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Abstract

The phylogenetic tree structure is the prevalent way of portraying ancestry in biology. It
displays hierarchically how different organisms (leaves of the tree) presumably evolved
from a shared ancestor (root of the tree). Since even the latest research has not been
able to predict ancestry with certainty yet, the development of new methods to resolve
the differences between predictions made using molecular data and morphological data
requires a way to compare such phylogenetic trees. The most commonly used distance
indicator is still the Robinson-Foulds (RF) metric which gives the number of clades (clade
= list of organisms with a shared ancestor) found in only one of the trees. Despite its sim-
plicity, it gives a good measurement of the similarity, yet unfortunately taking only iden-
tical clades into account and completely disregarding merely similar ones. Therefore, the
metric can yield inaccurate results. A good example is the comparison of a tree with ten
leaves and the same tree but with one outer leaf moved to the other side. The RF metric
categorizes those two trees with a normalized distance of 1 meaning the trees show no
similarity at all, despite its many overlaps in the structure. A metric that still maintains
the advantages of the RF metric but also gives less conservative distance values is the
Generalized Robinson-Foulds (GRF) metric. It utilizes the similarity between clades by
matching them to each other but still preserves the structure of the tree by prohibiting
matches which disregard it. The only disadvantage is that such a problem is NP-hard,
but an Integer Linear Program (ILP) approach can avert this. I implemented a heuristic
which solves the ILP using Lagrangian Relaxation to approximate the GRF distance and
analyzed its usefulness with regard to the example trees from above and in context of
a data set comparing the differences between phylogenetic trees procured from molecu-
lar and morphological data from fossils provided by Beck et al. While the algorithm is
relatively time-consuming, the result values were consistent with the trends which be-
come apparent using different metrics. Moreover, the GRF metric yields continuously
smaller distances than the RF metric and seems to be consistent with other finer distance
indicators.
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1 Introduction

In biology, phylogenetic trees are commonly used to show possible relations between all
kinds of living organisms. A rooted phylogenetic tree displays evolution beginning with
a shared ancestor from which all creatures in the tree originate (the root of the tree) via the
different forms they had passed in the development to their current evolutionary stage
(leaves of the tree). The organisms are represented by so-called taxa. The definition of a
taxon is: "A taxonomic unit, whether named or not: i.e. a population, or group of popu-
lations of organisms which are usually inferred to be phylogenetically related and which
have characters in common which differentiate (q.v.) the unit (e.g. a geographic popula-
tion, a genus, a family, an order) from other such units. A taxon encompasses all included
taxa of lower rank (q.v.) and individual organisms. []" (Zoological Nomenclature. et al.,
1999). It is clear that the closer two taxa are in the tree, the closer they are related pre-
sumably, i.e. they share more physical or genetic similarities. Even though that all living
creatures on earth probably share the same ancestor, it is still unclear how exactly every
species evolved. Therefore, biologists try to reconstruct ancestry based on either molec-
ular or morphological data. Unfortunately, there are still significant differences between
the trees derived from these two approaches. Hence, comparing phylogenetic trees can
be of great importance for the development of new methods or evaluating results per-
taining to ancestry or relations.

Motivation for this Bachelor thesis stems from an inquiry of Beck et al. who recently
proposed a new approach to resolve this conflict between morphological and molecular
estimates of mammal phylogeny (Beck et al., 2018): They inferred the fossil ancestors of
46 different mammals under either maximum parsimony (MP) or maximum likelihood
(ML) for the skeletal, craniodental, dental, maximum preservation, typical preservation
or all character data. They are thus choosing a morphological approach.

For their evaluation, Beck et al. wanted to use several metrics to compare such phy-
logenetic trees checking for similarity between their generated trees and a tree created
by Meredith et al. based on molecular data. In their work, they used different meth-
ods for comparison: the normalized Robinson-Foulds metric, the Subtree Prune and Re-
graft (SPR) distance which gives the minimum of subtrees rearranged to transform the
structure of one tree to the another’s (Hein, 1990), and the distortion coefficient. They
were interested in seeing how the Generalized Robinson-Foulds distance, applied using
Jaccard-Robinson-Foulds metric, as introduced by Böcker et al. would fair in comparison
to the other approaches. Hence, in the following I will introduce an implementation of
a tool to compare phylogenetic trees using said metric and discuss its application to the
data received from Beck et al.
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2 Preliminaries

In this section, definitions which are critical to understanding the content of this work
are introduced.

2.1 Tree structure

Definition 2.1. A vertex is an object in a graph.

