
Department of Computer Science
Algorithmic Bioinformatics

Universitätsstr. 1 D–40225 Düsseldorf

Computing a Maximum Common Edge
Subgraph of Two Molecular Graphs

Adrian Prinz

Bachelor thesis

Submission: 11.03.2020
Supervisor: Prof. Dr. Gunnar Klau
Second Accessor: Prof. Dr. Egon Wanke
Advisor: Eline van Mantgem

Declaration

I hereby confirm that this thesis is my own work. I have documented all sources and tools
used. Any direct or indirect quote has been marked as such clearly with specification of
the source.

Düsseldorf, March 11, 2020
Adrian Prinz

Abstract

The comparison of two molecules is very relevant in different areas of chemistry and biol-
ogy. In this thesis we compare two graphs that represent molecules by finding their Max-
imum Common Edge Subgraph (MCES). Our algorithm is based on an already known
algorithm, which determines the MCES by finding the maximum clique in the common
modular product graph. We use the Bron-Kerbosh-Algorithm to find these cliques. We
then implement the algorithm and apply it to some example instances, which show that
our algorithm works well, especially on small instances.

CONTENTS i

Contents

1 Introduction 1

2 Preliminaries 1

2.1 Molecules and Simplified Molecular Input Line Entry Specification 1

2.2 Undirected Labeled Graph . 2

2.3 Linegraph . 3

2.4 Modular Product Graph . 3

2.5 Subgraph, Maximum Common Induced Subgraph and Maximum Com-
mon Edge Subraph . 4

3 MCES Algorithm 5

3.1 Explanation . 5

3.2 Procedure . 6

3.3 Maximum Clique Detection . 7

4 Java Implementation 11

4.1 Chemistry Development Kit . 11

4.2 Input . 11

4.3 Representation of Molecules . 11

4.4 Representation of Linegraphs . 11

4.5 Representation of the Modular Product Graph 11

4.6 Bron-Kerbosh-Algorithm . 12

4.7 Output . 12

5 Results 12

5.1 General Information . 12

5.2 Worst Bogus Smiles . 14

5.3 Top Bogus Smiles . 14

6 Discussion 17

6.1 Relationship between Inputgraphs and Modular Product Graph 17

6.2 Relationship between Modular Product Graph and Runtime 18

6.3 BKA2 versus BKA3 . 19

6.4 4Y Exchange . 19

CONTENTS ii

6.5 Timeout . 19

7 Conclusions 20

8 Future work 20

9 Acknowledgements 20

List of Figures 23

List of Tables 23

A Appendix 24

A.1 Output Worst Bogus Smiles . 24

A.2 Output Top Bogus Smiles . 28

1 INTRODUCTION 1

1 Introduction

For many chemical and biological applications, it is essential to find out to what extent
two given molecules match. These applications include, among others, the design of
combinatorial syntheses [1], database searching [2], the prediction of biological activity
[3] and the interpretation of molecular spectra [4]. In these contexts, chemical structures
are often represented as graphs so that various operations can be performed on them.
In order to compare two given molecules the method of finding a so called Maximum
Common Edge Subgraph (MCES) is often used. The MCES gives us the largest sub-
structure related to the edges of two input graphs as a result. This thesis focuses on the
derivation and subsequent implementation of an algorithm for detecting the MCES.
To find the MCES we use a common method, which has been proposed by Levi [5] and
further developed by Koch [6]. As input we receive strings which represent molecules.
We transform them to labeled graphs. Next, we generate corresponding linegraphs
and create the modular product graph of both linegraphs. Subsequently, the maximum
clique of that modular product graph has to be found.
This thesis provides a new, simpler way of finding the MCES by combining the creation
of the modular product graph with subsequent maximum clique detection by the
Bron-Kerbosh-Algorithm. There are many algorithms for finding the maximum clique,
however, the Bron-Kerbosh-Algorithm provides a very simple and intuitive way to find
the maximum clique [7]. This creates a new synergy which results in a simple algorithm
for finding the MCES.
In Section 2 we explain the basic concepts of chemistry and graph theory that are
necessary to understand the work. In Section 3 we explain how our algorithm and the
Bron-Kerbosh-Algorithm work as an important part of our algorithm. Since we have
implemented our derived algorithm, we explain the basic structure of our Java code in
Section 4. In Section 5 we apply our algorithm to 18 pairs of molecules and subsequently
discuss our results in Section 6. Section 7 concludes.

