This is advantageous for us because in the dispersion objective, we are just

interested in the minimum distance between two elements in one group. This objective is

maximized when we divide the anticlusters alternately among the data points. For the 2-

anticlustering case and ascending sorted data points:

data points 0.234 0.456 0.491 0.71 ...

cluster 1 2 1 2 ...

For the K-clustering case and ascending sorted data points:

data points 0.234 0.456 0.491 ... 1.221 1.258 1.4 ...

cluster 1 2 3 ... K-1 K 1 ...

4.2 Implementation

An algorithm for distributing the data points in ascending order to the anticlusters, is solvable

in O(N) if we exclude the run time of a sorting algorithm. The following implementation of

this algorithm is written in R.

exact_dispersion_one_dim <- function(Data, K){

Data <- Data[order(Data$V1), ]

Data$anticluster <- rep_len(c(1:K), nrow(Data))
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return(Data)

}

The dataframe ’Data’ contains the datapoints and k is the number of desired anticlusters. The

function returns a dataframe with column ’V1’ being the values of the data points in ascending

order and column ’anticluster’ being the index of the corresponding anticluster.

V1 anticluster

1 0.87 1

2 0.91 2

3 1.03 1

... ... ...

N 5.56 2

Table 3: The returned dataframe with K=2

4.3 Proof of correctness

To prove this method, we will first look at the 2-anticlustering problem in the 1-dimensional

euclidean space. Assume the anticluster distribution sorts two neighboring elements x and y

to the same cluster. There are two possibilities following this distribution.

1. d(x , y) is the minimum distance which determines the result of the dispersion problem

2. d(x , y) is not the minimum distance

For the second case, it would not matter if x and y are in different anticlusters or the same one

because they do not influence the result of the diversity problem. In the first case however, it

would influence the dispersion and therefore would result in a higher dispersion value if the

elements were in different anticlusters.

For the K-anticlustering problem, the same rules hold. Imagine the data points are alternately

distributed over the K anticluster. The dispersion value is now given through two points i and j,

which are allocated to the same anticluster ck. Given through the alternating distribution there

are K−1 data points pl between i and j with 1≤ l ≤ K−1 which are all in different anticlusters.

The interval between i and j are therefore contains all K anticlusters and anticluster ck is

represented two times through i and j. If one would now switch the cluster allocations of

either i or j, there are two possibilities:

1. i or j switch with a data point within the interval
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2. i or j switch with a data point outside the interval

If the first case is true, the dispersion value decreases because now i and j are closer to each

other. In the second case, there is now a new anticluster, which is represented by the points

inew and jnew two times in the interval between i and j. The dispersion is now given by the

distance of these two elements and is thus necessarily lower than before. This new dispersion

value is now the upper limit and the allocation of all other data points can only reduce the

dispersion value and not increase it.

This property only works with elements on the number line, or in other words on a 1-dimensional

feature space, because an alternating distribution is in higher dimensions not feasible since it

depends on the angle of which one views the data. It is also not possible to reduce the dimen-

sions using the distance between elements. For example, for three points in the 2-dimensional

space, it is not possible to reduce them onto 1-dimension regarding their distances unless they

are on a straight line in the 2-dimensional space.

4.4 Conclusion

For the 1-dimensional euclidean K-anticlustering problem, we can generate optimal solutions

for the dispersion objective O(N + N ∗ log(N)) with n being the number of data points and

N ∗ log(N) being the run time of an arbitrary sorting algorithm.
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5 Comparison with BILS

In this section, we will compare the examined algorithms for the special cases of anticlustering

with heuristics and a complete enumeration algorithm. The tests will be regarding the run time

and accuracy. Accuracy is especially interesting when compared with the heuristics because

it could be that the heuristics also produce an optimal solution for the special cases. The

bicriterion iterated local search (BILS) heuristic by Brusco et al. [11], further examined and

implemented by Breuer [4] aims to optimize diversity and dispersion at the same time. BILS

can be used through the anticlust package by Papenberg et al. [6] and is written in C. The

method-call in R looks like this:

bicriterion_anticlustering(Vdata, 2)

Vdata is a datamatrix that contains the datapoints as rows and features as columns. The BILS

heuristic can also use restarts to get closer to an optimal solution, however, this requires more

time. In the following examinations, we are using no restarts. The second argument passed

to the function represents the number of anticlusters.

