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Abstract

A method is presented to partition n items into p subsets with the aim of creating item
sets that are as similar as possible. A measure of set similarity is introduced that is based
on the pairwise distances between items. Pairwise item distance can be computed as the
Euclidean distance of numeric item features. It is shown that the similarity of item sets can
be maximized using an integer linear programming (ILP) formulation that was developed in
the context of clustering research and has been used to solve the weighted cluster editing
problem optimally. In this approach, establishing similar sets of items is the direct opposite
of cluster editing and only differs in the direction of the optimization (minimization versus
maximization). An implementation in the programming language R is presented that generates
the ILP and calls one of three solvers to obtain the optimal assignment. Initial tests on
random data show that the quality of set assignment is high; item sets obtain very similar
feature distributions. However, the running times of the ILP solvers do not allow to process
moderately large instances. To improve running time, a heuristic approach is proposed. In
the heuristic, elements are first partitioned into % homogeneous clusters. Elements of each
cluster are forbidden to be assigned to the same set, which improves the running time of the
ILP solvers considerably. Because only similar items are forbidden to be part of the same set,
this approach preserves a high quality of the solution. In most cases, the heuristic identifies
the optimal solution and, on average, the deviation from the optimal objective is less than
0.1% whenever the optimal solution has not been found. Two case studies confirm that both
the exact and the heuristic approach are well-suited to establish similar sets of items in real
applications. The proposed methods can therefore be applied to solve practical problems in
the fields of experimental psychology and psychometrics, among others.



1 Introduction

Common research designs in experimental psychology involve the presentation a set of items
to research participants who have to respond to these items in some way [1]. For example, in
research on human memory, participants might be presented with a list of words they have
to memorize. In a later stage of the experiment, they are presented with a mix of old words —
that they know from the beginning — and some new words. It is their task to indicate whether
they know the words from the initial learning phase (e.g., [2]). To investigate whether there
is a memory-independent threshold influencing when people categorize a word as old rather
than new, one might present one group of participants with a high frequency of old words;
a different group of participants would be presented with a low frequency of old words [3].
Participants tend to respond “old” more often when they are in doubt about their response if
there is a high frequency of old words. This difference in response criterion has been termed
“probability matching” and occurs for old as well as new words [3].

Oftentimes, different experimental conditions are not varied between different research
participants, but within the same person. It is for example possible to vary the relative
frequency of old versus new words within the same participant in two consecutive experimental
sessions. The within-participants approach is popular because it is statistically more efficient
than the between-participants approach [4]. Due to memory effects, however, it is usually
not possible to present the same set of words to the same person more than once. Instead, it
is required that different words are employed in different conditions [1]. However, for the
conditions to be comparable, the different word sets have to be as similar as possible; only
the experimental manipulation should vary systematically between conditions. Therefore,
word sets should be matched with regard to all features that may influence participants’
responses. Such features may include the perceived familiarity of the words or average word
length. Assigning items to different sets while maximizing similarity between sets presents
researchers with a difficult problem [5]. Throughout this thesis, this problem of establishing
similar sets of words or other elements is called item assignment. The term item may refer to
any element that has some quantifiable features. In item assignment, it is assumed that a full
set of items is partitioned into p subsets in such a way that each item is assigned to exactly
one subset and that each subset has the same cardinality. The restriction that each subset
has the same size follows from the full balancing that is usually conducted in psychological
experiments: in each condition, the same number of items is employed to make all conditions
as parallel as possible.

Lahl and Pietrowsky (2006) argued that the assignment of items to sets should be based
on the mathematical distances between item features, for example by computing pairwise
Euclidean distances [1]. To help researchers with the task of assigning items to sets, the
authors provided a Windows computer program that takes as input a table of item features
and outputs a table of item pairs. The output is sorted by item distance, such that pairs of
items that are most similar appear at the top of the table. From top to bottom, the researcher
is advised to assign the items that are closest to each other to different sets. The authors
argue that this procedure results in item sets that are truly equivalent in a mathematical
sense. However, while offering a reasonable algorithmic approach to establishing similar items



sets, there are several problems associated with their approach that preclude a mathematically
optimal assignment. First, the authors argue that based on the table of item distances,
“creating equivalent word lists is simply done by selecting the pairs with the lowest distance
coefficients” (p. 146). However, it is not that simple. One problem is that the closest neighbor
relationship is not symmetric; if one item has another item as its closest neighbor, this second
item might be closer to a different, third item. Thus, when pairing two items, it is possible
that a third item is not paired with its preferred partner. The second-closest neighbor for
this third item may be a bad match, leading to a bad grouping of items. Hence, the greedy
approach of connecting nearest neighbors is not guaranteed to find the global best pairing of
items. Finding global optima in partitioning problems usually corresponds to computationally
hard problems [6]. Second, even if the initial pairing of items were optimal, the authors
do not explain how to assign the paired items to the two item sets. The assignment could
be based on a criterion that optimizes set similarity, but such a criterion is not provided.
The lack thereof can introduce discrepancies between the two sets since the assignment does
not strive for feature similarity. Third, because the assignment is based on pairs of items,
the procedure only allows to create two sets of items. However, the creation of more sets is
necessary when an experiment employs more than two conditions within participants, which
is in fact quite common. Forth, as will be shown in the present thesis, while establishing sets
of items based on a pre-grouping may lead to satisfying results, it is sometimes necessary to
assign very similar items to the same set to obtain the best global partitioning (see Section 4).