2 Preliminaries

2.1 Molecules and Simplified Molecular Input Line Entry Specification

In this thesis we focus on chemical structures called molecules. A molecule consists of
atoms held together by bonds. For a more detailed description we refer to [8]. There
are different ways to display molecules. We receive simple strings as input, which we
convert into an undirected labeled graph to perform our arithmetic operations on.
These input strings, called Simplified Molecular Input Line Entry Specification (Smiles),
consist of the element symbols of the associated atoms and a few special characters that
represent the bonds between the atoms.

2 PRELIMINARIES 2

OCC(= O)N

Figure 1: Smile

A simple example can be seen in Figure 1. The string is read from left to right. The
Smile consists of the letters O, C, C, O and N, each of which specifies an atom. If there
is no special character between two letters in the Smile, we are dealing with a simple
covalent bond. An equal sign means that the two adjacent atoms are connected by a
double covalent bond. If parts of the string are in parenthesis, it is a branch.
For those who want to continue working on the topic, we refer to [9].

2.2 Undirected Labeled Graph

As mentioned above, we convert the given Smiles to undirected labeled graphs, on
which we can run our algorithms.

Definition 1. A graph G = (V,E) consists of a finite set of vertices V and a finite set of edges
E = {{vi, vj}|(vi, vj) ∈ V, vi 6= vj} connecting vertices of G. In an undirected graph the pairs
of different vertices forming an edge are unordered, i.e., the tuples (vi, vj) and (vj , vi) represent
the same edge.

By assigning the element of each atom to their corresponding vertex as a label we show
which vertex refers to which atom. We describe each covalent bond by assigning its type
to the corresponding edge as a label too.

O

C

C

N

O

Figure 2: Undirected Labeled Graph

In Figure 2 we can see the graph which is created from the Smile in Figure 1. The letters
of the Smile, which represent the atoms, become the vertices of the corresponding undi-
rected labeled graph. If there is an equal sign in the Smile (in this example, between the

2 PRELIMINARIES 3

letters C and O), it is a double covalent bond, which is represented in the graph by two
dashes and functions as an edge label.

2.3 Linegraph

In the course of our algorithm we will use linegraphs to convert edges to vertices.

Definition 2. In a linegraph L(G) = (V ′, E′) of graph G = (V,E) the vertex set of L(G) con-
sists of all the edges of G, i.e., V ′ = E. Two vertices of L(G) are adjacent, if the two corresponding
edges are incident in G.

If G is a labeled graph, the vertices in V ′ receive the label of the corresponding edges in
E and vice versa.

C − C

C = OC −N

O − C

C

C C

C

Figure 3: Linegraph

Figure 3 represents the linegraph belonging to Figure 2. It can be seen that each edge of
the undirected labeled graph is now a vertex in the linegraph.
Two vertices are connected to each other by an edge with label C, since in the outgoing
undirected labeled graph the two associated edges were incident by a C atom.

2.4 Modular Product Graph

We connect different graphs by creating a common modular product graph from both
graphs. This step is necessary in order to subsequently recognize how the two associated
graphs are similar.