Definition 2.2. Let v, w be vertices. A directed edge is a pair (v, w) which represents a connec-
tion from v to w in a graph.

Definition 2.3. Let E be a set of directed edges and V be a set of vertices. A graph G is defined
as a pair (V,E).

Definition 2.4. Let G = (V,E) be a graph and v, w ∈ V . v is a parent of w if ∃(v, w) ∈ E.

Definition 2.5. Let G = (V,E) be a graph and v, w ∈ V . w is a child of v if ∃(v, w) ∈ E.

Definition 2.6. Let G = (V,E) be a graph. G is acyclic if @v ∈ V : v is a (transitive) child of v.

Definition 2.7. Let G = (V,E) be a graph. A root is a vertex w ∈ V with no parents, i.e.
@v ∈ V : (v, w) ∈ E.

Definition 2.8. Let G = (V,E) be a graph. A leaf is a vertex v ∈ V with no children, i.e.
@w ∈ V : (v, w) ∈ E.

Definition 2.9. A tree T is an acyclic graph G = (V,E). A tree is called rooted if it has one
root.

Definition 2.10. Let T = (V,E) be a tree. A tree T ′
= (V

′
, E

′
) is called a subtree of G if

V
′ ∈ V and E′ ∈ E.

From now on, let assume that all (phylogenetic) trees are rooted and store information
only in the leaves (comp. Figure 1) if not stated otherwise.

2.2 Clade

Definition 2.11. Let T = (V,E) be a tree and v ∈ V . A clade C (associated to a vertex v) is a
set of entries procured from all leaves that are children (direct or transitive) of v in T . An alternate
denotation is C(v).

Definition 2.12. Let T = (V,E) be a tree and v ∈ V . A clade associated to v is non-trivial if
v is not the root or a leaf, i.e. ∃w1, w2 ∈ V : (w1, v), (v, w2) ∈ E. Each set of clades is called
non-trivial if it contains only non-trivial clades.

Definition 2.13. Let T = (V,E) be a tree. A set of non-trivial clades for T is complete if and
only if contains a clade for every vertex except the root and every leaf. The complete non-trivial
set of clades for T is denoted by C(T ).
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Definition 2.11 varies from the usual definition of clades used for example in the Biopy-
thon package (Biopython Class Clade 2019): For a tree T = (V,E) and v ∈ V , a clade C(v) is
a subtree with the root v. Note that I will not be using this definition but it should be kept
in mind when looking at the code. Clades according to the definition used in Biopython
will be referred to as tree clades.
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Figure 1: Two phylogenetic trees with ten leaves each (cf. Böcker et al. (2013)) over the
set of entries S = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The only difference is the position of the leaf
with the label "1".

3 Generalized Robinson-Foulds Metric

Note, that this section is based on Böcker et al. (2013).

3.1 Robinson-Foulds Metric

The Robinson-Foulds metric was introduced in 1981 (Robinson et al., 1981). While
being simple, it gives a general idea of the similarity between two phylogenetic trees.
The approach is as follows: Given two trees T1 = (V1, E1), T2 = (V2, E2), the complete
non-trivial set of clades is acquired for each of them and the distance is calculated using
the following formula:

distRF =
∑

C1∈C(T1)

δ1(C1) +
∑

C2∈C(T2)

δ2(C2) (1)

with

δi(C) =

{
1 , C /∈ C(Tj)
0 , C ∈ C(Tj)

(2)

for i 6= j, i = 1, 2.
Obviously, a higher score indicates a greater distance between the trees.

The problem with this metric is that it only searches for identical parts of the trees and
not for merely similar ones. To illustrate this, Figure 1 shows two trees in which the only
difference is a movement of the leaf with the label "1" from the left side to the right of
the tree. One would assume that the trees are fairly similar, however, comparing these
trees with the Robinson-Foulds metric yields a score of 16, the maximum score for trees
of this size. Thence, the metric is, for at least some trees, not incredibly accurate and not
necessarily the best choice in comparing trees such as Beck et al.’s.
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3.2 Generalized Robinson-Foulds Metric

An approach that is less conservative than the original Robinson-Foulds metric, yet
still maintains the arboreal structure, was introduced by Böcker et al. (2013). The so-
called Generalized Robinson-Foulds (GRF) metric operates differently in the sense that it
matches not only identical, but also similar clades according to the following rules:

Define a cost function

δ : (P(X) ∪ {−})× (P(X) ∪ {−})→ R≥0 ∪ {∞} , (3)

with ′−′ being the gap symbol and P(X) being the power set of a set of taxa X over
which the trees are defined. Thus, δ(Y1, Y2) is a way to measure the similarity of two
clades Y1, Y2 ∈ X and both δ(Y1,−), δ(−, Y2) give the cost of not matching a clade from
one of the trees.

