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Abstract

Genome sequence graphs can represent genetic variation within a species. A linearization

of these graphs improves readability and further computational analysis. The three metrics

weighted reversing joins, weighted feedback arcs and the average cut width are to be min-

imized in the linearization. We show that the problem can be solved using Integer Linear

Programming in reasonable time and with satisfactory results.
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1 Introduction

Due to the increasing amount of genome sequence data, new methods for storing, construct-

ing, visualizing and computationally analysing multiple genome sequences of a population are

needed (“Computational pan-genomics: status, promises and challenges” 2018).

Genome sequence graphs are data structures that address this problem (“Computational pan-

genomics: status, promises and challenges” 2018). By considering several genomes instead

of just a single reference genome, genomic variation in a population can be represented (Gar-

rison et al. 2018). It was shown that the use of a single reference genome leads to reference

biases (Brandt et al. 2015).

In this thesis we will work with bidirected genome sequence graphs, in which each node

is labelled with a DNA sequence. Edges can be connected to either the right or the left side

of a node. These two sides allow us to represent the double strandedness of DNA, because

depending on which side an edge enters a node, the DNA sequence labelling the node can

be interpreted as the reverse complement. A directed path on a genome sequence graph can

represent a DNA sequence (Lisiecka and Dojer 2021).

A linearization of these graphs improves readability and makes further computational anal-

ysis of the graph easier (Lisiecka and Dojer 2021). Heuristic methods for this problem have

already been developed (Haussler et al. 2018; Lisiecka and Dojer 2021).

In Figure 1, first a genome sequence graph is constructed from two DNA sequences and then

the graph is linearized.

1



Figure 1: In the top left corner we can see two DNA sequences and their respective reverse complements. From

these two DNA sequences, a genome sequence graph can be constructed. Both colored paths represent one of the

DNA sequences. In this thesis, we will focus on the second step; the linearization of the genome sequence graph.

We will order and orient the nodes: the nodes are ordered from left to right and each node is oriented by

labelling one of its sides as an in-side and the other side as an out-side. In this Figure, nodes have been rotated in

such a way that their in-side is always left and their out-side right.

Whenever a path enters a node from its out-side, the reverse complement of the DNA sequence in the node is

read. For example, the orange path enters the fifth node on its out-side, so “TG” is read.

Feedback arcs do not conform to the ordering and are drawn as dashed edges and reversing joins connect two

out-sides or two in-sides and are drawn without arrows, formal definitions are given in Section 2.

This Figure is strongly inspired by a Figure by Lisiecka and Dojer (Lisiecka and Dojer 2021).
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2 Problem Formulation

Definition 1. Directed graph

A directed graph is a graph D “ pV, Aq with nodes V and arcs A. Arcs a P A, a “ pv, uq are

directed from v to u. A path p in a directed graph is a sequence of arcs a1, . . . , al , such that for

ai “ pvi , uiq and ai`1 “ pvi`1, ui`1q with i P t1, . . . , l ´ 1u, ui “ vi`1 holds. A path is simple

if no node is traversed more than once on p. A circle c in a directed graph is a path p with

v1 “ ul . It is called a simple circle if p is simple. Two simple circles consisting of an identical

set of edges are equivalent. A directed graph D is acyclic, if it does not contain any circles.

Definition 2. Bidirected graph

A bidirected graph G “ pV, Eq is a graph with nodes V and edges E. Each node has two sides.

An edge e P E, e “ pv, s, v1, s1q with v, v1 P V and s, s1 P tri ght, le f tu connects side s of node v

with side s1 of node v1 (Lisiecka and Dojer 2021). Let n :“ |V | and m :“ |E|. We define the

␣-operator on sides as ␣le f t “ ri ght and ␣ri ght “ le f t.

We also assign a numeric value to the sides left and right. Let dpsq :“

$

&

%

1, if s “ ri ght

´1, if s “ le f t
During the process of linearizing a bidirected graph, edges are interpreted as undirected,

so e “ pv, s, v1, s1q and e1 “ pv1, s1, v, sq are equivalent.

Definition 3. Paths in bidirected graphs

A path p in a bidirected graph is a sequence of edges e1, . . . , el with ei P E, i P 1, . . . l, for which

the following holds: For two consecutive edges ei “ pvi , si , v1
i , s1

iq and ei`1 “ pvi`1, si`1, v1
i`1, s1

i`1q,

v1
i “ vi`1 for all i P t1, . . . , l ´ 1u. Furthermore, p is directed, if s1

i ‰ si`1 holds, meaning that

the path enters each node on one side and exists it on its other side (Lisiecka and Dojer 2021).

A path p is simple, if no node is traversed more than once.

We can say, there is a path from s1 of v1 to s1
l of v1

l .

Note that, although the terms are similar, there is a difference between directed paths in

bidirected graphs and paths in directed graphs and they must not be confused.

Definition 4. Circles in bidirected graphs

A circle c in a bidirected graph G “ pV, Eq is a path p from a node v P V to itself. c is a simple

circle if p is simple. c is directed, if p is directed and p does not start on the same side of v

as it ends (Paten et al. 2018). Otherwise, c is undirected. Two simple circles consisting of an

identical set of edges are equivalent.

In the following, whenever we talk about circles, these are simple circles.
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Definition 5. Linearization of a bidirected graph

Given a bidirected graph G “ pV, Eq a linearization of the graph consists of an orienting func-

tion and ordering function.

The orienting function a : V Ñ t0,1u defines an in- and out-side for each node.

apvq “

$

&

%

0, if the right side of v is labelled as an in-side and the left side as an out-side

1, if the left side of v is labelled as an in-side and the right side as an out-side

The ordering function is a bijection ord : V Ñ t1, . . . , nu. If ordpvq ă ordpv1q, v precedes

v1 (Lisiecka and Dojer 2021).

Definition 6. Forward arcs

Forward arcs are edges e P E that join the out-side of node v P V with the in-side of node

v1 P V and ordpvq ă ordpv1q (Lisiecka and Dojer 2021, see Figure 2).

Figure 2: An edge e connecting the out-side of node v with the in-side of node v1 and conforming to the ordering

of nodes (here from left to right).

Definition 7. Reversing joins

Reversing joins are edges e P E that join two in-sides or two out-sides (Lisiecka and Dojer

2021).

For example, an edge e “ pv, ri ght, v1, ri ghtq with apvq “ 1 and apv1q “ 1 is a reversing join,

because due to apvq “ apv1q “ 1 both the right side of v and the right side of v1 are labelled

as out-sides. Thus e joins two out-sides (see Figure 3).

Figure 3: An edge e connecting the out-side of node v with the out-side of node v1.

Definition 8. Feedback arcs

Feedback arcs are edges e P E that join the out-side of node v P V with the in-side of node

v1 P V and ordpv1q ă ordpvq (Lisiecka and Dojer 2021), meaning that e does not conform to

the ordering of the nodes (see Figure 4).

An edge can not be a feedback arc if it is a reversing join, because if e joins two in-side or two

out-sides, there is no sensible ordering of its nodes (Lisiecka and Dojer 2021).
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Figure 4: An edge e joining the out-side of node v with the in-side of node v1 but not conforming to the ordering

of nodes, meaning ordpv1q ă ordpvq.

Definition 9. Average cut width

Imagine a cut between each pair of consecutive nodes. The cut width is the number of edges

crossing a cut (Haussler et al. 2018). Note that the average cut width can be calculated in two

ways; either by adding the number of edges that cross each cut and dividing the sum by the

number of cuts, which is equal to n´ 1. Or by adding the number of cuts each edge crosses

and again dividing this sum by the number of cuts (see Figure 5).

Figure 5: A linearized graph with red cuts placed between each pair of consecutive nodes. The respective cut

widths are 2, 3, 3 and 1. The average cut width is 1
4 p2 ` 3 ` 3 ` 1q “ 9

4 . This is equal to the sum of the number

of cuts each edge crosses, divided by the number of cuts. Here the number of cuts crossed by the seven edges

respectively are 1, 1, 1, 1, 3, 2 and 0. The average cut width is indeed 1
4 p1 ` 1 ` 1 ` 1 ` 3 ` 2 ` 0q “ 9

4 .

Inspired by a Figure by Lisiecka and Dojer (Lisiecka and Dojer 2021).