Definition 3. A graph G12 = (V ′, E′) is the modular product graph of the two graphs G1 =
(V1, E1) and G2 = (V2, E2). The vertex set V ′ is defined as the cartesian product of V1 and V2.
Two vertices (u1, v1) and (u2, v2) of G12 are adjacent if

2 PRELIMINARIES 4

• u1 and u2 are adjacent in G1 and v1 and v2 are adjacent in G2 and w(u1, u2) = w(v1, v2),
or

• neither u1 and u2 are adjacent in G1, nor v1 and v2 are adjacent in G2

, where w(u1, u2) = w(v1, v2) indicates that u1 and v1 have the same label, u2 and v2 have the
same label and the edge (u1, v1) ∈ E1 has the same label as (u2, v2) ∈ E2.

Note that a vertex is not adjacent to itself.

Figure 4: Modular Product Graph

In the example in Figure 4 you can see two linegraphs and their associated modular
product graphs. Because of the fact that both linegraphs consist of four vertices, the
modular product graph consists of 16 vertices. Since the vertex pairs {1, 1′} and {2, 2′}
have the same labels and 1 ist adjacent with 2 in L(G1) and 1′ is connected to 2′ in graph
L(G2), the vertices {1_1′, 2_2′} of the modular product graph are adjacent to each other.
The same applies to the vertex pairs {2_2′, 3_3′},{1_1′, 3_3′} and {2_0′, 1_1′}.

2.5 Subgraph, Maximum Common Induced Subgraph and Maximum Com-
mon Edge Subraph

Our goal of this work is to find an MCES, which is a special form of subgraphs.

3 MCES ALGORITHM 5

Definition 4. A subgraph G′ = (V ′, E′) of the graph G = (V,E) is a graph in which V ′ ⊆ V
and E′ ⊆ E.

Two types of subgraphs are important for our application: Firstly the Maximum Com-
mon Induced Subgraph (MCIS) and secondly the Maximum Common Edge Subgraph
(MCES).

Definition 5. An MCIS between two graphs G1 and G2 is a subgraph containing the largest
number of vertices G1 and G2 have in common.

Related to this is the MCES, with the difference that it considers the edges and not the
vertices of the underlying graphs as a distinguishing feature.

Definition 6. An MCES between two graphs G1 and G2 is a subgraph containing the largest
number of edges G1 and G2 have in common.

In this thesis we focus on disconnected MCES, i.e., the vertices of the resulting subgraph
do not have to be connected by one path. The MCES is not unique which means there
can exist more than just one solution of the problem.

O

C

C

N

O

(a)

O

C

C

N

O

(b)

Figure 5: Maximum Common Edge Subgraph

In the example above in Figure 5, the MCES of the two molecules is marked in red in the
respective undirected labeled graph.

3 MCES Algorithm

3.1 Explanation

In order to find the MCIS of the two input molecules, we have to find the maximum
clique of their modular product graph as stated in [10], [11] and [5]. One speaks of a
4Y exchange if two linegraphs are isomorphic, although their original graphs are not
isomorphic. Such a 4Y exchange can be seen in Figure 6. Although the two graphs in

3 MCES ALGORITHM 6

a) are not isomorphic, their respective linegraphs in b) are isomorphic. Whitney [12] has
proven, assuming that no 4Y exchange occurs, that an isomorphism of two linegraphs
means that an edge isomorphism exists between the corresponding original graphs.

e3 e1

e2

e′1

e′3
e′2

e3

e1

e2 e′3

e′1

e′2

a)

b)

L(G1) L(G2)

G2 = K1,3G1 = K3

Figure 6: 4Y Exchange

However, since we are interested in an MCES instead of an MCIS, we would like to
induce such an isomorphism. It follows from Whitney’s paper that if we first convert the
input graphs to their respective edge graphs and then continue with the usual procedure
(creating the modular product graph and finding the maximum clique), we will get an
MCES[13][14].