For BILS and the other algorithms, we use the method

dispersion_objective(Vdata, anticlusters)

which returns a value to evaluate the quality of the solution in regard to the dispersion ob-

jective. The parameter "anticlusters" is a vector that contains the grouping for the different

anticlusters. The algorithms written for this paper all compute an optimal solution, therefore

we only use this function to examine the accuracy of BILS.

All examinations and comparisons will be made with normal-distributed data points, unless it

is mentioned otherwise.

5.1 2-anticlustering

In figure 5 the time difference between BILS and the Brucker algorithm is illustrated. Notably,

the BILS version is considerably slower than the Brucker version. On top of that, the BILS

algorithm is a heuristics that does not guarantee an optimal solution.
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Figure 5: A run-time comparison between BILS and the Brucker algorithm

For figure 5 we took the average of 10 iterations for every number of data points. Notably,

the BILS algorithm has much higher fluctuations in the run-time than the adapted Brucker

algorithm made for this paper. The times BILS finds an optimal solution average around 50

percent and does not improve or deteriorate for an increasing amount of data points. Breuer

[4] states in his bachelor thesis that the quality of solutions of the BILS heuristic decreases

with more data points. However, it seems that the number of times that BILS finds an optimal

solution does not change, only the quality of suboptimal solutions is impacted by the number

of data points. In section A a detailed comparison between BILS and the implementation of

Breuer’s algorithm is listed.

Since the Brucker algorithm has to sort the distances between all data points in ascending

order, the run time is also partly dependent on the sorting of the distances and the computation

of the distances. This can be seen in figure 6, which describes the number of feature dimensions

on the x-axes. This run time comparison is made with an instance of 50 data points and each

observation of feature dimensions is made of the average over five iterations. With about 100

feature dimensions and more, BILS performs better than the Brucker algorithm. However,

this margin changes with the number of data points, as seen in table 4. The values seen in

table 4 are estimated by taking the average out of ten iterations over each amount of feature

dimension. The run-time is very inconsistent over the different iterations, as seen in figure

6, therefore the values in table 4 are only approximations after whom the BILS algorithms

perform better in at least 50% of the cases. For higher amounts of data points the Brucker

algorithm is better if the number of feature dimensions is high. This happens, because the

Brucker algorithm performs generally much better than the BILS heuristic for larger amounts

of data points, as seen in figure 5, which counteracts the exponential amount of distances the
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Brucker algorithm has to look at.

Figure 6: A run-time comparison between BILS and the Burcker algorithm with regard to feature dimensions of

an instance with 50 datapoints

Datapoints 10 50 100 150 200 250

Dimensions 10 115 260 314 376 492

Table 4: The estimated threshhold, after which BILS performs better than Brucker

5.2 K-anticlustering

For the 1-dimensional euclidean problem the run time proceeds similarly to the 2-anticlustering

case. For an expanded comparison the exchange method is included in the evaluation. The

exchange method is also an approximation algorithm and can be called through the anticlust

package in R.

anticlustering(Vdata, K, objective = "dispersion", method = "exchange")
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Figure 7: A run-time and dispersion comparison between algorithms for the 1-dimensional Euclidean space with

five anticlusters

Figure 7 shows the 5-anticlustering problem with ten iterations for each amount of data points.