1.1 Contributions

This thesis presents a new method to optimize item set similarity based on an objective
developed in Section 2. The objective is based on measures of group similarity developed in
the context of clustering research. After formalizing item assignment as a graph problem, it
will be shown that an integer linear programming (ILP) approach can be applied to solve
item assignment optimally. This ILP was developed to solve the NP-complete cluster editing
problem [7]-[10]. It will be shown that item assignment is the direct opposite of cluster editing
and only differs in the direction of the optimization (minimization versus maximization).
Section 3 presents an implementation in the programming language R [11] that was built to
solve the ILP. It is shown that the quality of the solution is very satisfactory. In Section 4, a
heuristic algorithm is developed that often finds the optimal solution and decreases running
time substantially. Finally, Section 5 presents two case studies applying item assignment to
real data. In the first application, sets of portrait photos are created that are parallel with
regard to trustworthiness, perceived threat, attractiveness, happiness, angriness. In a second
application, different sets of general knowledge questions are created that are parallel with
regard to difficulty. The applications on real data show that both the exact and the heuristic
approach yield satisfying assignments, encouraging their further use.



2 Formalization

In item assignment, a set of n items I = {iy,...,7,} has to be partitioned into p subsets
Sty Sp, 0 < g—‘ An item i is represented by a vector of [ numeric features, i = (fi, ..., fi).
The partitioning has to satisfy the following restrictions:

(1) ;}1 Sp=1
(2) [S1] = [52] = ... =[S

Restriction (1) ensures that each item is assigned to a group; restriction (2) ensures that each
subset contains the same number of items; restriction (3) ensures that each item is assigned
to only one subset. It follows that |Sy| = % VEk € {1,...,p}. The objective is to select a
partitioning that maximizes the similarity of the different subsets, i.e., that leads to the most
similar distribution of item features.

2.1 Cluster analysis and item assignment

Generally, there is a close semantic connection between cluster analysis and item assignment.
In both problems, elements have to be partitioned into distinct groups. When doing so,
however, item assignment tries to accomplish the direct opposite of cluster analysis: in
item assignment, elements are assigned in such a way that groups resemble each other as
much as possible. In cluster analysis, elements in each group (that is, each cluster) are
supposed to be similar only to each other, but should be as different as possible from elements
in other clusters [12]. Given the diametral meaning, establishing similar groups has been
coined “anticlustering”; the term was also chosen because in the case of k-means clustering,
establishing similar sets as opposed to clusters is accomplished by changing the direction of
the problem from minimizing to maximizing the objective function [13], [14]. In the present
thesis, a new objective of item set similarity is defined that will be shown to be the twin
problem of a different clustering problem, i.e., the cluster editing problem. This objective
is derived directly from measures of cluster similarity and may be more apt for the item
assignment problem than the k-means objective, as will be discussed below.

In cluster analysis, the basic unit underlying a measure of group similarity is a distance d;;
quantifying the pairwise dissimilarity between two items ¢ and j based on their respective
feature values [15], [16]. Sometimes, measures of item similarity are used as well, in which
case larger values indicate higher similarity [17]. Measures of item dissimilarity include the
common Euclidean distance. The product-moment correlation coefficient can be used as a
measure of similarity [18]. In this thesis, d;; always represents a distance measure, meaning
that larger values indicate higher dissimilarity.

To quantify the similarity of complete sets rather than pairs of items, measures of intra-group
homogeneity and inter-group separability have been developed in the context of clustering
research [12]. Intra-group homogeneity indicates how homogeneous the elements of a cluster
are. In clustering, homogeneity within clusters should be high. For example, the k-means



objective is to minimize the feature variance within clusters, thus maximizing within-cluster
homogeneity [19]. In item assignment, however, intra-group homogeneity does not need
to be considered. It matters only that the different groups are equally homogeneous; the
ground level of homogeneity itself is unimportant and is determined by the input data. In
contrast, inter-group separability is a more important criterion in item assignment. Inter-
group separability indicates how distinct clusters are and is computed as the distance between
the different clusters [20]. To quantify inter-group separability, i.e., the distance between two
sets A and B, the following measures have been used [21], [22]:

IminlA, B) = g % @

e A, B) =  Jpax , di 2

dav (A B j (3)
o) = [ 5 5

The measures d,,;, and d,,., quantify the distance between two item sets as the minimum
and maximum of pairwise item distances d,;, respectively. Thus, set similarity is measured
on the basis of only a single distance. The measure d,,, quantifies the distance between two
item sets as the average distance between all items that are assigned to different sets. It
takes into account the overall characteristics of all elements in each set, and it is low when
item sets as a whole are similar to each other. Therefore, it is less susceptible to outliers and
potentially preferable to measures based on only a single distance [16]. In particular, d,,, has
been argued to be preferable to d,,;, and d,,., when comparing sets of items in psychological
tests [22]. Hence, the objective function to be optimized in item assignment is developed by
extending dg,g.