For my purposes, I, like Böcker et al., decided to use the Jaccard-Robinson-Foulds (JRF)
metric of order k,

δ(Y1, Y2) = 2− 2 ·
(
|Y1 ∩ Y2|
|Y1 ∪ Y2|

)k
(4)

δ(Y1,−) = 1 (5)
δ(−, Y2) = 1 (6)
δ(∅, ∅) = 0 . (7)

To solve this minimum cost problem, let a complete bipartite graph G with vertex set
C1 ∪ C2 be defined and the weight of an edge (C1, C2), C1 ∈ C1, C2 ∈ C2 be given by

w(C1, C2) := δ(C1,−) + δ(−, C2)− δ(C1, C2) . (8)

Reduces the minimum cost problem to a maximum matching over the graph G.

However, another complication arises as a result: the arboreal structure of the trees could
be violated for matches in conflict. To prohibit this, let an arboreal matching be defined as
a matching for which no matched clades are incompatible. Two matches are incompatible
if a conflict occurs, i.e. when none of these cases holds:

Y1 ⊆ Z1 ∧ Y2 ⊆ Z2 (9)
Y1 ⊇ Z1 ∧ Y2 ⊇ Z2 (10)

Y1 ∩ Z1 = ∅ ∧ Y2 ∩ Z2 = ∅ , (11)

for any matches (Y1, Y2), (Z1, Z2) ∈M.

From now on, each matching that is not arboreal is referred to as a normal matching.
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4 ILP and Lagrangian Relaxation

Unfortunately, this maximum arboreal matching for a complete bipartite graph G is NP-
complete as shown in Böcker et al. (2013). Thus, I try to gain a good approximation
with the help of an Integer Linear Program and Lagrangian Relaxation. These will be
introduced in this section which is based on Bauer (2008) and Andreotti (2014).

4.1 Integer Linear Program

Given two rooted phylogenetic trees T1 = (V1, E1) and T2 = (V2, E2) with complete non-
trivial clade sets C(T1) and C(T2), I now want to introduce an Integer Linear Program
(ILP) formulation on which the tool can be based.

First, let clades of T1 be numbered with Ci, i = 1, · · · , |V1| and clades in T2 with C̃j ,
j = 1, · · · , |V2|. Then let the set of all possible matchesM = {(C1, C2) : C1 ∈ C(T1), C2 ∈
C(T2)} be define and an indicator variable introduced

xi,j =

{
1 , (Ci, C̃j) ∈M
0 , else .

(12)

Additionally, I is a set which contains all pairs of incompatible matches
{(i, j)(k, l)}, (i, j), (k, l) ∈M.

Now the weight function (8) can be used to define the ILP:

max

|V1|∑
i=1

|V2|∑
j=1

w(Ci, C̃j)xi,j (13)

s.t.

|V2|∑
j=1

xi,j ≤ 1 ∀i = 1, · · · , |V1|, (14)

|V1|∑
i=1

xi,j ≤ 1 ∀j = 1, · · · , |V2|, (15)

xi,j + xk,l ≤ 1 ∀{(i, j), (k.l)} ∈ I, (16)
xi,j ∈ {0, 1} . (17)

As it is easily provable that a maximum matching for complete bipartite graphs is fairly
quickly solvable, the part that makes this problem NP-complete has to be the condition
(16). To eliminate this, I now try to get an approximation of the maximum using La-
grangian Relaxation.

However, first a slight modification of the ILP is necessary first: Replace the two sums in
the maximum term with a vector

ω = [w(C1, C̃1), w(C1, C̃2), · · · , w(C1, C̃|V2|), w(C2, C̃1), · · · , w(C|V1|, C̃|V2|), ]
T (18)

times a vector

x = [x1,1, x1,2, · · · , x|V1|,|V2|]
T (19)
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and write (16) as inequality between a vector where every entry equals 1 (here denoted
as 1) and the product of a new matrix D with dimension |I|× (|V1| · |V2|), which contains
the conflict pairs and vector x.