Definition 10. Pareto optimal solution

A pareto optimal linearization pa, ordq of a bidirected graph is a linearization, so that there

exists no linearization pa1, ord 1qwhich decreases at least one of the metrics, weighted feedback

arcs, weighted reversing joins or average cut width, without increasing another one of these

metrics. The set of pareto optimal solutions forms the pareto front (see Figure 6 for a two-

dimensional illustration).
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Definition 11. Genome sequence graph

Figure 6: The dots represent an imaginary set of

linearizations and their respective weighted feedback

arcs and reversing joins. The red dots are pareto optimal

solutions. The set of pareto optimal solutions forms the

pareto front.

A genome sequence graph is a bidirected

graph G “ pV, Eq that represents a set of

DNA sequences. Each node is labelled with a

DNA fragment. For each DNA sequence that

was used to construct the graph there is a di-

rected path. A directed path on a genome

sequence graph can form a DNA sequence by

concatenating the DNA fragments labelling

the nodes on the path. If a node v on this

path is entered from its out-side, the reverse

complement of the DNA fragment of v is used

to construct the resulting DNA sequence of

the path.

The weight function w : E Ñ N assigns a

weight to each edge equal to the number of

times it is traversed by the paths used to con-

struct the graph (Lisiecka and Dojer 2021).

2.1 Problem Statement

Given a genome sequence graph G “ pV, Eq, find a linearization that minimizes a linear com-

bination of weighted reversing joins, weighted feedback arcs and the average cut width.

3 ILP using ordering variables

Given a genome sequence graph G “ pV, Eq, V “ tv1, . . . , vnu, E “ te1, . . . , emu and weights for

the three described metrics α,β ,γ P Rě0. Let the weight of an edge e be we.

We define the following Variables:

For all v P V :

av “

$

&

%

0, if the right side of v is labelled as an in-side and the left as an out-side

1, if the left side of v is labelled as an in-side and the right as an out-side

For all e P E:

ρe “

$

&

%

0, if edge e is not a reversing join

1, otherwise

φe “

$

&

%

0, if edge e is not a feedback arc

1, otherwise
κe “ number of cuts crossed by e, κe P t1, . . . , n´ 1u
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In order to represent an ordering of nodes we use the approach by Grötschel, Jünger, and

Reinelt (Grötschel, Jünger, and Reinelt 1984).

For all i, j P N such that 1ď i ă j ď n:

yi, j “

$

&

%

0, if vi precedes v j

1, if v j precedes vi

The ILP is:

min
`

α
ÿ

ePE

weρe ` β
ÿ

ePE

weφe `
γ

n´ 1

ÿ

ePE

κe
˘

s.t.

yi, j ` y j,k ´ yi,k ď 1 @i, j, k P N, such that 1ď i ă j ă k ď n (1)

´ yi, j ´ y j,k ` yi,k ď 0 @i, j, k P N, such that 1ď i ă j ă k ď n (2)

av ` aw`ρe ě 1 @e P E, with e “ pv, s, w, s1q, if s “ s1 (3)

av ` aw´ρe ď 1 @e P E, with e “ pv, s, w, s1q, if s “ s1 (4)

av `ρe ě aw @e P E, with e “ pv, s, w, s1q, if s ‰ s1 (5)

av ´ρe ď aw @e P E, with e “ pv, s, w, s1q, if s ‰ s1 (6)

dpsq ¨ p2avi
´ 1q ` yi, j ´ dps1q ¨ p2av j

´ 1q ´φe ď 2 @e P E, with e “ pvi , s, v j , s1q (7)

dpsq ¨ p2avi
´ 1q ` yi, j ´ dps1q ¨ p2av j

´ 1q `φe ě´1 @e P E, with e “ pvi , s, v j , s1q (8)
n

ÿ

h“1,h‰i

yh,i ´

n
ÿ

h“1,h‰ j

yh, j ď κe @e P E, with e “ pvi , s, v j , s1q (9)

n
ÿ

h“1,h‰i

yh, j ´

n
ÿ

h“1,h‰ j

yh,i ď κe @e P E, with e “ pvi , s, v j , s1q (10)

3.1 Ordering

Inequalities (1) and (2) (Grötschel, Jünger, and Reinelt 1984; Baharev et al. 2021) are triangle

inequalities which ensure that y represents a valid ordering by preventing circles

ordpviq > ordpv jq > ordpvkq > ordpviq (1) and ordpviq < ordpv jq < ordpvkq < ordpviq (2)

(see Figure 7, inspired by Mitchell and Borchers 2000).

Earlier, we defined yi, j only for 1ď i ă j ď n. In the case of i ą j we can use the substitution

yi, j “ 1´ y j,i (Grötschel, Jünger, and Reinelt 1984). yi,i is not defined and will not be needed.

3.2 Loops

Any edge e “ pv, s, v, s1q is either, in the case of s “ s1, a reversing join, or, in the case of

s ‰ s1, a feedback arc. So we can remove them from the graph before starting the process of

linearization.
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Figure 7: Directed edges from node v to node u symbolize that in the ordering v precedes u. Circles like the ones

we see here would not be logical. The circle in A is prevented by yi, j ` y j,k ´ yi,k ď 1; if v j precedes vi (yi, j “ 1)

and vk precedes v j (y j,k “ 1), vk has to precede vi (yi,k
!

“ 1), otherwise, if vi would precede yk (yi,k “ 0), the red

arrow between vi and vk would lead to a circle. This is reflected by the inequality, which would not be satisfied, if

yi,k “ 0.

The circle in B is prevented by ´yi, j ´ y j,k ` yi,k ď 0 similarly; if both vi precedes v j and v j precedes vk

(yi, j “ y j,k “ 0) then vi has to precede vk (vi,k
!

“ 0).

3.3 Reversing joins

Because of inequalities (3) to (6), ρe “ 0 implies that the edge e “ pv, s, w, s1q is not a reversing

join.

If e joins the same sides of v and w (case s “ s1), e is a reversing join, if av “ aw and e is not a

reversing join, if av ‰ aw. For example if s “ s1 “ ri ght, av “ 1 and aw “ 0, e would not be a

reversing join, because the right side of v would be labelled as an out-side and the right side

of w would be labelled as an in-side.

So, in the case of s “ s1, we want to add the constraint av ‰ aw, which is equal to av` aw “ 1,

because of av , aw P t0,1u and can be written as two inequalities av ` aw ě 1 and av ` aw ď 1.

In most cases, there will be at least some reversing joins and not all of these constraints can be

satisfied. Therefore, we extend the constraints to av`aw`ρe ě 1 (3) and av`aw´ρe ď 1 (4).

If ρe “ 1, e is marked as a reversing join and these inequalities are always true.

In the other case of s ‰ s1, e is not a reversing join, if and only if av “ aw holds, which is equal

to av ě aw and av ď aw. As above, we add ρe to get av `ρe ě aw (5) and av ď aw`ρe (6).

3.4 Feedback arcs

Analogous to the last section, inequalities (7) and (8) ensure that φe “ 0 implies that e is not

a feedback arc.

An edge e P E can only be a feedback arc, if e is not a reversing join. For any edge, that

connects an out-side with an in-side, the out-side node should precede the in-side node in the

ordering.

We define the function µ : t0,1u
Ś

tri ght, le f tu Ñ t´1,1u, µpav , sq :“ dpsq ¨ p2av ´ 1q. In

8



label of side s µpav , sq av s 2av ´ 1 dpsq

in -1
0 right -1 1

1 left 1 -1

out 1
0 left -1 -1

1 right 1 1

Table 1: Label of side s and µ for all combinations of av and s

Table 1, µpav , sq and the label of side s of node v for all combinations of node orientations

av and sides s, to which an edge e might be connected, are listed. We can see the following:

µpav , sq “

$

&

%

´1, if side s of node v is labelled as an in-side

1, if side s of node v is labelled as an out-side
We also define the functions ψ1pav , sq :“ µpav , sq ` 1 and ψ2pav , sq :“ µpav , sq ´ 1.

Given an edge e “ pvi , s, v j , s1q, let us first look at the case µpavi
, sq “ 1 which means that

e is connected to the out-side of vi . We assume that e is not a reversing join. Then e is also

connected to the in-side of v j and vi should precede v j and therefore yi, j “ 0 should hold. If

yi, j “ 1, e is a feedback arc. The inequality µpavi
, sq` yi, j ď 1 is only true, if e is not a feedback

arc.

If e is a reversing join, e can not be a feedback arc and the constraint should always be satisfied.