2.2 The optimal solution of item assignment

In item assignment, p sets have to be created where p can be larger than 2. Thus, dg,g —
that is used to compare two sets — has to be extended to the comparison of p sets. First,
we recognize that for a given item set I and a subset number p, each created subset has
the same cardinality iy Therefore, the normalizing factor in d,,, has the same value for
each possible assignment and does not need to be considered when comparing the quality
of different assignments. Hence, without losing any information, we construct the distance
measure dg,, as a substitute of d,,, in the context of item assignment:

doum(A, B) = > > dy (4)

i€A jEB

In the special case of two sets, dg,, is the sum of all pairwise distances of items that are not



assigned to the same set. To extend this measure to p sets, we let x;; denote whether two
items 7; and ¢; have been assigned to the same item set:

i#j, me{l,..,p} (5)

ZL'Z']‘

_{1 if i; € S Aij € Sy

0 otherwise

Then, we define dpgyn, as the summed distance between items that are not part of the same
item set in the case of p item sets:

dpsum = Z dij (1 - xz’j) (6)

1<i<j<n

Larger values of d,s,, indicate a lower total similarity of all p item sets. Hence, equation (6)
defines the objective function in item assignment: minimizing d,s,,, while ensuring that (a)
the required number of sets is created, (b) all sets are of equal cardinality, and (c) all sets are
mutually disjoint is defined as the optimal solution of item assignment.

Note that minimizing d,s,, is equivalent to maximizing the sum of all distances between
items that are assigned to the same set. To appreciate this equivalence, consider the total sum
of paired distances of all items. This total sum can be split by whether items are assigned to
the same set or not. Let dg,,, denote the sum of distances of items that have been assigned
to the same set:

dssum = Z dij Lij (7)

1<i<j<n

Then, let d;s,,n denote the total sum of all item distances:

dtsum = Z dij = dpsum + dssum (8)

1<i<j<n

The total sum of all item distances dyg,,, is not influenced by the assignment of items to sets.
Hence, it is clear that minimizing d,s,,, simultaneously maximizes dggn. Therefore, instead
of minimizing dps,m, We can also assign items with the objective of maximizing dsgy,,. Both
procedures will lead to the same optimal item assignment z;;.

The following two sections explain how to obtain the optimal solution to item assignment
based on a graph formulation that can be solved using ILP. In this formulation, the optimal
solution will be obtained by maximizing dgs, from equation (7).
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2.3 Item assignment as a graph problem

In the graph formulation of item assignment, a problem instance is an undirected complete
graph G = (V, E) [23]. V is the set of vertices and each vertex represents an item ¢ € I.
E is the set of edges and represents the relationships between items. Edges are unordered
pairs {i,j} of vertices. The short form ¢j will be used to refer to edges. A cost function
w: E — RT is defined that assigns a weight to each edge. In item assignment, the weight of
each edge is simply the distance between the two items that are connected by the edge, i.e.,
w(ij) = d;;. This is because the objective function in equation (7) directly works on item
distances.

To solve item assignment, we have to select a subgraph G’ = (V, E’) of the complete supergraph
G. According to the objective function in (7), the optimal solution maximizes the total sum
of pairwise distances of items in the same group. Therefore, in graph terms, the optimal
solution is a subgraph G’ that contains a subset £’ C F that maximizes the sum of the
weights of the edges. Additionally, the solution must consist of disjoint cliques; in a graph
clique, all vertices are connected by an edge, but there are no edges connecting different
cliques. Hence, cliques in the subgraph E’ represent item sets. One has ij € E' & z;; =1
and ij ¢ E' < x;; = 0 where z;; is defined as in (5); thus, in the graph formulation of item
assignment, we will also use variables x;; to indicate whether two elements are part of the
same clique. When setting the vertex set V' = {1, ...,n}, we obtain the following form of the
objective:

maximize Y w(ij) x; (9)

1<i<j<n

2.4 Item assignment and cluster editing

The objective function in equation (9) has a striking resemblance to the objective function
used in the weighted cluster editing problem [9], [24]. In weighted cluster editing, one is
given a graph G = (V, E) and a similarity function s : (g) — R describing the relationships
between elements [8]. In this graph, two elements are connected by an edge if and only
if the connected elements are deemed to be similar to each other; this is usually the case
if the similarity exceeds some threshold ¢, i.e., if s(uv) > t for u,v € (‘;) 8], [25]. The
problem definition is to “clean” the initial graph, that is, to construct a graph consisting of
disjoint cliques that are interpreted as clusters. Weighted cluster editing and its unweighted
counterpart have also been studied under different names such as correlation clustering [26],
the clique partition problem [9], and transitivity clustering [25]; the unweighted version of
this problem has been shown to be NP-complete several times (e.g., [26]; see [27]).

To transform the initial graph G into a cluster graph G’ = (V, E’), edges are inserted and
deleted in such a way that the cost of inserting and deleting edges is as small as possible.
The editing function cost(G — G') defines the costs associated with transforming the initial
graph into a cluster graph as follows (cf. [8]):
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cost(G = G )= Y s(uw)+ > s(uv) (10)

uweE\E' weE\E

If an edge uv is part of the initial graph, its deletion is associated with a cost of s(uv); if
an edge uv is not part of the initial graph, its insertion is associated with a cost of s(uwv).
Thus, the cost function punishes the insertion of non-existing edges (i.e., inserting an edge
that connects dissimilar elements) and the deletion of existing edges (i.e., deleting an edge
that connects similar elements). Minimizing the total cost of insertions and deletions while
creating a graph of disjoint cliques is the objective in weighted cluster editing.