The data points are normal distributed with zero mean and variance of ten. The BILS heuristic

is considerably slower when the number of data points is dividable by the number of anticlus-

ters. That means that the data points can be separated into anticlusters of the same size. This

is also visible in figure 7, which is for the 5-anticlustering case and has "bumps" at every fifth

value. Breuer encountered this phenomenon in his bachelor thesis too and explained, that

many partitions of the corresponding Pareto set are not unique [4]. That means, that they

share the same diversity and dispersion with other partitions. When the clusters can be sepa-

rated into equal size it is more likely that the partitions are the same or at least similar, which

leads to the fact that they are all stored in the Pareto set which again slows down the algo-

rithm. Breuer also found that if the data points are integers, the accuracy of the BILS heuristic

drops. This also occurs every time the data points can be separated into equal sized anticlus-

ters, as seen in figure 7, which shows the dispersion for different amounts of data points for

the 5-anticlustering 1-dimensional euclidean special case. For small amounts of data points

the BILS heuristic finds optimal solutions most of the time. However with fifty data points and

more the pattern develops, where the diversity is considerably worse when the number of data

points is dividable by the number of clusters.
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The run time of the exchange algorithm does not seem to be influenced by the amounts of

anticlusters. However, the BILS heuristic has a high fluctuation of the run time for different

amounts of anticlusters as seen in table 5.

Clusters 2 3 4 5 6 7 8

Alternating 0.00009 0.00008 0.0001 0.00008 0.0001 0.0002 0.00009

Exchange 0.0023 0.0024 0.0021 0.0020 0.0020 0.0019 0.0019

BILS 0.0437 0.0469 0.0805 0.0926 0.0677 0.0694 0.0695

Table 5: Time consumption for different amounts of clusters (average out of 100 each)
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6 Diversity

The algorithms presented in section 2 and section 3 all focus on the dispersion objective.

However, the diversity objective has many use cases, due to its balanced data distribution.

Therefore it would be very beneficial for a polynomial special case to exist. The dispersion

objective has the advantage, that it only depends on the minimum distance between two el-

ements in one cluster, whereas the diversity objective the sum of all distances on one cluster

contemplates. This is a big issue in regard to finding a polynomial-time solvable special case.

There are possibilities to compute the diversity objective in polynomial time with dynamic

programming, however, this is only pseudo-polynomial time, by balancing the runtime with

memory allocation [12]. For the clustering problem, there are also special cases that can be

solved in polynomial time for the diversity objective, like ℓ-Diversity, with ℓ being the mini-

mum number of elements in one cluster, described by Li et. al. [13]. This algorithm is optimal

for the 2-clustering problem and uses bipartite matching.

6.1 2-anticlustering

Although the BILS heuristic has no approximation factor, it usually generates good approxi-

mations for special cases with either a small k or a small feature space. The fact, that the BILS

heuristic tries to optimize diversity and dispersion at the same time, lets BILS find more so-

phisticated solutions than, for example, Papenberg’s algorithm from section 3.4. However, the

algorithm by Brucker also approximates the diversity objective. In figure 8 a direct comparison

between the BILS heuristic and the Brucker algorithm is displayed.
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Figure 8: Comparison between BILS and Brucker for the diversity objective with 100 4-dimensional datapoints -

sorted by diversity of the Brucker algorithm

The results of BILS and the Brucker algorithm are always close together, however, the solution

of the BILS heuristic is almost always a little bit better. In table 7, the BILS heuristic and the

Brucker algorithm are compared for different amounts of data points regarding the diversity

objective. The reason BILS finds better solutions, especially for higher amounts of data points,

is due to the balancing of the anticlustering sizes we have to do for the Brucker algorithm. If

we would not balance the anticluster sizes, the Brucker algorithm would find a better solution

for the diversity objective in 60 percent of the cases and only in 20 percent it would be worse

than BILS. However, the solutions of the BILS heuristic and the Brucker algorithm are always

very close. Therefore the Brucker algorithm is, next to always finding an optimal solution for

the dispersion objective, a good approximation algorithm for the diversity objective. It is not

as good as the BILS heuristic since we have to balance the anticluster sizes, but it may be

possible to find solutions that are as good as the ones BILS finds, or even better if one would

alter the algorithm for balancing the anticluster sizes to also consider the diversity objective.