I get the following modified ILP:

maxωTx (20)

s.t.

|V2|∑
j=1

xi,j ≤ 1 ∀i = 1, · · · , |V1|, (21)

|V1|∑
i=1

xi,j ≤ 1 ∀j = 1, · · · , |V2|, (22)

Dx ≤ 1, (23)
xi,j ∈ {0, 1} . (24)

4.2 Lagrangian Relaxation

Lagrangian Relaxation is a technique to simplify ILP problems by dropping severe con-
straints by putting them in the maximum term and introducing a new factor λ, the La-
grangian multiplier. In case of the ILP for the Generalized Robinson Foulds metric, the
severe constraint is (23) and I get:

max
x

ωTx− λT (1−Dx) (25)

s.t.

|V2|∑
j=1

xi,j ≤ 1 ∀i = 1, · · · , |V1|, (26)

|V1|∑
i=1

xi,j ≤ 1 ∀j = 1, · · · , |V2|, (27)

xi,j ∈ {0, 1} . (28)

This is now easily solvable for specific values of λ.

Wanting to find an approximation which is as close as possible to the actual solution of
the original ILP, the problem has to be minimized over λ. This results in a new ILP which
will be called LR(λ):

min
λ≥0

max
x

ωTx− λT (1−Dx) (29)

s.t.

|V2|∑
j=1

xi,j ≤ 1 ∀i = 1, · · · , |V1|, (30)

|V1|∑
i=1

xi,j ≤ 1 ∀j = 1, · · · , |V2|, (31)

xi,j ∈ {0, 1} . (32)

That is the one for which will be solved with the implemented tool.
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Algorithm 1: Main steps of the Subgradient Method

1 Initialise λ0, set t = 0;
2 while stopping criterion not met do
3 Choose a subgradient st ∈ ∂LR(λt) based on λt;
4 if st == 0 then
5 stop;
6 end
7 λt+1 = λt + µtst;
8 end

Figure 2: Algorithm for the general Subgradient Method as described by Bauer (2008).

4.3 Subgradient Method

To solve LR(λ), it was decided to use the Subgradient Method.
To do this, note that LR(λ) is piecewise linear and convex meaning that the following
lemma is applicable.

Lemma 4.1. Let θ : Rn → R be a convex function. A vector x∗ minimizes θ over Rn if and only
if 0 ∈ ∂θ(x∗).

Thus, I want to find a subgradient s ∈ ∂LR(λ) which equals 0 for one λ∗ and the cor-
responding x∗. The general Subgradient Method is described in Algorithm 1 (Figure 2).

According to Andreotti (2014), it is possible to show that (1−Dx∗) defines a subgradient
of LR(λ). I will use this to adjust λ in each step with

λn+1 = max{λn + µn(1−Dxn), 0} . (33)

µ is thereby the step size. Theoretically, each step size that satisfies
∞∑
n

µn =∞, (34)

lim
n→∞

µn = 0 (35)

converges to an optimum solution but the convergence rates are usually quite poor. A
widely used choice of step size is given by Held et al. (1971),

µn =
γn(LR(λn)− LR(x̄))

‖1−Dxn‖
. (36)

x̄ is thereby an estimate for the optimum value, and the factor γn is an arbitrary scalar
which gets adjusted after a number of iterations without change of the bounds. Note that
LR(λn) is also dependable on xn but since x is already dependable on λ it is not necessary
to denote LR(λ) as explicitly dependant on x. LR(x̄) is the solution of LR(λ) for λ equals
zero in every argument and x̄, and functions as a lower bound for our approximation.
Additionally, it is necessary to have a variable for the upper bound, LRbest which gets
adjusted when LR(λn) is smaller than the current value.
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5 Tool Implementation

The tool is available at Gitlab Repository of GRF with Lagrangian Relaxation (2019).

5.1 Requirements

First of all, a few conditions have to be fulfilled to make the tool work:

1. One has to have a functioning Python environment which includes the default
packages, especially numpy, scipy, argparse and math. Recommended are the Ana-
conda or Miniconda packages which are freely available online.

2. The external package Biopython has to be installed in the Python environment. It is
also freely available online.

3. The comparison trees have to be saved in one file in one of the common tree for-
mats (Nexus and Newick are probably the most common, but any type that is
supported by Biopython is sufficient). Alternatively, if one chooses to bypass the
main function and access the method to calculate the Generalized Robinson-Foulds
(GRF) metric directly, it is possible to do this by converting the chosen trees man-
ually in the Biopython tree data type and then using the function LagrangianRelax-
ation.calculateDistanceBetweenTwoTrees().
The first approach is strongly recommended.

Further knowledge of either Python or Biopython is not necessary.