The objective of weighted cluster editing as defined in equation (10) is often given in a different,
but equivalent form that can be used directly as the objective function in an ILP formulation
to solve the problem optimally [9], [24], [28]. In this problem formulation, the input graph is
a complete graph G = (V, E); edges that were missing in the previous formalization are now
represented by negative edge weights. Thus, a weight function w’ : E — R assigns a negative
weight to an edge uv if the two elements u and v are categorized as dissimilar. Positive
edge weights are assigned if two elements are categorized as similar. If we assume that the
categorization into similar and dissimilar elements depends on a threshold t € [0, 00), the
weight function w’ is defined as follows [25], [28]:

w'(uv) = s(uv) —t (11)

When defining variables z,, = 1 if wv € E and z,, =0 if wv ¢ E', and V = {1,...,n}, the
optimal solution for weighted cluster editing is then given by the following objective that
also has to be optimized under the restriction that the output graph G’ = (V, E’) is a union
of disjoint cliques [9]:

maximize Y w'(ij) x; (12)

1<i<j<n

The close relationship between item assignment and weighted cluster editing is now apparent:
The objective function (12) actually has the same form as the objective that was derived for
the item assignment problem in (9). The function only differs with regard to the definition of
the weight function; in weighted cluster editing, we have positive and negative edge weights,
whereas in item assignment we only have positive distance values as edge weights. As an
additional correspondence, the objective has to be maximized under the restriction that the
created subgraph is a union of disjoint cliques. In item assignment, there are some additional
restrictions that have to be considered, however. First, it is required that a pre-defined
number of cliques is created; in the standard cluster editing problem, the number of cliques
is returned as part of the mathematically optimal solution [29]. Second, each clique has to
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contain the same number of vertices.

2.5 Solving item assignment using integer linear programming

In 1989, Grotschel and Wakabayashi [9] introduced an ILP formulation to solve the weighted
cluster editing problem. The objective of their ILP is given by equation (12). To ensure that
the output graph is a union of disjoint cliques, they introduced so called triangular constraints
as part of their ILP. More recently, in 2017, Bulhoes, de Sousa Filho, Subramanian and Lucidio
dos Anjos [10] developed p-cluster editing, an extension of Grotschel and Wakabayashi’s
ILP that enforces the creation of a user-specified number p of clusters (also see formulation
F1 in [30] for a concise version of the ILP proposed in [10]). They used decision variables
{y1,...,yn} € {0,1}, denoting whether each vertex is a “cluster leader”. Their constraints
ensure (a) that there are exactly p cluster leaders and (b) that each vertex is only connected
to one cluster leader. The restrictions used in their ILP are given as follows:

Tijg — T+ e <1, Vi, keVii<j<k, (14)
xij+mik_$jk§17 Vi7j>k€‘/7i<j<k’ (15>
yp > 1= VieV,j>2, (18)
1<j
JjEV
zi; € {0,1}, Vi,j e Vi<, (20)
Y; S {07 1}7 \V/j eV. (21)

Here, (13) - (15) are the triangular constraints originally developed by Grotschel and Wak-
abayashi. The constraints (16) - (19) ensure that exactly p cliques are created; constraints (20)
- (21) ensure that the decision variables are binary. To solve item assignment, we additionally
have to make sure that the same number of items C' := % is assigned to each of the p clusters.
The following constraint enforces this restriction by ensuring that each item is connected to
exactly C' — 1 other items:

> ayy=(C-1), Vie{l,...,n—1} (22)

1<i<j<n
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2.5.1 Differences between cluster editing and item assignment

Formally, the formulation of item assignment as presented here is very similar to the weighted
cluster editing problem: the same objective function is used, and the ILP only adds one
additional constraint in comparison to the ILP presented in [10]. To prevent any confusion
as to why the same formulations leads to semantically different results — in the one case,
group similarity is maximized, and in the other case, group separation is maximized —, it
is appropriate to clearly name the differences between the problem formulations of item
assignment and cluster editing.

In weighted cluster editing, edge weights are based on a similarity measure, such that larger
values indicate a stronger connection between elements. Hence, maximizing a similarity
measure leads to a clustering of elements, but maximizing a distance measure establishes
similar groups. This leads to an interesting insight that will be employed in Section 4: when
minimizing objective function (9) with the restrictions posed in (13) - (22), we obtain a
clustering of the elements, such that elements within each cluster are homogeneous and
different from elements in other clusters. Thus, item assignment is not only the semantic
opposite of clustering, but also the mathematical opposite of cluster editing.

One additional difference between item assignment and classical cluster editing is that negative
edge weights are used in cluster editing if two elements are thought to be dissimilar to each
other. This ensures that a reasonable clustering is found even when the number of clusters is
not specified a priori. If there were only positive edge weights, all elements would be assigned
to the same large cluster because such an assignment would maximize the objective. In item
assignment, it is possible to work only with positive distance values because the restrictions
in (13) - (22) ensure that the desired number and size of clusters is created.
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3

Implementation

The solution to the item assignment problem was implemented using the statistical program-
ming language R [11]. It can be retrieved as an installable software package anticlust (version
0.1.0) from https://github.com/m-Py /anticlust. The highest level function item_assignment
receives a data frame of item features — where rows represent items and columns represent
features — and solves the problem instance by solving the ILP that was derived in the previous
section. To this end, the following steps are taken:

1.

Based on the item features, a quadratic matrix of between-item distances is computed.
The default distance measure is the standard Euclidean distance. When a different
distance measure is preferred, the user can circumvent the automatic computation
and directly pass a matrix of distance measures to a lower level function (see [18] for
an overview of some common distance measures used in clustering). When using the
default distance measure, it is possible to request a standardization of all features to
ensure an equal weight of each feature in the resulting distance [18]. When features are
standardized, each feature is transformed in such a way that the feature mean is 0 and
the standard deviation is 1. In this case, the Euclidean distance is not dominated by
features that have the largest numeric values.

The distance matrix is transformed into a vector of item distances d;;. This vector is

1 .
%, where n is

needed as the objective function in the ILP formulation; its length is
the number of items.