However, whether the algorithm has an approximation factor requires further examination.

The Brucker algorithm is significantly slower than the Papenberg algorithm, but Papenberg’s

algorithm does not approximate the diversity objective, because after a bipartition is found, it

divides the remaining elements into random clusters.
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6.2 K-anticlustering

The algorithm for the 1-dimensional anticlustering special case optimizes diversity. The alter-

nating distribution of the data points is the best distribution for the diversity objective in the

1-dimensional special case. If we have an instance X = (1,3,6, 9,10, 11) of six 1-dimensional

data points and are trying to distribute them over two anticlusters, the optimal solution for

the diversity and dispersion objective would be:

Datapoints 1 3 6 9 10 11

Anticlusters 1 2 1 2 1 2

This distribution has a diversity value of:

|6− 1|+ |10− 1|+ |10− 6| + |9− 3|+ |11− 3|+ |11− 9| = 34

If one would now change the anticluster distribution, there would be two values in each anti-

cluster, that are closer together.

Datapoints 1 3 6 9 10 11

Anticlusters 1 1 2 2 1 2

This distribution has a diversity value of:

|3− 1|+ |10− 1|+ |10− 3| + |9− 6|+ |11− 6|+ |11− 9| = 28

The change does not always make the diversity result worse, however, it cannot make it better

than the alternating distribution. Assuming this does not hold for the K-dimensional case and
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we have an alternating distribution and switch two elements of clusters C1 and C2, then∑
x1,y1∈C1

x1<y1

d(x1, y1) +
∑

x2,y2∈C2
x2<y2

d(x2, y2) + · · ·+
∑

xK ,yK∈CK
xK<yK

d(xK , yK)

<
∑

x1,y1∈C1
x1<y1

x1=y1 6=x1i

d(x1, y1) +
∑

x1∈C1
x1 6=x1i

d(x1, x2 j
) +
∑

x2,y2∈C2
x2<y2

x2=y2 6=x2 j

d(x2, y2) +
∑

x2∈C2
x2 6=x2 j

d(x2, x1i
)+

∑
x3,y3∈C3

x3<y3

d(x3, y3) +
∑

x4,y4∈C4
x4<y4

d(x4, y4) + · · ·+
∑

xK ,yK∈CK
xK<yK

d(xK , yK)

⇔ ∑
x1,y1∈C1

x1<y1

d(x1, y1) +
∑

x2,y2∈C2
x2<y2

d(x2, y2)

<
∑

x1,y1∈C1
x1<y1

x1=y1 6=x1i

d(x1, y1) +
∑

x1∈C1
x1 6=x1i

d(x1, x2 j
) +
∑

x2,y2∈C2
x2<y2

x2=y2 6=x2 j

d(x2, y2) +
∑

x2∈C2
x2 6=x2 j

d(x2, x1i
)

⇔ ∑
x1∈C1

d(x1, x1i
) +
∑

x2∈C2

d(x2, x2 j
)<
∑

x1∈C1
x1 6=x1i

d(x1, x2 j
) +
∑

x2∈C2
x2 6=x2 j

d(x2, x1i
)

(9)

This inequality however is not right, since it is not possible to increase the diversity value.

In figure 9 one can see, that the number of elements that are closer and further away from

the switched points even out. One anticluster may have an increase in its sum of distances,

however, then the other anticluster must have a decrease. Either this evens out the increase

in the other anticluster or even exceeds it.