In order to generalize the constraint, we defined ψ1. From the definition of ψ1 and µ we can

see:

ψ1pav , sq “

$

&

%

0, if side s of node v is labelled as an in-side

2, if side s of node v is labelled as an out-side

The final inequality is µpavi
, sq ` yi, j ´ψ1pav j

, s1q ´φe ď 1

ô dpsq ¨ p2avi
´ 1q ` yi, j ´ dps1q ¨ p2av j

´ 1q ´ φe ď 2 (7). This inequality is also true, if e

is connected to the out-side of v j (ψ1pav j
, s1q “ 2), meaning in the case of e also being con-

nected to the out-side of vi , that e is a reversing join. Ifφe “ 1 the constraint is always satisfied.

So far, we made sure, that φe “ 0 implies, that e is not a feedback arc only for the case, in

which e “ pvi , s, v j , s1q is connected to the out-side of vi , meaning µpavi
, sq “ 1. The above

inequality is always true in the other case in which e is connected to the in-side of vi indicated

by µpavi
, sq “ ´1. If in this case e is also connected to the out-side of v j , v j should precede

vi and yi, j “ 1 should hold. This can be expressed as µpavi
, sq ` yi, j ě 0. As above, we must

factor in the possibility of e being connected to the in-side of v j and therefore a reversing join.

This would be indicated by ψ2pav j
, s1q “ ´2. We add the exceptions for this case and for the

case of e being a feedback arc (φe “ 1): µpavi
, sq ` yi, j ´ψ2pav j

, s1q `φe ě 0

ô dpsq ¨ p2avi
´ 1q ` yi, j ´ dps1q ¨ p2av j

´ 1q `φe ě´1 (8).
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3.5 Average cut width

The average cut width can be calculated by adding the number of cuts crossed by each edge

and dividing this sum by the number of cuts, which is n´ 1.

This metric does not depend on the node orientations and sides.

We defined κe as the number of cuts crossed by e, constraints (9) and (10) ensure that

the output of the ILP conforms to this definition. For an edge e “ pvi , s, v j , s1q, the number of

cuts crossed by this edge in an ordering ord, is equal to the number of nodes between vi and

v j plus one (see Figure 8). Therefore, we want to model κe “ |ordpviq ´ ordpv jq| with our

constraints.

Let us first look at the case of yi, j “ 0, meaning vi precedes v j in the ordering. Then κe

would be equal to the number of nodes succeeding vi minus the number of nodes succeeding

v j . For any node vx , the number of nodes succeeding vx is postpxq :“
n

ř

h“1,h‰x
yh,x . Since we

minimize the sum of κe, the constraint κe ě postpiq ´ postp jq would lead to κe “ postpiq ´

postp jq.

We were looking at the case of vi preceding v j (yi, j “ 0). If this is not the case, postpiq ´

postp jq would be negative and thus the constraint would always be met. So, to ensure that

κe “ postpiq ´ postp jq, we add the constraint κe ě postpiq ´ postp jq ô

κe ě
n

ř

h“1,h‰i
yh,i ´

n
ř

h“1,h‰ j
yh, j (9).

Now let us turn to the case of yi, j “ 1. If v j precedes vi , κ is equal to postp jq ´ postpiq

and using the same ideas as above, this leads to the constraint κe ě postp jq ´ postpiq ô

κe ě
n

ř

h“1,h‰ j
yh, j ´

n
ř

h“1,h‰i
yh,i (10).

Figure 8: We see an edge e “ pvi , s, v j , s1q in a possible ordering of nodes with ordpviq ă ordpv jq. The number of

nodes between vi and v j is equal to the number of nodes succeeding vi minus the number of nodes succeeding v j

minus one. In order to get the number of cuts e traverses, we add one. We can conclude that the number of cuts

an e crosses are the number of nodes succeeding vi minus the number of nodes succeeding v j .

3.6 Reductions

The ILP with Opn2q variables and Opn3q variables is not feasible for large graphs.

In Appendix A a reduction technique is discussed which did not suffice to make the ILP

feasible.
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4 ILP using a circle matrix

The ILP using ordering variables proved to be infeasible for large graphs. One could instead

use an ILP with a circle matrix to minimize feedback arcs similar to a method used for the

feedback arc set problem. Each circle in the directed graph has to be covered by at least one

feedback arc (Baharev et al. 2021). We can use a similar approach for our problem.

Note that this approach only minimizes weighted feedback arcs and weighted reversing joins.

So for a pareto optimal solution we only consider reversing joins and feedback arcs.

Given a genome sequence graph G “ pV, Eq, V “ tv1, . . . , vnu, E “ te1, . . . , emu and α,β P Rě0.

We define the following Variables:

For all v P V :

av “

$

&

%

0, if the right side of v is labelled as an in-side and the left as an out-side

1, if the left side of v is labelled as an in-side and the right as an out-side
For all e P E:

ρe “

$

&

%

0, if edge e is not a reversing join

1, otherwise

φe “

$

&

%

0, if edge e is not a feedback arc

1, otherwise

We also need the circle matrix C P t0,1ul
Ś

m with l :“ number of directed circles.

ci j :“

$

&

%

0, if edge e j is not in directed circle i

1, if edge e j is in directed circle i

The ILP is:

min
`

α
ÿ

ePE

weρe ` β
ÿ

ePE

weφe
˘

s.t.

av ` aw`ρe ě 1 @e P E, with e “ pv, s, w, s1q, if s “ s1 (11)

av ` aw´ρe ď 1 @e P E, with e “ pv, s, w, s1q, if s “ s1 (12)

av ´ aw´ρe ě´1 @e P E, with e “ pv, s, w, s1q, if s “ s1 (13)

av ´ aw`ρe ď 1 @e P E, with e “ pv, s, w, s1q, if s “ s1 (14)

av `ρe ě aw @e P E, with e “ pv, s, w, s1q, if s ‰ s1 (15)

av ´ρe ď aw @e P E, with e “ pv, s, w, s1q, if s ‰ s1 (16)

av ` aw´ρe ě 0 @e P E, with e “ pv, s, w, s1q, if s ‰ s1 (17)

av ` aw`ρe ď 2 @e P E, with e “ pv, s, w, s1q, if s ‰ s1 (18)
m

ÿ

j“1

ci jpφe j
`ρe j

q ě 1 @i P t1, . . . , lu (19)
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4.1 Feedback arcs

Let us now have a closer look at how feedback arcs come to be. In the following, we will prove

that all feedback arcs in pareto optimal solutions are edges in directed circles in the bidirected

graph (Theorem 4.4, see Figure 9). We also show that in any linearization there is at least one

reversing join or feedback arc in each directed circle of the bidirected graph (Lemma 4.3), and

that one reversing join or feedback arc per directed circle suffices (Lemma 4.5). In our ILP

constraint (19) ensures that at least one edge on each directed circle in G is a reversing join

or a feedback arc.

When the ILP returns the sets of reversing joins and feedback arcs, we can, by ignoring these

edges, construct an acyclic directed graph and obtain an ordering using a Kahn’s topological

sorting Algorithm (Kahn 1962). Because the Algorithm uses breadth-first search it can reduce

the average cut width. Haussler et al. compared the Algorithm with the Flow Procedure

(a) undirected circle (b) directed circle without node orientations

(c) directed circle with a feedback arc (d) directed circle with two reversing joins

Figure 9: In (a) we see an undirected circle. We can ignore these circles, since they do not need to contain any

feedback arcs. In (b) we can see a directed circle before the linearization. In (c) the same circle is depicted with

node orientations. Every ordering would produce a feedback arc. In (d) the nodes have been oriented in such a

way that there are two reversing joins.

We will show that in each directed circle, there is at least one reversing join or feedback arc.
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described in their paper and Kahn’s Algorithm proved to be decent but not as good as the Flow

Procedure in reducing the average cut width (Haussler et al. 2018).

Construction of a directed graph using a bidirected graph and an orienting function

Given a bidirected graph G “ pV, Eq and an orienting function a, we construct a directed graph

D “ pV, Aq by ignoring all reversing joins P Ă E (Haussler et al. 2018). All other edges e P E

connect an out-side of node v P V with the in-side of node u P V and we can add the directed

edge r “ pv, uq to A. This arc r is made from e and accordingly, we define the parent function

p : AÑ E´ P, which assigns a parent to each arc in D. In this case pprq “ e.