The ILP is constructed. It solves the system of inequalities Az ~ b for the vector x
representing the binary decision variables. Decision variables encode the connection
between each pair of items (x;; € {0,1}), or the leadership status of each item (y; €
{0,1}), yielding © = (212, 13, ..o, Tn—1n, Y1, ---, Yn)- The relationship ~ either indicates
equality, lower equal, or greater equal, depending on the direction of a constraint. In
the matrix A, each row represents a constraint and each column represents a decision
variable. Each cell of the matrix is the coefficient of a decision variable for a given
constraint. Since most constraints only affect few variables — in almost all cases, a single
constraint only affects a maximum of four decision variables — most coefficients are zero
and the matrix A is very sparse. For a problem size of 20 items, the constraints in
(13) - (22) are realized in a 3651 x 210 matrix. In this matrix, only 12,390 of 766,710
entries are non-zero (2%). The vector b in the righthand-side of the equation Az ~ b
represents the objective. It contains the distance values d;; and n zeros. Inserting zeros
ensures that the decision variables representing the leadership status of each item do
not affect the objective function. So we have b = (dya, d13, ..., dy—14,0, ..., 0).

The ILP is solved for x using one of the commercial solvers gurobi or IBM CPLEX, or
by using the open source GNU linear programming kit. The solvers are treated as black
boxes that are fed with the ILP and return the optimal assignment for x. They are
called by the package anticlust using one of the interface packages gurobi, Rcplex,
or Rglpk, respectively.

Based on the optimal vector x that contains information of the pairwise connectivity of
items, the assignment of items to groups is deduced.
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Figure 1: Illustrates an optimal group assignment in a 30-to-2 problem instance. Each item
has two randomly generated features f1 and f2.

3.1 Quality of the solution

A first test illustrates the working of the algorithm. In this example, 30 items were assigned
to two groups (referred to as a 30-to-2 problem in the following) using IBM CPLEX. Each
item was represented by two features; features were generated as random variates from a
uniform distribution in [0, 1]. Figure 1 illustrates the item-to-group allocation of the items.
A visual inspection suggests that the distribution of item features is rather similar across the
two groups. Table 1 quantifies group similarity using the most common descriptive statistics
employed in psychology [31]. We can see that measures of centrality (mean, median) and
dispersion (sd = standard deviation, range, minimum and maximum) are indeed very close
to each other. This initial test therefore illustrates the usefulness of optimizing objective
function that was derived in the previous section.



16

Table 1: Descriptive statistics by group in a 30-to-2 prob-

lem.

f1 f2

Group 1  Group 2 Group 1 Group 2
mean 0.58 0.58 0.47 0.47
sd 0.3 0.3 0.31 0.33
median  0.63 0.67 0.34 0.38
min 0.12 0.02 0.03 0.03
max 1 0.94 0.94 0.99
range 0.87 0.92 0.9 0.96

3.2 Running time

The ILP developed by Grotschel and Wakabayashi [9] is known to effectively solve the cluster
editing problem despite its NP-complete nature. In a lot of cases, their ILP is already
solved optimally by its linear relaxation [32]. When using preprocessing techniques, it is
even possible to solve instances that have more than 1,000 vertices [7], [33]. Unfortunately
however, solving item assignment using the ILP described in the previous section does not
run efficiently even for relatively moderate problem sizes. Figure 2 illustrates the running
time for problem sizes of up to 32 items. As in the previous example, items had two features
that were generated as random variates from a uniform distribution in [0, 1]. IBM CPLEX
was used to solve the instances on an Intel Core i7-7700 computer (3.60GHz x 8) with 8 GB
RAM running Ubuntu 16.04 LTS. The instances described in the following sections were also
solved using the same setting.

Figure 2 shows that in the case of the two group problem, instance sizes up to 20 items can
be solved exactly within a few seconds. However, the 30-to-2 problem already took almost
an hour to finish (2975 seconds), and the 32-to-2 problem took almost 6 hours to finish.
Larger problem instances did not finish at all on the test computer because the problem tree
that was generated by the solver consumed too much memory. Creating three groups was
even slower in comparison to the 2-group case. The factor by which the 3-group case was
slower is not immediately clear from inspecting Figure 2 because the y-axis is on a log-scale.
However, solving the 18-to-2 problem was ten times faster than solving the 18-to-3 problem.
The 24-to-3 instance already failed on the test computer.
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Running time of exact item assignment
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Figure 2: Illustrates the running time of the ILP in the 2-group and the 3-group case. The

y-axis is on a log-scale due to the exponential increase in running time with increasing problem
size.
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4 Heuristic

Whereas the item assignment algorithm produces results of high quality, the running time of
the ILP solver does not allow to process large problem instances in a reasonable time. Even
though instances of several hundred items may not be expected in experimental psychology,
it would still be desirable to solve instance sizes of up to 50 or 60 items. For this reason, a
heuristic framework was developed to solve larger instances while preserving a high quality
of the solution. The heuristic is based on the following considerations:

« Given that item sets should be as similar as possible, it is reasonable to assign very
similar items to different sets.

« Disallowing very similar items to be assigned to the same set can be accomplished by
setting the weight of their connecting edge to —oc in the ILP framework [7].

» Setting some edge weights to a large negative value may improve the running time of
the ILP because an uneven distribution of edge weights tends to decrease running time
in weighted cluster editing [7], [27].