Figure 9: Impact of change of the anticluster allocation of i and j
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7 Discussion

We have now evaluated and implemented three different algorithms for this thesis. First the

algorithm of Brucker [5] uses the bipartitioning of graphs to find an optimal solution for the

dispersion objective and an approximation for the diversity objective for the 2-anticlustering

case with an arbitrary amount of dimensions. For the same special case, the algorithm devel-

oped by Papenberg also optimizes the dispersion objective, however, it does not approximate

the diversity objective. On the other hand, the algorithm by Papenberg is considerably faster

than the algorithm of Brucker. The dispersion objective does not necessarily create balanced

distributions of data points. It is for example possible to get a solution as shown in figure 10

with the Papenberg algorithm. This solution uses the Papenberg algorithm until there is no

bipartitioning anymore. After that, the remaining data points are sorted manually to get this

distribution. This solution is basically a distribution in clusters, with some deviations. The

algorithm by Brucker however ensures a more diverse distribution. If one concerns the ap-

plications of these algorithms for the distribution of questions in tests made for psychological

research with people, it is desired to have high diversity, but maybe also high dispersion to

ensure that there is not one question that is too similar to another test-set [14]. Therefore an

algorithm that at least approximates diversity and dispersion - like the BILS heuristic - is desir-

able. For these cases the algorithm by Brucker would be more useful, however, if the data gets

very big it might be beneficial to use the algorithm by Papenberg due to its fast performance.

After finding a case where the smallest x data points do not form a bipartitioning anymore, the

algorithm sorts the rest of the data points into random clusters. Therefore it is rather unlikely

to get a distribution like in figure 10. Especially for big amounts of data, the distribution will

be very diverse due to its randomness.

The 2-anticlustering special case is also a case, which could find many applications. For ex-

ample, as stated above, distributing test questions into two tests, one before and one after a

psychological experiment. The fact that the number of dimensions of the feature space has a

limited impact on the run time also contributes to the applicability of the special case, because

data, like test questions, may have many more distinct features that determine their allocation.
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Figure 10: A possible solution for the algorithm of Papenberg with maximizes the dispersion

The algorithm by Brucker [5] is an algorithm originally designed for the 2-clustering special

case. However, it is not always the case that the anticlustering version is just the opposite

of the clustering problem. This can be seen through the algorithm for the 2-clustering case,

described by Bock [15], with the objective function:

max
� |c1| ∗ |c2|

N
∗ || x̄c1

− x̄c2
||2
�

with clusters c1 and c2 and x̄ =
∑ x i

N

Bock uses a hyperplane to separate the data, which is generated through (M-1) data points.

With this method, there are (2M −2)∗ �NM� partitions with M being the dimension of the data.

However, this method is not viable for the anticlustering case due to the data points not being

separable through a hyperplane in the anticlustering case. The objective function described by

Bock is basically the diversity objective function because it sums up all the distances. It may be

possible to find another polynomial algorithm that solves this special case with this objective

function, but it is difficult to exclude partitions from the beginning without looking at them.

This is something Bock’s algorithm is able to do for the clustering version.

The K-anticlustering special case with the 1-dimensional euclidean feature space is more lim-

ited with regard to finding applications. For this special case, we described an algorithm that

distributes the anticlusters over the ascending sorted data in alternating order. This algorithm

computes the solution in linear time, plus the run time of a sorting algorithm, which is typically

O(N ∗ log(N)). It is the fastest algorithm of all the algorithms presented in this paper. In addi-

tion, it also optimizes diversity and dispersion at the same time. It is questionable if it is even

possible to find an algorithm that optimizes both objective functions for the 2-anticlustering

case in polynomial time, because the two objective functions differ so much in their require-
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ments, that it is difficult to find an optimal solution for both in higher dimensions. However, in

the process of making this thesis, we did not find any research that explicitly proves, that it is

not possible for higher dimensions with two clusters and we have also seen that the algorithm

by Brucker, in fact, does approach an optimal solution for the diversity objective, therefore it

might be feasible to connect the algorithm of Papenberg with an algorithm that finds an opti-

mal solution for the 2-anticlustering special case in regards to diversity. This algorithm could

start after no bipartitioning can be found anymore, since then an optimal dispersion value is

already found.