5.2 How to use the tool?

There are two possible ways to use the implementation of the method introduced in Sec-
tion 4.3:
Either, one integrates the method in their own program by importing the files Lagrangian-
Relaxation.py, Output.py, and CladeConverter.py, or one uses Main.py, a method that allows
to easily compare two trees without further knowledge of the code.

Main.py can be used via the terminal as it is implemented using the argparse package
which allows the use of input arguments as explained in the following:

1. file (file):
is a string which gives the file name (with the directory) in which the (at least) two
phylogenetic trees are saved. If the file contains more than two trees, the remaining
are ignored for the calculation. This parameter is not optional.

2. file format (fileFormat):
is a string giving the format the trees are saved in. Any format available in Biopython
will be accepted. This parameter is not optional.
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3. iteration (-iter, - -iterations):
is an integer giving the maximum number of iterations the method will be trying
to approximate the exact GRF. This parameter is optional, and the default value is
1000 iterations.

4. order of the JRF metric (-k, - -JRForder):
is a positive integer which gives the order of the Jaccard-Robinson-Foulds metric.
This parameter is optional, and the default value is 1.

5. stagnation limit (-stag, - -stagnationLimit):
is an integer value for the limit of iteration after which the value of γ is adjusted
according to the amplification factor. This parameter is optional, and the default
value is the maximum of 5 and a tenth of the iteration number in total. The highest
amount permitted is 20.

6. amplification factor (-amp, - -amplificationFactor):
is a float value for adjusting γ. This parameter is optional, and the default value is
1.1.

7. error term (-err, - -errorTerm):
is a float value which allows the accuracy to be adjusted. This parameter is optional,
and the default value is 1E-15.

8. plot (-p, - -plot):
is a flag which, if set, generates a .pdf and a .png file each containing a plot of the
approximation progression.

9. matching (-m, - -matching):
is a flag which, if set, generates two files, one containing the normal and the other
the arboreal matching in the last iteration.

An incorrect access attempt on Main.py will yield the help menu as a result which also
includes all information about input arguments listed above and is, as usual, accessible
via -h or - -help.

5.3 Structure

The tool consists of four parts:

CladeConverter.py which gives methods to convert the tree clade data type from Biopython
to a clade as defined in Section 2.1, LagrangianRelaxation.py which includes the actual
calculation of the GRF with Lagrangian Relaxation, Output.py which contains methods
responsible for any output, and Main.py, a handy main function to access the tool easily
via the terminal.

CladeConverter.py goes through the tree recursively and creates a list of entries in the
leaves which are (transitive) children (ergo a clade) for every single vertex. The meth-
ods used are pretty straight-forward and will not be further explained here.
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Main.py includes the main function Main.Main() which takes a file, reads
the trees using the parser from Biopython, calls the method LagrangianRelax-
ation.calculateDistanceBetweenTwoTrees(), and prints the returned output. Additionally, a
simplified call via the terminal is implemented (see above).

Output.py generates files for the matching or the plot (if the flags are set accordingly).
Moreover, it contains a method which returns the output in the correct format as it con-
verts the results from the solved maximum matching problem, to the desired minimum
distance problem.

LagrangianRelaxation.py is the most critical part of the tool as it contains the calculation
of the GRF metric itself. Getting two trees (tree data type from Biopython) as input, it
generates a list of clades for each of them and then starts the actual calculation by first
creating a matrix containing the incompatibilities and a vector with the weighting for the
JRF metric. γ is set to 2 to begin with. Then the lower and upper bound get approximated
with the desired parameters. In each iteration, the normal matching is calculated by an
external (i.e. not implemented in the tool) solver. Then, an arboreal matching is procured
by checking for each match if it is incompatible with another match. If this is the case, the
match with the lower score from the pair is deleted. Next, the distance is calculated with
the normal matching, an adjustment to the upper bound is made if necessary, and the
lower bound is calculated using the arboreal matching. If the change in upper bound is
greater than 1E-2, a stagnation counter is reset; otherwise it increases until the stagnation
limit is reached and γ is adjusted according to the amplification factor. The calculation
stops if either the desired accuracy or the maximum amount of iteration as specified
via the input parameter is reached. In both cases, the function returns a tuple which
contains the number of iterations until the algorithm terminated, the lower bound and
upper bound values (normalized and non-normalized) and the number of clades in the
two trees combined.

5.4 External resources

As already mentioned, the tool uses a parser and a solver which I did not implement
myself.

The parser is the parser of Biopython) chosen because Biopython) is already designed for
use in bioinformatics and it offers excellent output options should the user desire to print
one of these trees. Furthermore, I imagine users of the tool will use Biopython) already, so
it would be redundant to use another package.