Lemma 4.1. All circles in a directed graph constructed from a bidirected graph G and orienting

function a are directed circles in G

Proof : Given a directed graph D “ pV, Aq constructed from a bidirected graph G and an ori-

enting function a. We suggest that all circles cd “ r1, . . . , rl , ri P A in D are directed circles in

G, meaning that cg “ ppr1q, . . . , pprlq is a directed circle in G.

This follows from the transformation of bidirected graphs into directed graphs. Let us look

at the arcs in cd “ r1, . . . rl . Since cd is a circle in a directed graph, for each ri “ pvi , uiq and

ri`1 “ pvi`1, ui`1q, i P t1, . . . , l ´ 1u, ui “ vi`1 holds; ri is directed towards ui and ri`1 is

directed away from ui . This also holds for the two consecutive edges rl and r0.

For each edge in cd there is a parent edge in G. Let cg “ ppr1q, . . . , pprlq be the sequence

of these parent edges in E. For two consecutive edges ppriq “ pvi , si , ui , s1
iq and ppri`1q “

pvi`1, si`1, ui`1, s1
i`1q, ui “ vi`1 holds.

Because ri enters ui and ri`1 exits ui , as stated above, ppriq has to be connected to the side s1
i

of ui that is labelled as the in-side and ppri`1q has to be connected to the side si`1 of ui that

is labelled as the out-side. Therefore, s1
i ‰ si`1 holds. This also holds for the two consecutive

edges pprlq and ppr0q.

So cg is a directed circle in G.

Note that the inverse does not hold; not every directed circle in G produces a circle in its

directed child graph. We saw an example of this in Figure 9 (d).

Lemma 4.2. A topological ordering of an acyclic directed graph which was constructed from

a bidirected graph G and an orienting function a, is an ordering for G that does not produce

feedback arcs

Proof : Consider an acyclic directed graph D “ pV, Aq with parent graph G “ pV, Eq and orient-

ing function a. Let us partition the set of edges E in the bidirected graph G into reversing joins

P and non reversing joins F . Since we did not order the nodes in G, we can not yet determine

which edges in F are feedback arcs and which edges are forward arcs. We know that reversing

joins can not be feedback arcs and we also know that in the construction on the directed graph

D, all reversing joins P were ignored.
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Let ord be an ordering function that was obtained by a topological sorting of D. Since ord is

a topological sorting of D, for each arc a P A, a “ pv, uq, v precedes u in the ordering (Cormen

et al. 2001). We can use the same ordering for the bidirected graph G and in the following we

will show that using this ordering, all edges in F are forward arcs and therefore G does not

contain any feedback arcs.

There is a one-to-one relation between parent edges e P F and child arcs r P A. So for each

arc r P A, there is a parent edge pprq P F with pprq “ pv, sv , u, suq. Because of the construction

of D side sv must be an out-side and su and in-side. So e connects the out-side of v with the

in-side of u and since we use the same ordering we obtained from topological sort, v precedes

u and thus pprq is a forward arc.

Lemma 4.3. In a linearization of a bidirected graph there is at least one reversing join or

feedback arc in each directed circle of the bidirected graph

Proof by contradiction : Let us assume, that there are neither reversing joins nor feedback arcs

in a directed circle of G. Let v be the vertex in the circle with the highest ordering. This vertex

has at least one edge on each side which is connected to a vertex on the circle. Let e be the

edge connected to the out-side of v and let v1 be the other vertex on the circle connected to

e. Then, since e is not a reversing join, e must be connected to the in-side of v1. But since

ordpvq was maximal in the circle, ordpvq ą ordpv1q holds and thus e is a feedback arc, a

contradiction.

Theorem 4.4. All feedback arcs in pareto optimal linearizations of a bidirected graph G are

part of directed circles in G

Proof by contradiction : Given a bidirected graph G “ pV, Eq and a pareto optimal lineariza-

tion consisting of an orienting function a and an ordering function ord. Let Φ Ă E be the

set of feedback arcs in the linearized graph. Let us now assume that there exist feedback arcs

Φ0 Ă Φ,Φ0 ‰H which are not part of directed circles in G. Let Φc “ Φ´Φ0 be the feedback

arcs which are part of directed circles in G.

Every circle in a directed graph was constructed from a directed circle in its parent graph

(Lemma 4.1). For every directed circle in G, there is at least one reversing join or feedback

arc (Lemma 4.3). In the construction of a directed graph we do ignore all reversing joins. Let

us also ignore all feedback arcs Φc that are part of directed circles in G for the construction of

D. In the construction of D, for each directed circle in G, we ignored at least one edge. So D

is acyclic.

We can now obtain an ordering ord 1 of the nodes in D using topological sort. Because of

Lemma 4.2, this ordering is a valid ordering for G, in which the feedback arcs Φ0, which were

not part of directed circles in G, are now forward arcs. We can use the same orienting func-

tion a for the new linearization pa, ord 1q, which has the same amount of weighted reversing

joins, since a did not change, and less weighted feedback arcs. This means that the original

linearization pa, ordq was not a pareto optimal solution, a contradiction.
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Corollary 4.5. There is an ordering for a bidirected graph G “ pV, Eq where one edge in every

directed circle is either a reversing join or a feedback arc

Proof : For an orienting function a, let K “ PYΦ be a set of reversing joins P and additional

edges Φ P E so that for each directed circle in G at least one edge on the circle is in K . The

edges in K cover each directed circle in G. Let us construct a directed graph D “ pV, Aq from

the bidirected graph G and the orienting function a, while ignoring all edges in K . Then,

by Lemma 4.1, D is acyclic and, by Lemma 4.2, the topological ordering of D produces no

feedback arcs in G. Because of Lemma 4.3, if a circle is not covered by a reversing join but by

an edge e P Φ, e must be a feedback arc.

Construction of the circle matrix

In order to enumerate all simple directed circles in G, we first find all biconnected components

in G and then we find all simple directed circles in each of these components. For a detailed

description, see Section 5.

4.2 Reversing joins

We use the same method as above to ensure that ρe “ 0 implies that e is not a reversing

join. Since we minimized reversing joins in the objective function, this effectively led to an

equivalence.

In this approach we can see that inequality
řm

j“1 ci jφe j
`

řm
j“1 ci jρe j

ě 1 (19) will be sat-

isfied if either a φe or a ρe on a circle is 1. For α ă β (reversing joins are weight less than

feedback arcs) the Algorithm could set ρe to 1 in order to satisfy (19), even if e is not a revers-

ing join, but a feedback arc. To prevent this problem we add (13), (14), (17) and (18), which

ensure that ρe “ 1 implies that e is indeed a reversing join.

Let us start with the case of s “ s1. As mentioned above, any edge e “ pv, s, w, s1q is a reversing

join, if and only if av “ aw. So if ρe “ 1, av must be equal to aw. This is ensured by av ´ aw´

ρe ě´1 (13) and av ´ aw`ρe ď 1 (14). If av “ aw, av ´ aw “ 0 holds and both inequalities

are satisfied regardless of ρe. If on the other hand av ‰ aw, there are two cases: In the case

of av “ 0 and aw “ 1, the first inequality is not satisfied, if ρe “ 1. In the case of av “ 1 and

aw “ 0, the second inequality is not satisfied, if ρe “ 1. So ρe “ 1 implies av “ aw.

Now let us look at the case of s ‰ s1. av ` aw ´ ρe ě 0 (17) and av ` aw ` ρe ď 2 (18)

ensure that ρe “ 1 implies that e is a reversing join, meaning, in this case, av ‰ aw. Again, we

notice, that if av ‰ aw, av ` aw “ 1 and both inequalities are satisfied. If, on the other hand,

ρe “ 1 and av “ aw, one of the two inequalities will not be satisfied.

Instead of adding these additional constraints, one could also merge ρe and φe into a single

variable which is equal to one if e is a feedback arc or a reversing join and which is equal to
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zero if e is a forward arc. However, using this approach we would no longer be able to control

which one of the metrics should be more important with α and β .

5 Algorithms on bidirected graphs

I was not able to find any research about the Algorithms on bidirected graphs we need to solve

our problem.

5.1 Biconnected components in bidirected graphs

We can use the exact same definition of biconnected components Tarjan used for undirected

graphs (Tarjan 1972).

Definition 12. Biconnected components

“Let G “ pV, Eq be a [bidirected] graph. Suppose that for each triple of distinct nodes v, w, a

in V , there is a path p [from v to w] such that a is not on the path p. Then G is biconnected.