For the 1-dimensional case, it will be difficult to find a research area that uses this special case.

It is usually the case that data has multiple dimensions because otherwise, the data is just too

simple to extract any meaningful information out of it.
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A Tables

In the figure below, each row is calculated by the average of 100 iterations with normal dis-

tributed data points.

dimensions data points Brucker - dispersion Brucker - time BILS - dispersion BILS - time

2 10 7.167087896 0.001639712 7.143645550 0.001765275

2 50 1.705965342 0.003341427 1.705965342 0.006899939

2 100 1.020978 0.008285217 1.020978 0.03462168

3 10 11.71546448 0.001525605 11.70491717 0.001750903

3 50 4.516541803 0.003376303 4.507480624 0.006655586

3 100 3.09389271 0.00839741 3.08797530 0.03215027

4 10 14.731321 0.001474364 14.686186 0.001507246

4 50 7.305770 0.003208127 7.303520 0.006120982

4 100 5.554850 0.008960285 5.549420 0.03161701

5 10 18.453977 0.001516407 18.401895 0.001555934

5 50 10.063395 0.002936928 10.051350 0.005845835

5 100 8.050842 0.008294218 8.031285 0.03103205

6 10 22.314658 0.001266215 22.282723 0.001547663

6 50 12.982315 0.003827138 12.944430 0.005958827

6 100 10.792532 0.008701644 10.778779 0.03024050

7 10 24.480064 0.001614966 24.438130 0.001668186

7 50 15.675066 0.003564525 15.571754 0.005712645

7 100 12.659529 0.009120035 12.606731 0.02901287

8 10 27.228035 0.001395807 27.184014 0.001605866

8 50 18.004774 0.003500826 17.962598 0.005985312

8 100 15.316060 0.009042275 15.241009 0.02886919

9 10 29.989437 0.001465425 29.919934 0.001565995

9 50 20.291382 0.003460228 20.152215 0.005854776

9 100 17.663237 0.009186375 17.558047 0.02767511

10 10 32.596895 0.001716044 32.477345 0.001726263

10 50 22.726633 0.003337321 22.619030 0.005938587

10 100 19.690223 0.009337652 19.594376 0.02760492

Table 6: Runtime and accuracy comparison between Brucker and BILS for the 2-anticlustering special case -

dispersion
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In the figure below, each diversity is the average of 100 iterations and the last three colums are

the ratio of these 100 iterations for the individual statement. The data is normal distributed

and 2-dimensional.

data points Brucker - diversity BILS - diversity Brucker better (%) equal (%) BILS better (%)

10 367.8642 374.7669 1 13 86

20 1657.7536 1674.4932 1 0 99

30 3831.0412 3853.3206 0 0 100

40 6920.3747 6950.4355 0 0 100

50 10898.1240 10940.4784 0 0 100

60 15633.8436 15680.8171 0 0 100

70 21210.4544 21262.3959 0 0 100

80 27639.9260 27691.2779 0 0 100

90 35494.1594 35565.9179 0 0 100

100 43759.0626 43835.5921 0 0 100

110 53053.5809 53131.0318 0 0 100

120 63125.4221 63204.0050 0 0 100

130 74446.4636 74541.9722 0 0 100

140 85442.8287 85537.9143 0 0 100

150 98980.8261 99084.1150 0 0 100

160 112393.1286 112513.4389 0 0 100

170 127021.2349 127139.4651 0 0 100

180 141745.1371 141862.2181 0 0 100

190 159257.9248 159395.8260 0 0 100

200 176399.3584 176543.9753 0 0 100

Table 7: Runtime and accuracy comparison between Brucker and BILS for the 2-anticlustering special case -

diversity

B Source Code

The source code for this thesis is accessible at: https://gitlab.cs.uni-duesseldorf.de/albi/albi-

students/ba-joshua-kokol
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