The solver is from the scipy package of the Python library and therefore easily accessible
for nearly any Python user. However, most importantly, it is the only solver I could find
which is designed to solve a maximum bipartite matching problem specifically.
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JIHGFEDCBA IHGFEDCBJA

Figure 3: Two rooted phylogenetic trees T1 (left) and T2 (right) with ten leaves each over
the set of entries S = {A, B, C, D, E, F, G, H, I, J}. The trees are analogous to the ones in
Figure 1.

6 Evaluation

During the evaluation, the focus will be on three aspects: choice of the amplification
factor, accuracy of the approximation, and a comparison to the metrics used by Beck et
al. in their paper.

As a single comparison from Beck et al.’s data (88 clades in total) takes about 30 minutes
for 100 iterations, the running time will not be further analyzed. It can be assumed to be
pretty large for trees with a moderately high clade amount.

6.1 Example Data

To determine how accurate the approximation is for different amplification factors, data
procured by running the code for two trees with ten leaves each, which have the same
structure as those in Figure 1, will be used. The numbers in the trees from Figure 1 are
replaced by letters to help with understanding (Figure 3).

That results in T1 having the complete non-trivial clade set:
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• {I, J}

• {H, I, J}

• {G, H, I, J}

• {F, G, H, I, J}

• {E, F, G, H, I, J}

• {D, E, F, G, H, I, J}

• {C, D, E, F, G, H, I, J}

• {B, C, D, E, F, G, H, I, J}

T2’s complete non-trivial clade set is:

• {A, J}

• {H, I}

• {G, H, I}

• {F, G, H, I}

• {E, F, G, H, I}

• {D, E, F, G, H, I}

• {C, D, E, F, G, H, I}

• {B, C, D, E, F, G, H, I}

In the first iteration the algorithm matches according to the JRF metric and gives the
following matching:

• {I, J} – {A, J}

• {H, I, J} – {H, I}

• {G, H, I, J} – {G, H, I}

• {F, G, H, I, J} – {F, G, H, I}

• {E, F, G, H, I, J} – {E, F, G, H, I}

• {D, E, F, G, H, I, J} – {D, E, F, G, H, I}

• {C, D, E, F, G, H, I, J} – {C, D, E, F, G, H, I}

• {B, C, D, E, F, G, H, I, J} – {B, C, D, E, F, G, H, I}
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Figure 4: Lower and upper bound of the non-normalized result for the ILP for example
trees with ten leaves each for 1000 iterations, stagnation limit 10, k = 1, amplification
factor 1.5 and an allowed error of 1E-15.

Thereby I, J – A, J is in conflict with every other match since I, J is a proper subset of
every other matched clade of T1 but A, J is disjoint from every other matched clade of T2.
Therefore, this match is deleted to get an arboreal matching.

Fortunately, this is already the matching which gives the optimal score as a lower bound,
so that this value only has to be approached by the upper bound. In Figure 4 the progres-
sion of this approximation is illustrated with the dots marking the points at which the
stagnation limit is reached, so that γ gets adjusted.

Table 1 shows in which way the choice of the amplification factor influences the efficiency
of the calculation: Choosing a factor of 1.0 implies no change of γ for the entire calcula-
tion. For this, I get an approximation of the value to a precision of 10−4 for 1000 iterations
which is, while sufficient for most purposes, still not exact. To save computation time, the
process can be sped up by increasing the amplification factor. Even an increase of only
10 percent yields not only a termination, but also one after merely 389 iterations instead
of 1000 from before. Increasing the factor further lets the tool terminate even faster, e.g.
after just 140 for a factor of 1.5. Nevertheless, the improvement is not infinite: setting
the amplification factor too high will make the algorithm unstable; hence it will produce
extremely high values in each step ( 10p, p > 100) until Python is not able to process them
any more; this will result in a runtime error. For the example trees, a factor unsuited in
such a way is 1.6. However, decreasing γ (amplification factor < 1), will slow the process
down and give relatively large intervals between the lower and upper bound.

As I have no information about which trees will be compared in future uses of this tool, I
propose to set the default value for the amplification factor to 1.1: On the one hand, it is
close enough to 1 that it is fair to assume that the stability is still given, and on the other
hand a significant increase in both accuracy and running time is notable in comparison
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to a value of 1.