The following heuristic is based on these considerations:

Heuristic framework to solve item assignment
Given: n items that have to be assigned to p groups
1. Determine the pairwise distances between all items
2. Create a clustering of similar items; each cluster has p elements, resulting in % clusters
3. Set the between-item distance of items in the same cluster to —oo
4. Solve item assignment on the revised distances as described in Section 2

Figure 3 illustrates the working of the heuristic for n = 26 and p = 2. Similar items that are
part of the same precluster on the left side are never part of the same group on the right side.
Given that only similar items are forbidden to be part of the same group, this procedure
likely preserves a good solution. However, the optimal item assignment might require to
group items together that are part of the same precluster; therefore, this heuristic is not
guaranteed to find the optimal solution.

4.1 Equal-sized cluster editing

The heuristic presented above may make use of different clustering algorithms to create the
initial preclusters. Depending on the instance size, exact or heuristic clustering algorithms
could be employed. For the example in Figure 3, exact weighted cluster editing was used. As
stated in Section 2, item assignment is the mathematical opposite of cluster editing. Therefore,
the same ILP that was used to solve item assignment can be used to obtain a clustering while
ensuring the same number 2 of elements per cluster. However, instead of maximizing the
objective function, the objective function has to be minimized. For the example in Figure 3,

this procedure created an optimal clustering of 13 clusters with 2 elements per cluster. Note
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Figure 3: Illustrates the proposed heuristic to solve item assignment for a 26-to-2 problem
instance. Based on a preclustering into 13 clusters, pairs of similar items belonging to the
same precluster are assigned to different groups subsequently.

that this procedure creates useful clusters even though there are no negative edge weights in
the problem instance. In contrast, classical cluster editing — that does not prescribe a cluster
number and cluster size — relies on the presence of negative edge weights to identify dissimilar
vertices. In this equal-sized cluster editing, external constraints enforce the cluster number as
well as the cluster size; there is hence no need to incorporate negative edge weights. Solving
equal-sized cluster editing can be accomplished using the R package anticlust.

Equal-sized cluster editing seems to work rather efficiently in comparison to the running time
of item assignment. Figure 4 shows that instance sizes up to 60 items are solved in less than
a minute. Hence, minimizing the objective function in (9) is much faster than maximizing it.
Note that for larger instances of more than 50 items, the creation of the constraint matrix is
actually the major contributor to the running time and the final matrix consumes quite a lot
memory. The creation of instances larger than 60 items may even fail. This is, however, a
limitation caused by the current implementation of the constraint matrix in anticlust and
will be reworked in the future.

As shown in Figure 4, creating 5 clusters is also efficient for instance sizes up to 60 items.
Given that this n—to—% case can be used as a preclustering step for the proposed heuristic
for solving item assignment, this result is encouraging. If disallowing items of the same
precluster to be assigned to the same group decreases the running time of the subsequent
item assignment ILP, larger instances of item assignment should be solvable as well.



20

Running time of equal-sized cluster editing
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Figure 4: Illustrates the running time of the ILP solving the equal-sized weighted cluster
editing problem. The y-axis is on a log-scale. The items consisted of two features that were
drawn from a uniform distribution in [0, 1]. The running time is shown for the case of two
groups and the case of 7 groups; the latter may be used as a preprocessing step for a n-to-2
item assignment problem.



21

Running time of heuristic item assignment
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Figure 5: Illustrates the running time of the proposed heuristic to solve item assignment
for the 2-group and the 3-group case. Again, items consisted of two features that were
drawn from a uniform distribution in [0, 1]. Due to the preclustering, larger instances can be
processed in a reasonable time. The running times incorporate both solving the preclustering
as well as the item assignment ILP.

4.2 Running time of the heuristic

Solving item assignment based on a preclustering leads to a significant increase in efficiency
as compared to solving it without these additional constraints (see Figure 5). Instances up to
50 items can be solved in less than a minute in the 2-group case, and instance sizes up to 60
items can be solved within acceptable time. In contrast, solving a 30-to-2 instance almost
took an hour when the unadjusted edge weights were used. Again, the 3-group case is slower,
but preclustering allows to process more items for this case as well.

4.3 Quality of the heuristic solution

To compare the objective value of the exact solution and the heuristic approach, 340 tests
were run. Instance sizes varied between 6 and 26 items and items were assigned to 2 or 3
groups. For each run, items were generated as two features created from a random uniform
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distribution in [0, 1]. Table 2 illustrates how often the heuristic found the optimal solution by
item number and group size. Each combination of group size and items was tested in 20 runs.

Table 2: Ilustrates the heuristic’s success rate in finding
the optimal solution.

Items 6 8 9 10 12 14 15 16 18 20 21 22 24 26

Groups
2 1 .95 1 .95 .95 90 .90 .95 85 .30 .65
3 .95 .90 .85 .90 .65 .55

Across all 340 runs, the heuristic algorithm found the optimal solution 284 times (83.53%).
In the 2-group case, the optimal solution was identified in 85.45% of all runs; in the 3-group
case, the optimal solution was identified in 80% of all runs. Table 2 also shows that the
heuristic’s success rate tended to decrease with increasing instance size. When the optimal
solution was not identified, the heuristic objective was 99.92% of the optimal objective—on
average. In the worst case, the heuristic found a solution whose objective value was 98.94%
of the optimal solution. Thus, the heuristic performed very close to optimum on the tested
instances.



23

5 Case studies

The previous tests of the item assignment algorithm were all performed on artificial data.
The present section illustrates two case studies where the quality of the solution can also be
evaluated on the basis of real applications.