[. . . ] If, on the other hand, there is a triple v, w, a P V such that a is on any path [from v to

w], and there exists at least one such path, then a is called an articulation point of G.” (Tarjan

1972). A subgraph of G is called a biconnected component if and only if it is biconnected and

it is no proper subgraph of a biconnected subgraph in G (Tarjan 1972).

We can use Tarjan’s Algorithm (Tarjan 1972) to find all maximal biconnected subgraphs by

transforming the bidirected graph into an undirected graph ignoring the sides of the nodes.

5.2 Enumerating directed circles in bidirected graphs

In Appendix B an Algorithm which enumerates all simple directed circles in a bidirected graph

is described.

A directed graph contains Op2nq simple circles (Johnson 1975). Bidirected graphs are gener-

alizations of directed graphs, so they can contain at least as many simple circles as directed

graphs, which made enumerating all simple directed circles intractable in most of the cases I

encountered.

6 ILP with lazy constraint generation

We can not enumerate all directed circles in most cases. A method to solve such instances was

developed by Baharev et al. for the feedback arc set problem on directed graphs. The circle

matrix is build iteratively and the respective constraints are added lazily to the ILP (Baharev

et al. 2021). We can use the same Algorithm with some minor changes for our problem, see

Algorithm 1 (by Baharev et al. 2021, the modifications are discussed below).
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Algorithm 1: Finding a linearization using Integer Linear Programming with lazy

constraint generation

1 Function find_linearization(G “ pV, Eq,α,β):

2 Let ŷ , consisting of an orienting function a and a set of feedback arcs F , denote

the best feasible solution found so far.

3 Find a feasible solution with orientation function a and ordering function ord.

4 Let F p0q Ă E be the feedback arcs in this solution. Set ŷ to pa, F p0qq.

5 Let wr , w f P N be the amount of weighted reversing joins and feedback arcs in the

solution.

6 Set the lower bound z to 0 and the upper bound z̄ to αwr ` βw f . The lower

bound must not be associated with a feasible solution, the upper bound is

associated with the best feasible solution ŷ .

7 Let D be the directed graph constructed from a and G.

8 Let Cpiq denote the incomplete circle matrix, Cp0q is an empty circle matrix.

9 call ex tend_circle_matrixpD, Cp0qq to get the first circle matrix Cp1q.

10 for i Ð 1,2, . . . do

11 Solve the relaxed Problem P̃piq with circle matrix Cpiq and get the solution

ypiq “ pa, Sq, where a is an ordering function, S is a set of feedback arcs and R

the set of reversing joins. Let wr and w f be the amount of weighted reversing

joins and feedback arcs.

12 The objective value, which does not have to be associated with a feasible

solution, since we used the lazily generated circle matrix Cpiq, is

zpiq “ αwr ` βw f .

13 Set the lower bound z to max(z, zpiq).

14 if z equals z̄ then stop, ŷ is optimal.

15 Let Gpiq denote the bidirected graph obtained by removing all feedback arcs S

and reversing joins R from G.

16 Let Dpiq denote the directed graph constructed from Gpiq and a.

17 if Dpiq can be topologically sorted then stop, ypiq is optimal.

18 For the directed graph Dpiq, compute a feedback arc set Apiq with total weight

w̃ f , using a heuristic.

19 Let F piq be the parent edges in Gpiq of the feedback arcs Apiq.

20 ỹpiq Ð pa, F piqY Sq // ỹpiq is now a feasible solution

21 ẑ Ð zpiq` β w̃ f

22 if ẑ ă z̄ then

23 z̄ Ð ẑ

24 ŷ Ð ỹpiq

25 call ex tend_circle_matrixpDpiq, Cpiqq to get the extended circle matrix

Cpi`1q.
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Algorithm 2: Extend the circle matrix

1 Function extend_circle_matrix(D, C):

2 SCCS Ð set of maximal strongly connected components in the directed graph D

3 forall SCC P SCCS do

4 AÐ heuristic set of feedback arcs in SCC

5 forall a P A do

6 find the shortest circle c containing a in SCC using breadth-first search,

starting at the node a is directed towards

7 if such a circle c exists then

8 Add a new row r to the circle matrix C corresponding to c, if r is not

already in the matrix.

6.1 Description

First, we need to heuristically find a feasible solution to the problem (Baharev et al. 2021).

In our case, we start by determining a node orienting function a that minimizes reversing

joins. For this task, we can use the part responsible for reversing joins of our first ILP from

Section 3. From the orienting function and G, we can construct a directed graph D. We

then obtain the initial circle matrix with Algorithm 2. Circles in directed graphs are part

of strongly connected components (Johnson 1975). Algorithm 2 partitions the graph into

strongly connected components, calculates a feedback arc set for each of these components

and for each feedback arc uses breadth-first search to find a circle. Note that Baharev et al.

also uses breadth-first search to find a circle for each feedback arc, but they do not split the

graph into strongly connected components before calculating the feedback arc set (Baharev

et al. 2021).

Other ways to extend the circle matrix or to initialize the circle matrix are possible.

Let P denote the problem with complete circle matrix and P̃piq denote the relaxed problem

in iteration i of the Algorithm with circle matrix Cpiq (Baharev et al. 2021). In our case, the

solution of the relaxed problem P̃piq is an orienting function a and a set of feedback arcs S.

Since Cpiq most likely does not contain all directed circles of G, some directed circles in G

might not be covered by the set of reversing joins and feedback arcs produced by the solution

to the relaxed problem. Let Gpiq denote G after removing all feedback arcs and reversing joins.

In the case of the feedback arc set problem on directed graphs, one would check if the directed

graph is acyclic after removing all feedback arcs found for the relaxed problem (Baharev et al.

2021). On bidirected graphs, in order to check whether Gpiq does not contain any directed

circles, we construct the directed graph Dpiq using a and Gpiq. If Dpiq is acyclic, Gpiq does not

contain directed circles (note that this statement is not true because of Lemma 4.1 ; it follows

from the fact that Gpiq does not contain reversing joins) and thus all directed circles in G were

covered and the solution is feasible. Since the solution was optimal for the relaxed problem,
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it must also be optimal for the problem P with complete circle matrix and the Algorithm is

stopped (Baharev et al. 2021).

Otherwise, if Dpiq contains circles, we use Algorithm 2 to extend the circle matrix (Baharev

et al. 2021). Gpiq contains only forward arcs, so all parent edges of the arcs in Dpiq are forward

arcs. This means that all parent edges in G of the circles found in Algorithm 2 are forward arcs.

Since the solution to P̃piq was feasible, all circles in Cpiq contained at least one reversing join

or feedback arc and therefore all new circles are not in Cpiq. In each iteration we add at least

one new circle or stop the Algorithm and the number of simple directed circles in bidirected

graphs is finite. So Algorithm 1 does halt.

In the implementation, whenever a feasible, but not necessarily optimal, solution to the

relaxed problem P̃piq was found, the graph G is checked for directed circles which were not

covered. If there exist such circles, the solution is not feasible for P and new circles are added

to the circle matrix. Otherwise, no circles are added and if the solution was optimal, an optimal

solution to P has been found. The ILP solver keeps track of the bounds and the best solution.

7 A problem of the circle matrix ILP

A general problem about the ILP is that it does not care about the ordering. Weighted revers-

ing joins and feedback arcs are reduced while covering each directed circle with at least one

reversing join or feedback arc; the ordering is obtained after the ILP . We specifically choose

Kahn’s topological sort Algorithm (Kahn 1962) in hopes of reducing the average cut width. But

the node orientations which determine the direction of the edges are already set and influence

the average cut width. Figures 10 and 11 illustrate this problem.

Figure 10: A bidirected graph with no directed circles.
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(a) e2 and e3 are reversing joins

(b) e1 and e3 are reversing joins

Figure 11: The graph from Figure 10 with different node orientation functions in (a) and (b) which both produce

two reversing joins. The arrows imply the node orientations and they are specifically shown for v4 and v5. To the

ILP , both node orientation functions are equally good, but (b) would produce a higher average cut width when

ordering the nodes.
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7.1 Proposed solution

Let us explore a heuristic method which sets the node orientation for some nodes before the

ILP . The purpose of this idea is to reduce the average cut width.