6.2 Data from Beck et al. (2018)

To analyze the data from Beck et al. (2018), it is prudent to first choose an amplification
factor which will give good results. Because of the aforementioned running time issue,
all evaluating will be done with 100 iterations. The exact solution for the JRF metric is ob-
tained using a tool which calculates it without the Lagrangian Relaxation. It is available
under Github Repository of JRF 2015.

A look at Table 2 shows that, as was already concluded in Section 6.1, the accuracy is
greater for higher amplification factors. Notably, the tool is still working for an amplifi-
cation factor of 2.5. Therefore it is possible to choose a quite high one. As I was unsure
whether this holds true for all trees in the data set, I chose 2.0 as the amplification factor
for the comparison between my results and the ones gained by Beck et al. in their paper.

Firstly, it is notable that upper and lower bound are fairly far from each other indicat-
ing that 100 iterations are not enough to get a reasonable approximation for this data
set. However, the exact JRF distance is still mostly in the given interval. Exceptions are
merely the "skeletal only" predicted ancestors (PA) and the "maximum preservation" PA
for maximum likelihood (ML). Strangely, those two trees are virtually identical as they
share the same clade set, but in Beck et al.’s analyzis they differ in normalized Robinson-
Foulds distance (0.25 to 0.27; Table 3) as well as distribution coefficient (0.94 to 0.93; Table
3).

Generally, the lower and upper bound create an interval with a length of ca. 0.1 for trees
obtained under ML or maximum parsimony (MP) with most parsimonious trees (MPT).
MP with strict consensus, on the other hand, gives incredible large intervals of ca. 0.3; the
algorithm seems to terminate much later for those. On a scale from 0 to 1, a divergence
of 0.3 makes our approximation basically useless as it is not possible to make an accurate
prediction of the distance. The reason behind this could be that the structure of said trees
is not strictly binary as the other trees but include vertices with more than two children.

To illustrate how fast the approximation is, Figure 5 shows the lower and upper bound
of the molecular tree from Meredith et al. (2011) and the first most parsimonious tree
obtained under maximum parsimony for all characters. As seen, the lower bound does
not change while the upper bound converges to the lower bound. Unfortunately, this
lower bound does not correspond to the exact value of the JRF metric which means that
the tool’s approximation may be inaccurate for some trees. It is presumably because of
the choice of estimation value. In further analyzis, the exact value of the JRF will be used
as a stand-in for an exact value obtained via GRF metric.

Despite the suboptimal approximation, the results are generally speaking not bad: As
desired the similarity indicated by the GRF is higher than the one indicated by the RF.
All in all, it seems to be closest related to the SPR distance with values that are mostly
about as close to 0 as the SPR distance is to 1 (Table 3).

Still, the general tendencies of the metrics are also reflected in the results with the
GRF/JRF metric: None of the values could be described as being abnormally out of pro-
portions compared to its counterparts since that they all show all character, skeletal only
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MP nRf SPRd DC LB UB JRF
"all character" PAs MPTs 0.23 0.86 0.94 0.14 0.20 0.15
"all character" PAs strict 0.24 0.88 0.93 0.16 0.47 0.18
"skeletal only" PAs MPTs 0.23 0.86 0.94 0.14 0.20 0.15
"skeletal only" PAs strict 0.24 0.88 0.93 0.16 0.47 0.18

"craniodental only" PAs MPTs 0.46 0.70 0.85 0.25 0.39 0.34
"craniodental only" PAs strict 0.47 0.70 0.84 0.30 0.63 0.36

"dental only" PAs MPTs 0.54 0.63 0.76 0.34 0.52 0.45
"dental only" PAs strict 0.46 0.84 0.93 0.35 0.58 0.45

"max preservation" PAs MPTs 0.23 0.86 0.94 0.14 0.20 0.15
"max preservation" PAs strict 0.24 0.88 0.93 0.16 0.47 0.18

"typical preservation" PAs MPTs 0.46 0.72 0.86 0.23 0.36 0.32
"typical preservation" PAs strict 0.48 0.72 0.85 0.27 0.60 0.35

ML nRf SPRd DC LB UB JRF
"all character" PAs 0.21 0.81 0.95 0.16 0.25 0.20
"skeletal only" PAs 0.25 0.81 0.94 0.17 0.21 0.23

"craniodental only" PAs 0.32 0.81 0.91 0.23 0.35 0.31
"dental only" PAs 0.41 0.74 0.88 0.31 0.44 0.42

"max preservation" PAs 0.27 0.81 0.93 0.17 0.21 0.23
"typical preservation" PAs 0.43 0.74 0.85 0.24 0.38 0.34