5.1 Case study 1: Matching portrait photos

The creation of similar stimulus sets for psychological experiments was the primary motivation
for the item assignment algorithm. As an example of this application, the first case study
is concerned with assigning portrait photos to different sets. Ma, Correll and Wittenbrink
(2015) released a data base with 158 images to researchers of psychology [34]. Their images
include photos of persons of different skin colors that have been rated by test persons on
several dimensions such as the persons’ trustworthiness.

Imagine we wish to study how people’s evaluation of a crime is affected by skin color and
gender. Based on previous research, we might hypothesize that punishment for crimes is
most pronounced for male black persons who commit violent crimes (see [35] and [36]). To
investigate this hypothesis, we might present the photos to two groups of research participants.
In both groups, several photos of white and black men and women are presented. Fach photo
is accompanied by a description of a hypothetical crime the person is said to have committed.
In the first group, each photo is paired with a story informing the research participant that
the person on the photo has committed a violent crime, like robbing a bank or beating up a
person. In the second group, each photo is paired with a story informing the participant that
the person on the photo has committed a financial crime like avoiding taxes. In dependence
of skin color, gender and crime type, we might analyze the perceived negativity of the persons
and how much punishment they deserve for committing the crimes.

Instead of presenting distinct groups of research participants with the two kinds of crimes, a
statistically more efficient approach is to present each participant with both kinds of crimes
[4]. In this case, it is desirable that photos in both conditions are similar with regard to
any features that might influence people’s evaluations of the persons in the photos. The
photos in the data base by Ma et al. (2015) contain ratings on several dimensions that should
be parallel between sets; for this case study, six features were considered (trustworthiness,
perceived threat, attractiveness, happiness, angriness, and age).

Table 3 shows that the data base by Ma et al. (2015) contains at least 36 photos for each
combination of gender and skin color (black and white). To obtain the same number of
photos in each item set, 36 photos were selected for each combination of gender and skin
color; when more than 36 photos were available, some photos were discarded at random.
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Table 3: Number of photos by gender and skin color in
the data base by Ma et al. (2015).

Black White

Female 48 37
Male 37 36

A heuristic 36-to-2 assignment was conducted for each of the four combinations of gender and
skin color. Prior to assignment, features were standardized. Table 4 shows that the feature
means within each combination of skin color and gender are very similar. Thus, the heuristic
algorithm successfully established similar sets of photos.

Table 4: Tllustrates the results of the assignment in case
study 1. Photos of were assigned to two groups within
each combination of skin color [black, white] and gender
[female, male|. Each group of photos consists of 18 photos.
Cells display the group average for each feature that was
used in item assignment.

Skin color Gender Group Trustworthy Threat Attractive Happy Angry  Age

Black Female 1 3.50 2.30 3.03 2.65 2.55  26.92
Black Female 2 3.51 2.32 2.99 2.63 2.58 26.89
Black Male 1 3.55 2.55 3.21 2.61 2.55  27.57
Black Male 2 3.54 2.54 3.18 2.56 2.58 27.47
White Female 1 3.59 2.19 3.41 2.51 2.66 26.00
White Female 2 3.58 2.20 3.32 2.51 2.64 26.31
White Male 1 3.28 2.57 2.98 2.39 2.67 26.05
White Male 2 3.28 2.59 2.98 2.38 2.69 25.98

5.2 Case study 2: Parallel tests

Another interesting application of item assignment is the creation of parallel tests [37]. The
second case study therefore applies item assignment to 30 multiple-choice items from a
general knowledge test [38]. These 30 items were presented to 1,142 test-takers, allowing us
to determine empirical item characteristics that can be used as features in item assignment
[39]. In this case study, item assignment is used to obtain two and three similar test sets,
respectively. Such an application is of interest when creating several versions of a university
exam that are presented to different cohorts of students. Due to potential item sharing, it
might not be desirable to present the same test items in consecutive examinations, but it
might be desirable that the different versions of the test do not differ too much in difficulty.
The difficulty of a multiple-choice item is simply the proportion of test-takers who solved
the item correctly. Hence, its range is in [0, 1] and larger values indicate easier items. In
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Figure 6: Illustrates the results of the assignment in case study 2 with item difficulty and item
discrimination as assignment criteria. The 3-group problem was solved using the heuristic
detailed in Section 4.

addition to item difficulty, item discrimination is another property of test items that is often
considered when constructing parallel tests. Item discrimination is an indicator of item
quality. It is defined as the correlation between the item (coding: 1 = solved; 0 = not solved)
and the total test score. As item discrimination is simply a correlation coefficient, its range
is in [-1, 1]. Semantically, item discrimination indicates how well the item distinguishes
between test-takers of high and low ability. The higher the discrimination, the better. If item
discrimination is near zero, it does not offer any information on a test-taker’s ability. If item
discrimination is negative, high ability test-takers tend to answer the item incorrectly more
often than low ability test-takers; items of negative discrimination should be avoided.

The 2-group and the 3-group problems were solved for the 30 multiple-choice items, thus
creating two or three parallel tests, respectively. Item features were standardized before the
assignment was conducted. The 2-group case was solved exactly in about 90 minutes on the
test computer; the heuristic also identified the optimal solution in 2 seconds. The 3-group
case had to be solved using the heuristic. Figure 6 illustrates the assignments in two scatter
plots. The results are very satisfying: features are distributed very evenly in two and three
groups, respectively (see Table 5 and Table 6).
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Table 5: Item difficulty and item discrimination by group
(Case study 2, 30-to-2 problem, optimal assignment).