First, we split the bidirected graph into biconnected components. Each edge is part of exactly

one biconnected component and articulation points are nodes that are part of more than one

biconnected component (Tarjan 1972). We construct an undirected graph, the nodes of which

consist of the articulation points and the biconnected components. There is an edge between

an articulation point and a biconnected component if and only if the articulation point is part

of the biconnected component. The resulting undirected graph is a tree, since if it contained a

circle, the biconnected components on the circle could be combined into a larger biconnected

component, so the original biconnected components would not have been maximal.

Starting at any biconnected component in the tree, we can traverse it using breadth-first search.

For every articulation point n we find during this search, let b be the last biconnected com-

ponent visited. If b has at least one edge connected to the right and one edge connected to

the left side of a, all biconnected components containing a are merged into an extended bi-

connected component. Otherwise, let in be the side to which all edges in b adjacent to a are

connected to. For any other biconnected component bn which contains a, if bn contains an

edge connected to side in of a, again all biconnected components containing a are merged

into an extended biconnected component.

If merging was not needed, the orientation of a is set such that in is labelled as the in-side of

a. See Figure 12 and Figure 13 for an example.

Additionally, the graph is split and each component is linearized separately. This can, espe-

cially for large graphs, improve the runtime. In the results section we refer to this idea as

the “ILP with tree” whereas the ILP with lazy constraint generation without setting some node

orientations is refered to as “ILP”.

After the ILPs determine the remaining node orientations and return sets of feedback arcs,

the tree containing the biconnected and extended biconnected components is again traversed

using breadth-first search and each component is ordered using Kahn’s topological sort Algo-

rithm (Kahn 1962).
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Figure 12: The graph is split into biconnected components. The articulation points which are part of multiple

biconnected components are v4, v6, v7 and v8.

Figure 13: We start the breadth-first search at the component containing v1. The red and yellow biconnected

components are merged into the orange extended biconnected component because the red biconnected

component had one edge connected to the left side of v6 and one edge connected to the right side of v6. Each

articulation point that is left is given an orientation. This can prevent the problem described earlier.
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8 NP-Hardness

Both the feedback arc set problem (FAS) (Karp 1972) and the average cut width problem (Gavril

1977; Haussler et al. 2018) are NP-hard on directed graphs.

8.1 The feedback arc set problem on bidirected graphs

Definition 13. The definition of the feedback arc problem by Karp

Does a set of less than k arcs exist, the deletion of which breaks all circles in a directed

graph? (Karp 1972)

Definition 14. Definition 13 is equivalent to:

Does an ordering ord exist, such that for less than k arcs a “ pv, uq, ordpvq ą ordpuq holds?

(equivalent because a directed graph has a topological sorting if and only if it is acyclic)

Definition 15. The feedback arc set problem on bidirected graphs (FASB)

Given a bidirected graph G “ pV, Eq and k P N for which an orienting function a exists, such

that there are less than x P N reversing joins. Does an ordering function ord exist, such that

the linearization pa, ordq produces less than k feedback arcs?

Theorem. FAS ďp FASB

Proof : Given an instance for the feedback arc set problem, a directed graph D “ pV, Aq and

k P N. Let us create a bidirected graph G “ pV, Eq with E “ tpv, ri ght, u, le f tq | pv, uq P Au.

The orienting function a with apvq “ 0,@v P V produces 0 reversing joins.

A feedback arc in the linearization pa, ordq of G is a feedback arc in D. So there exists a

feedback arc set for D with less than k arcs if and only if there exists and ordering ord for G

which produces less than k feedback arcs in G with orienting function a.

8.2 Average cut width

Neither the sides of the nodes nor the direction of edges affect the average cut width. The

average cut width is NP-hard on directed graphs (Gavril 1977; Haussler et al. 2018), so it is

also NP-hard on bidirected graphs. The reduction would be similar to the one in the above

proof.
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9 Results

I used the same method to create simulated data as Haussler et al. and Lisiecka and Dojer

did (Haussler et al. 2018; Lisiecka and Dojer 2021). A number of structural variations were

applied to a fragment of the human genome using RSVSim from Bioconductor (RSVSim n.d.).

The random variations include deletions, insertions, inversions and duplications of lengths

20, 20, 200 and 500, respectively. These variations were applied separately 10 times to the

base DNA sequence to obtain 10 different random DNA sequences with a fixed number of

variations in each sequence. Then, these 10 DNA sequences were used to create a genome

sequence graph using the msga command of the vg tool (vg tool n.d.). The file format was

changed from .vg to .gfa using the view command. This procedure was repeated 7 times with

the number of variations ranging from 5 to 11 to obtain in total 7 different genome sequence

graphs (Haussler et al. 2018). The graphs with fewer variations are in general less complex,

thus have fewer nodes and edges.

9.1 Comparison

Four Algorithms were tested. ALIBI by Lisiecka and Dojer (Lisiecka and Dojer 2021), the

Flow Procedure (FP) by Haussler et al. (Haussler et al. 2018) and the ILP with lazy constraint

generation with and without setting the orientation of some nodes using the tree of extended

biconnected components in both cases with parameters α“ β “ 1 (ILP with tree and ILP).

The ILP minimizes the linear combination of weighted reversing joins and weighted feedback

arcs. In Figures 14 and 15 one can see that concerning weighted reversing joins and feedback

arcs the heuristic by Lisiecka and Dojer is close to the results of the ILP . Also, setting some

node orientations in the ILP with tree apparently does lead to some additional reversing joins

and feedback arcs.

Figure 14: weighted reversing joins vs number of variations
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Figure 15: weighted feedback arcs vs number of variations

Figure 16: average cut width vs number of variations

The Flow Procedure produces the lowest average cut width, see Figure 16. We were indeed

able to reduce the average cut width by setting some node orientations before the ILP . The

focus of ALIBI does not lie on reducing the average cut width (Lisiecka and Dojer 2021).

As expected the ILP is significantly slower than ALIBI and the Flow Procedure, however the

ILP with tree has acceptable runtime on the graphs we encountered. Note the logarithmic

scale in Figure 17. The programs were started with the time command and the user time is

shown. Since the ILP solver uses multithreading, on machines with several cores the real time

is significantly lower. Refer to Table 3 in the Appendix for detailed results.
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Figure 17: user time in seconds (logarithmic scale) vs number of variations

The Algorithms were implemented in Python 3 and tested on Ubuntu version 20.04.4 with an

AMD Ryzen 9 5900X processor with base clock speed of 3.7GHz, 12 cores and 24 threads. The

ILPs were solved with Gurobi version 9.5.1 (Gurobi Optimization, LLC 2022).

9.2 Pareto front

To get an idea of how the pareto front for the graph with 5 variations on each DNA sequence

might look like, a set of solutions with parameters tpα,βq|β “ 10´α,α P t0,1, . . . , 10uu was

calculated. The graph had 2641 nodes, 3227 edges and 92597 directed circles. The circle

matrix ILP without setting some node orientations using the tree of extended biconnected

components returns pareto optimal solutions if αą 0 and β ą 0. In Figure 18 and Table 2 we

can see the weighted reversing joins and feedback arcs for the solutions.

We see that both metrics can not be reduced below a certain threshold. The minimum of

weighted reversing joins is reached even before the weight β for weighted feedback arcs is set

to 0.
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Figure 18: The pareto optimal solutions from Table 2 for the graph with 5 variations. The first and last row of the

table are excluded. There is a trade-off between reversing joins and feedback arcs.

α β weighted reversing joins weighted feedback arcs

0 10 1884 4

1 9 680 21

2 8 452 62

3 7 368 88

4 6 114 212

5 5 114 212

6 4 114 212

7 3 114 212

8 2 114 212

9 1 114 212

10 0 114 10809

Table 2: Weighted reversing joins and feedback arcs for different sets of parameters α and β for the graph with 5

variations. For α,β ą 0, the Algorithm returns pareto optimal solutions. Clearly, the solution for pα,βq “ p10,0q

is not pareto optimal.
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10 Conclusion

An Integer Linear Programming formulation which minimizes a linear combination of all three

metrics was presented. Further reductions are needed to render the first ILP presented in this

thesis feasible on large graphs.

The ILP using a circle matrix and lazy constraint generation minimized a linear combination

of weighted reversing joins and feedback arcs. It was shown that the heuristic by Lisiecka and

Dojer (Lisiecka and Dojer 2021) reduces these two metrics nearly as well as the ILP . Through

α and β , a weight can be assigned to the two metrics. Varying these parameters gave us an

idea of what the pareto front might look like; there is a trade-off between the two metrics but

both metrics can be reduced simultaneously.