Table 3: Summary of results from comparing the tree of Meredith et al. (2011) and trees
of Beck et al. (2018) obtained under maximum parsimony (MP) and maximum likeli-
hood (ML). The tool was used with a stagnation limit of 10, k being 1, an amplification
factor 2, an allowed error of 1E-15 and a maximum of 100 iterations. The results are nor-
malized with the Robinson-Foulds metric (nRF), the lower (LB) and upper bounds (UB)
of the tool’s calculation and the exact Jaccard-Robinson-Foulds metric (JRF) displaying
more similarity for values closer to 0 whereas for the Subtree Prune and Regraft distance
(SPRd) and the distortion coefficient (DC) values closer to 1 represent higher similarity.
For MP the predicted ancestors (PA) are differentiated by trees recovered by strict con-
sensus (strict) and most parsimonious trees (MPTs). The values for different MPTs of one
method do not differ, therefore displayed once.
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Figure 5: Lower and upper bound of the non-normalized result for the ILP for the molec-
ular tree from Meredith et al. (2011) and the first most parsimonious tree obtained under
maximum parsimony for all characters from Beck et al. (2018) for 100 iterations, k = 1,
amplification factor = 2, stagnation limit = 10 and an allowed error of 1E-15.

and maximum preservation predicted ancestors to be the same for maximum parsimony
(giving the highest similarity) with craniodental only and typical preservation PAs being
quite close to each other in score but about double as bad as the former. For MP dental
only gives for all metrics the lowest similarity (Figure 3). For maximum likelihood, the
GRF/JRF metric deviates only about 0.02 from the normalized Robinson-Foulds metric
for all PAs except maximum and typical preservation, but even these show similar trends.

6.3 Further expansion of the topic

To expand the tool further, it is possible to choose a different way of obtaining the esti-
mation of an optimal score. As already discussed, the tool as it is takes the matching and
deletes for every incompatible pair the match which yields a lower score. This method
does not guarantee an optimal arboreal matching of the corresponding matching. For
illustrating purposes, let assume the following example:

Given is a match A which is in conflict with two other matches B and C. A has a higher
score than both B and C, but a lower one than B and C combined. According to the
current implementation, both B and C will be deleted from the matching to gain an
arboreal matching, even though deletion of A would yield a better result.

To resolve this, one could solve the selection of an arboreal matching from the given
matching as a minimum vertex cover in which the vertices represent the matches and
the edges the conflicts. The optimal solution of this minimum vertex cover is then cor-
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responding to the matches which have to be deleted for an optimal arboreal matching.
Problematic is only, that minimum vertex covers are NP-hard (Garey et al., 1979) which
is precisely what was to be avoided. Nevertheless, it could be possible that the given tree
structure reduces the cost of the minimum vertex cover so that it is applicable for our
purposes. This would be a focal point for further research.

Furthermore, it is possible to use the Lagrangian Relaxation not in an Integer Linear
Program but in a Branch and Bound algorithm as was proposed in Fisher (2004).
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7 Conclusion

I have introduced a tool to compare rooted phylogenetic trees using the Generalized
Robinson-Foulds metric with Lagrangian Relaxation. The implementation uses the
Jaccard-Robinson-Foulds metric as a base sample and the Subgradient Method for the
approximation. Different from the original Robinson-Foulds metric, it focuses not only
on sameness, but also similarity to get a better understanding of the distance between
trees. Nevertheless, it still preserves the tree structure. It is easily applicable as the nec-
essary imports are quite straight-forward and do not require much knowledge of either
coding, as well as the packages used. Furthermore, the intake enables a wide range of
tree formats so that the user does not have to convert their data first. Those are significant
advantages since the intended target group for the tool consists mainly of biologists who
presumably do not have extensive skills in the field of computer science.

The results from the analyzis of the data given by Beck et al. show that while the tool is
relatively slow for trees not pertaining a binary structure, the overall approximation is
acceptable and records the same inclinations as the other metrics which were applied to
the trees. Furthermore, the Generalized Robinson-Foulds metric yields shorter distances
than the Robinson-Foulds metric in any case indicating a better detection of similarity.

It could also be interesting to see if any regularity is identifiable for employable amplifi-
cation factors with regard to the stagnation limit and the number of clades.

Still unanswered is the question of how to improve the running time to make the tool less
inconvenient as it does currently take an impractical amount of time to solve the problem
for larger tree structures. One possible approach could be to try optimizing the selection
of the estimated optimal value as this is not always accurate at the moment like it was
discussed in Section 6.3. For this one would have to find a way without having to solve
an NP-hard problem.
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