Difficulty Discrimination

Group 1 Group 2 Group 1 Group 2
mean .55 R5%) 33 33
sd 13 13 .07 .07
median .55 57 .32 .33
min .24 .28 .23 22
max .72 .74 .49 .46
range A8 45 .26 24

Table 6: Item difficulty and item discrimination by group
(Case study 2, 30-to-3 problem, heuristic assignment).

Difficulty Discrimination

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3
mean .bb .5b .5 .33 .33 .33
sd 14 13 13 .08 07 .07
median .58 .H6 .56 .32 .32 .32
min 24 .33 28 23 23 22
max 72 .74 71 49 45 46
range A48 40 42 .26 21 24
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6 Discussion

This thesis presents a method to assign elements to sets with the aim of creating sets that
are as similar as possible. The problem was termed item assignment and has its roots in
establishing experimental conditions in experimental psychology. To solve item assignment,
an ILP was employed that was developed in the context of clustering research and has
been used to solve the weighted cluster editing problem optimally [9], [10]. In contrast to
previous algorithmic approaches to establish similar sets of items (e.g., [1]), the present
method introduced and optimized an objective of set similarity. The approach led to very
satisfying results on random and real data. Since the running time of the exact solution did
not allow to process moderately large instances, a heuristic approach was developed that
was much faster and often found the optimal solution. When the heuristic did not find the
optimal solution, it nevertheless identified an objective that was very close to optimal; on
average, the heuristic objective missed the optimal objective by less than 0.1% whenever it
was not found. Additionally, the heuristic performed well on real data in two case studies,
encouraging its use to solve real-life problem instances.

Beyond creating similar sets in experimental psychology, there are additional potential
applications of item assignment in psychology or other research areas. As was suggested
in case study 2, creating parallel tests is an interesting application. By correlating two
parallel test versions that are as similar as possible, it is possible to obtain an estimate of
test score reliability, i.e., the precision with which a test measures knowledge or ability [37].
In machine learning, item assignment may be used to create validation sets in the case of
k-fold cross-validation (see [40]). In k-fold cross-validation, it is desirable that the different
validation sets are as similar as possible with regard to the distribution of the predictor
features, because observed predictive performance does not only depend on “true” predictive
accuracy, but also on the range of the predictors’ features.

6.1 Limitations

Several limitations have to be considered with regard to the present work. The first limitation
concerns the problem formulation itself. First, it became apparent that optimizing the item
assignment objective function was not done efficiently. This was somewhat disappointing
because the ILP algorithm that was employed had previously been used to efficiently solve
the cluster editing problem [7], [33]. Given that equal-sized cluster editing was solved much
faster than item assignment, we can deduce that the difference in efficiency was caused by the
different objective: maximizing group similarity obviously worked less well than maximizing
group dissimilarity. For moderately large instances, the problem tree that the ILP solver
generated became very large. Apparently, it was not possible to cut a lot of branches of the
tree when searching the problem space. For cluster editing, the tree-cutting approach seems
to work much better. However, given that the heuristic also produced very satisfying results
for instance sizes up to 60 items, it is likely that the implementation presented here will
support researchers with problems that arise in practice. In the end, as in cluster analysis,
the quality of the assignment has to be evaluated by the user and an exact solution may not
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always be required.

A second limitation concerns the implementation presented here. Solving item assignment was
implemented as a package for the statistical programming language R that is used increasingly
often by researchers in psychology and other fields. A new R implementation was created
because it is most likely useful to the target users. However, note that efficient and mature
implementations of cluster editing already exist for other programming languages [7], [28],
whereas the new anticlust package has to be developed further. For example, the current
version (v0.1.0) has a limitation on the instance sizes that can be processed because the
constraint matrix of the ILP becomes very large for moderately large instances. This is
because all constraints are enumerated and for large instances, adding all 3 - (g) triangular
constraints alone becomes infeasible [9]. More efficient implementations only add inequalities
if they are violated [7]. Even more importantly, the constraints matrix is not yet implemented
as a sparse matrix in anticlust even though most entries are zero, wasting a lot of memory.
This was not a problem when solving instances exactly because the exact approach was
already infeasible for more than 32 items. However, if we want to process more than 60 items
using the heuristic, it is important to employ a sparse matrix.

6.2 Outlook

Apart from making anticlust more efficient and less memory consuming, several other
factors should be considered in the future. First, to solve even larger instances, it may
be useful to extend the heuristic proposed in Section 4. This heuristic actually combines
two exact approaches and both steps may be replaced by less exact approaches to gain
efficiency. For example, assuming that the preclustering alone already helps to create rather
similar groups — in fact, the approach proposed in [1] relies entirely on a pairing of similar
items —, it may not be necessary to apply exact item assignment on the edited distances to
obtain satisfying results. Instead, a simple possibility would be to employ repeated random
assignment under the restriction not to assign preclustered items to the same set, while
optimizing the item assignment objective function. For larger instances, even the preclustering
may be done heuristically.

Another factor that should be considered in the future is the implementation of other
distance measures in the anticlust package. The current implementation allows to compute
Euclidean distances automatically; other measures can only be employed if the user passes
a self-computed matrix of inter-item distances, which may be a nuisance. The automatic
computation of other distance measures should be made possible in future releases. For
example, distance measures for categorical features are desirable as well as distance measures
that incorporate the correlation between features, such as the Mahalanobis distance.

Finally, the item assignment algorithm proposed here should be systematically compared
to other approaches that have been used to solve similar problems. These include heuristic
approaches to establish similar validation sets in k-fold cross validation (e.g., [40]) and
heuristic anticlustering methods based on k-means clustering [13], [14].
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