Additionally, a heuristic was explored which was able to significantly lower the average cut

width and the running time.

The problem can be solved in reasonable time using Integer Linear Programming with a circle

matrix and lazy constraint generation with satisfactory results.
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Appendix

A Reductions for the ILP using ordering variables

A possible heuristic could be splitting the graph into biconnected components and introducing

set of ordering variables for each biconnected component. This works because there are no

edges connecting two nodes from different biconnected components (Tarjan 1972). Also, it

seems that in genome sequence graphs, biconnected components mostly only have two artic-

ulation points and therefore the ordering of biconnected components is clear.

The reductions proved to be insufficient. There were biconnected components with several

hundred nodes.

Haussler mentions, that further decomposition of the graph before the linearization would be

possible (Haussler et al. 2018). The author refers to the paper “Superbubbles, ultrabubbles and

cacti” (Paten et al. 2018). A decomposition of the biconnected components into ultrabubbles

might be possible.

B Enumerating directed circles in bidirected graphs

We will use directed depth-first search. In the context of directed paths we will talk about the

insides and outsides of vertices on these paths. This must not be confused with the in-side and

out-sides given to each vertex by the orienting function.

The Algorithm for enumerating all directed circles in a bidirected graph presented here is sim-

ilar to an Algorithm enumerating all circles in a directed graph, discovered by Johnson and

the structure of the proof will also be similar to Johnson’s (Johnson 1975). However, the out-

put of the Algorithm described here are the edges of each directed circle, since in bidirected

graphs there might be several circles with identical vertices (see Figure 19) and because we

need edges for the construction of a circle matrix.

Johnson splits the graph into maximal strongly connected components before searching for

circles, since there are no circles that span over more than one maximal strongly connected

component (Johnson 1975). When searching for circles in undirected graphs, one would split

the graph into maximal biconnected components, since there are no circles that are part of

more than one biconnected component (Birmelé et al. 2013). This is also true for directed

circles in bidirected graphs, so f ind_circles can be applied to each biconnected component

separately.

Theoretically, we could even split the graph into smaller components by considering directed

biconnected components. Directed biconnected components are defined just as biconnected

component, where in addition, the path p must be directed. There are no directed circles that

span more than one directed biconnected component. An Algorithm for finding all directed
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Figure 19: There are two directed circles consisting of vertices v1, v2, v1. The first one is e1, e2 and the second one

is e3, e4.

biconnected components in a bidirected graph is, to my knowledge, still to be discovered.

Also, a vertex v can not be part of a directed circle, if it does not have edges on both sides

which are in the same biconnected component.

In the following we will prove the correctness of Algorithm 3.

The current path is always represented by the edges on the edge stack and the vertices on the

vertex stack. If a part of a path did not lead to a circle, we block the insides of its vertices

to prevent unnecessary searches in this part of the graph. The path might not have found a

circle, because it encountered a blocked vertex. If this vertex is unblocked, this path should be

considered again. The blocked set makes sure of it; if a side s of a vertex v is on the blocked

set of the side s1 of a vertex w, it means, that the Algorithm visited v from side s, found no

circle and w with side s1 was one of its neighbours. So, when side s1 of w is unblocked, a new

path from s of v to the start vertex might have opened up and thus, side s of v is unblocked.

The vertex stack ensures that the path is simple. In an implementation, the order of its vertices

is not relevant. It could be implemented as a set or as an array to provide access in constant

time.

Lemma B.1. No edge occurs more than once on the stack

Proof : Without loss of generality we can assume that in line 23 in a call of circui tpv, invq,

e “ pv,␣inv , w, inwq is added to the edge stack. In line 13, in the call of circui tpv, invq, v was

added to the vertex stack and after e is added to the edge stack, in the call of circui tpw, inwq,

w is added to the vertex stack, too. From line 22 we can see that an edge e1 can only be added

to the edge stack, if one of its vertices is not on the vertex stack. While e is on the edge stack,

both v and w are on the vertex stack. So no edge can be added to the edge stack, when it is

already on the edge stack.
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Algorithm 3: Enumerate all simple directed circles in a bidirected Graph

1 Function find_circles(G “ pV, Eq):

2 if V ‰H then

3 star t Ð a vertex in V

4 if star t has at least one edge on both sides then

5 blockedri ght Ð [ f alse for v P V s, blockedle f t Ð [ f alse for v P V s

6 blocked_set ri ght Ð [tu for v P V s, blocked_set le f t Ð [tu for v P V s

7 instar t Ð le f t

8 circui tpstar t, instar tq

9 G1 Ð GrV z star ts // G1 is the induced subgraph by V z star t

10 forall biconnected components B̃ “ pṼ , Ẽq of G1 do

11 f ind_circlespB̃q

12 Function circuit(v, in):

13 add v to the vertex stack

14 f ound Ð f alse

15 blockedri ghtrvs “ blockedle f trvs Ð t rue

16 out Ð␣in

17 directed_ed gesÐ te P E | e “ pv, out, w, inwq, w P V, inw P tle f t, ri ghtuu

18 forall e “ pv, out, w, inwq P directed_ed ges do

19 if w““ star t and inw ““ star t in then

20 output new circle consisting of the edges on the edge stack and e

21 f ound Ð t rue

22 else if ␣blockedinw
rws and w is not in vertex stack then

23 add e to the edge stack

24 f ound Ð circui tpw, inwq or f ound

25 pop e from the edge stack

26 if f ound then unblockpv, inq

27 else

28 forall e “ pv, out, w, inwq P directed_ed ges do

29 add pv, inq to blocked_set inw
rws

30 unblockpv, outq

31 remove v from the vertex stack

32 return f ound

33 Function unblock(v, s):

34 blockedsrvs Ð f alse

35 forall pw, swq P blocked_setsrvs do

36 unblockpw, swq

37 remove pw, swq from blocked_setsrvs

33



Lemma B.2. The Algorithm reports only directed circles

Proof : We use directed depth-first search; an edge can only be put on the stack if it is connected

to the outside of the current vertex v. The Algorithm reports a circle only if a directed edge is

connected to the inside of start.

Corollary B.3. The Algorithm reports only simple directed circles

Proof : Follows directly from Lemma B.1, Lemma B.2 and the fact that the circles that are

found, are constructed from the edges on the stack. The vertex stack ensures that no vertex is

traversed more than once.

Lemma B.4. In any call of circui t the edge stack is identical at the start of the call, at the end

of the call and in the beginning of each iteration of the for-loop in line 18

Proof : This Lemma holds for the calls associated with the leaf nodes of the depth-first search

tree. Therefore, this Lemma holds for all calls of circui t.

Lemma B.5. The Algorithm calls circui tpvk`1, ink`1q. Let there be a simple directed circle

c “ e1, . . . , el with ei “ pvi ,␣ini , vi`1, ini`1q, i P t1, . . . l ´ 1u. The edge stack is se “ e1, . . . , ek

and the vertex stack is sv “ v1, . . . , vk. Also blockedini
rvis is f alse for all i P tk`2, . . . , lu. Then,

ek`1 will next be added to the stack and when it is added to the stack, blockedini
rvis “ f alse

still holds for all unvisited vertices on the circle vi , i P tk` 2, . . . , lu.

Figure 20 is a complementary illustration for this proof.

Proof by contradiction : Let us assume that the Lemma did not fail so far.

We will show, that in the beginning of each iteration of the for loop in the call circui tpvk`1, ink`1q,

blockedini
rvis “ f alse holds for all i P tk`2, . . . , lu. Thus, when ek`1 is considered, it is added

to the stack and, by Lemma B.4, then the edge stack is se “ e1, . . . , ek, ek`1.

Let us now assume the contrary; there is a vertex vt , t P tk`2, . . . , lu on our path, the side

int of which is blocked at the start of an iteration of the for loop. It can not be the first iteration,

because it was not blocked when circui tpvk`2, ink`2q is called. So, for a directed neighbour n,

inn of vk`1 at some point during the call of circui tpn, innq, int of vt must have been blocked

and must not have been unblocked so far. That means there was a call of circui tpvt , s1q,

s1 P tle f t, ri ghtu in which int of vt was blocked. The call did return, since vt is not on the

vertex stack. If s1 “ ␣int , in line 30 int would have been unblocked. So in order for vt , int

to have stayed blocked, it must have been a call of circui tpvt , intq, in which no circle was

found. But we know, that there is a directed path from ␣int of vt to the inside of v1 and

that the insides of this path were not blocked, before the call of circui tpn, innq. So, on the

directed path from n to vt , there must be a vertex vr which is on the path from vt to v1, so

r P tt ` 1, . . . , lu. Let vr be the first vertex on the circle such that this condition is met. Let

w1, . . . , wb with w1 “ vt and wb “ vr be the vertices on the path that was taken from vt to vr
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Figure 20: An illustration showing the idea behind the proof in Lemma B.5. The circle starting on the right side

of v1 is drawn solid. The path which was taken from vi`1 to vt is dashed. Here we show the case of vr ‰ vu and

the path from n to vt uses the same insides as the circle. Also, here vertex n is not on the path from vi`1 to vt and

the path w1, . . . , wb from vt to vr is on the circle path.

with insides w_in1, . . . w_inb. These vertices might be vt , . . . , vr . Since no circle was found in

the call of circui tpvt , intq, no circle was found in the respective calls of the vertices of this path.

Therefore, for j P t2, . . . , bu, pw j´1, w_in j´1q is added to blocked_setw_in j
rw js, in particular

pvb´1, w_inb´1q is added to blocked_set inr
rvrs. A call of unblockpvr , inrq would trigger a

chain of calls unblockpwb´1, w_inb´1q, unblockpwb´2, w_inb´2q, . . . , unblockpvt , intq which

would unblock the inside of vt and thus lead to a contradiction.

Let us look at the call circui tpvr , s2q. If s2 “ ␣inr , in line 30, there would have been a call

unblockpvr , inrq. So s2 “ inr . Again there is a directed path from ␣inr to to inside of v1. If a

circle is found, there is a call unblockpvr , inrq in line 26. So no circle is found and therefore

the inside of at least one of the vertices on the path from vr to s must be blocked. Among

these, choose vu with highest index u. Once again, due to the workings of the blocked_set,

when inu of vu is unblocked, a call of unblockpvr , inrq follows, which in turn would unblock

the inside of vt . Since before the call of circui tpn, innq the insides of the vertices from vi`1

to v1 were all unblocked, inu of vu must have been blocked during the call of circui tpn, innq

and it is on the path from n to vt which contains vr . Finally, in the call of circui tpvu, s3q we

can not circumvent a contradiction. In the case of s3 “ ␣inu, there is a call unblockpvu, inuq

in line 30. In the case of s3 “ inu, there is a directed path from the outside of u to the inside

of v1, on which no insides are blocked because all the insides of all vertices v j , u ă j ď l are

not blocked. So assuming that this Lemma did not fail before a circle is found, a contradiction

to the asserting we made earlier, that at vr no circle was found.

Theorem B.6. The Algorithm reports every simple directed circle exactly once

Proof : No circuit is output more than once since for any edge stack se “ e1, . . . ei with ei on

top, once ei is removed, se can not reoccur. Once every directed circle containing the start

nodes is enumerated, the start node is removed from the graph.

Let c “ e1, . . . , el be a simple directed circle. c is part of a biconnected component. Let the
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edges be ei “ pvi ,␣ini , vi`1, ini`1q, i P t1, . . . l´1u and el “ pvl ,␣inl , v1, in1q such that on the

directed path, vi is entered through ini . Without loss of generality, we can assume that there

is a call circui tpv1, in1q, where in1 “ le f t.

In the following, we will prove by induction that the Algorithm builds a stack se “ e1, . . . , el ,

adding ei to the stack in a call of circui tpvi , iniq and afterwards in the case of i ă l calling

circui tpvi`1, ini`1q and in the case of i “ l, reporting the circle. In the end of each step, the

insides of the remaining vertices on the path, in j of v j for i` 1ă j ď l are not blocked.

Base case (i “ 1):

As mentioned above, there is a call of circui tpv1, in1q. At the start of this call, no edges are

on the edge stack and no vertices are blocked. Then using Lemma B.5 with k “ 0, we can

conclude, that e1 is put on the edge stack and no insides of vertices on the path are blocked.

After this there is a call circui tpv2, in2q, in which v2 is added to the vertex stack and in2 of v2

is blocked.

Induction step (i Ñ i` 1, i ă l):

The edge stack is e1, . . . , ei , the vertex stack is v1, . . . , vi`1 and the insides of the remaining

vertices on the path in j of v j , i` 1ă j ď l are not blocked. ei was added to the edge stack in

a call of circui tpvi , iniq and after that circui tpvi`1, ini`1q is called. There are two cases:

If i “ l ´ 1, there is an edge el “ pvl ,␣inl , v1, in1q which is considered in the for-loop and a

circle including this edge is reported. Because of Lemma B.4, we know that the edge stack is

identical for each iteration of the for loop, so the stack is e1, . . . , el when the circle is reported.

In the case of i ă l ´ 1, following Lemma B.5 with k “ i, ei`1 is added to the edge stack, and

after the call of circui tpvi`2, ini`2q, vi`2 is added to the vertex stack and all insides of vertices

on the remaining path are not blocked.

We did show that any simple directed circle containing star t is reported exactly once in

the call of circui tpstar t, le f tq. After this, we remove star t from G. For better performance

we split the graph into biconnected components before searching for all the circles that contain

the next vertex star t 1 but do not contain any of the previous start vertices.
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C Results Table

variations algorithm # rj wrj # fba wfba acw real time user time storage

5

ALIBI 102 114 130 211 120.26 0.96 s 1.24 s 37488 kb

FP 109 194 128 226 3.96 0.30 s 0.30 s 44624 kb

ILP 102 114 128 210 50.59 25.31 s 95.08 s 725276 kb

ILP with tree 100 124 123 207 4.06 1.19 s 2.29 s 67768 kb

6

ALIBI 137 162 183 352 160.35 1.04 s 1.37 s 37528 kb

FP 147 282 170 333 5.24 0.38 s 0.38 s 51632 kb

ILP 125 158 169 316 59.06 48.76 s 140.95 s 1133216 kb

ILP with tree 124 160 174 322 6.12 2.49 s 9.83 s 137920 kb

7

ALIBI 140 156 224 467 173.78 1.58 s 1.88 s 37484 kb

FP 181 378 213 471 5.65 0.48 s 0.47 s 51768 kb

ILP 136 152 214 456 85.05 105.39 s 330.68 s 1127864 kb

ILP with tree 136 152 218 457 7.03 2.90 s 14.30 s 125540 kb

8

ALIBI 161 176 238 508 175.67 2.98 s 3.26 s 37744 kb

FP 162 326 237 551 6.18 0.55 s 0.53 s 54116 kb

ILP 154 176 225 492 92.34 139.67 s 408.80 s 1748736 kb

ILP with tree 157 178 231 531 8.54 4.18 s 29.61 s 195660 kb

9

ALIBI 195 244 282 685 217.60 1.63 s 1.95 s 37644 kb

FP 227 566 258 743 6.91 0.69 s 0.68 s 58456 kb

ILP 183 240 256 648 96.28 266.99 s 1209.24 s 1888560 kb

ILP with tree 177 244 257 661 8.93 6.65 s 51.32 s 226596 kb

10

ALIBI 217 267 284 572 220.80 2.73 s 3.00 s 37708 kb

FP 242 525 263 605 6.90 0.82 s 0.80 s 61500 kb

ILP 201 247 284 568 140.27 292.23 s 763.43 s 2047496 kb

ILP with tree 203 257 289 569 12.48 11.75 s 68.44 s 324700 kb

11

ALIBI 278 361 411 701 312.83 6.82 s 7.17 s 37912 kb

FP 326 677 367 731 9.67 1.14 s 1.14 s 67568 kb

ILP 228 305 381 679 127.14 1152.01 s 7933.77 s 7170440 kb

ILP with tree 241 313 403 753 22.69 79.96 s 497.43 s 1164428 kb

Table 3: The number of reversing joins (# rj), weighted reversing joins (wrj), number of feedback arcs (# fba),

weighted feedback arcs (wfa), average cut width (acw) rounded to two decimal points, time and storage rounded

to 4 decimal points for the Algorithms on the graphs with variations ranging from 5 to 11. The command

/usr/bin/time -v was used to measure the time in seconds and maximum working memory (maximum resident

set size).

Interestingly, in row 3 and 4 the amount of weighted feedback arcs in the ILP with tree which uses a heuristic is

lower than the one of the ILP . This must not indicate a mistake. We can not ensure that both metrics reach their

minimum, since the ILP is multi-objective.
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