3.2 Procedure

Our algorithm can be summarized as follows:
We receive two Smiles as our input, from which we create the corresponding undirected
labeled graphs. Subsequently we generate the associated linegraphs which we combine
by creating the modular product graph. As a result, we receive an undirected unlabeled
graph representing the neighbourly relationship of the given molecules. Two nodes of
the modular product graph are only adjacent if the corresponding vertices were adjacent
either in both or in neither linegraph. It follows that the two vertices in the modular
product graph are only adjacent if the neighbourhood relationship of the corresponding
vertices in the two linegraphs is the same. Afterwards, we have to find the maximum
clique in this modular product graph. For this we use the Bron-Kerbosh-Algorithm
(BKA) because it is easy and intuitive to understand and implement. After we have
found the maximum clique, we project it back onto the edges of the input molecules and
get our MCES.

3 MCES ALGORITHM 7

3.3 Maximum Clique Detection

3.3.1 Maximum Clique

As mentioned above, we use maximum clique detection to find the MCES.

Definition 7. A clique of graph G = (V,E) is a subset of vertices V ′ ⊆ V , so that every vertex of
V ′ is adjacent to every other vertex in V ′. A maximum clique is a clique to which no other vertex
can be added without violating the clique property.

To find the MCES, we search for the maximum clique with the largest possible subset of
vertices.
A maximum clique does not have to be unique, it is possible to find more than one max-
imum clique and therefore more than one MCES.

3.3.2 Complexity

Finding the maximum clique is a NP-complete problem. As early as 1972 it was one
of Richard Karp’s 21 original NP-complete problems. He proved this by reducing the
NP-complete 3-SAT problem to the maximum clique problem in [15].

3.3.3 Bron-Kerbosh-Algorithm

The BKA is a recursive backtracking algorithm enumerating all possible maximum
cliques of an undirected graph G = (V,E). There are three forms of the BKA, which
in increasing order become more complex but also faster. The basic version of the BKA
reports all maximum cliques, since we are only looking for the maximum clique with the
most vertices, we do not report all maximum cliques, but save the best result found so
far.

Without pivoting newline

The algorithm receives three sets P, R and X as input. P contains all vertices of the graph
that could possibly still be added to the maximum clique. R contains all vertices that
belong to the clique under observation. X is the set of all vertices that cannot be added to
the clique under consideration without violating the clique property. It follows that the
initial method call is BKA1(V, ∅, ∅).
The method calls itself recursively until P = ∅. If X is also empty at this point, R is a
maximum clique. Otherwise the clique found is not maximal and is discarded.
The basic variant of the BKA finds maximum cliques of an undirected graph with n ver-
tices in O(4n) [16].

3 MCES ALGORITHM 8

Algorithm 1: BKA1(P, R, X)
Input: Three sets of vertices: P, R and X
Output: Reports all maximum cliques

1 if P ∪X = ∅ then
2 Report R;
3 else
4 foreach v ∈ P do
5 BKA1(P ∩ neighbours(v), R ∪ {v}, X ∩ neighbours(v));
6 P = P \ {v};
7 X = X ∪ {v};
8 end
9 end

Figure 7: Bron-Kerbosh-Algorithm without pivoting

a b

dc

(a)

{a, b, c, d}, ∅, ∅

{c}, {b}, {a}{b, c}, {a}, ∅ {d}, {c}, {a, b}

{c}, {a, b}, ∅ ∅, {a, c}, {b} ∅, {b, c}, {a} ∅, {c, d}, ∅

∅, {a, b, c}, ∅

∅, {d}, {c}

(b)

Figure 8: Recursion tree of BKA1 (Based on [16])

The recursion tree for calling BKA1 for the input graph in Figure 8a is shown in Figure
8b. The maximum cliques {a, b, c} and {c, d} are successfully found, as it can be seen
in the green marked results. Nevertheless, there are many unsuccessful calls, which are
rejected because they are non-maximum cliques (marked as red boxes). To reduce the
number of these redundant calls, Bron and Kerbosh have already improved the BKA by
introducing pivoting [17]. Tomita then optimized this strategy, which brings us to the
BKA with pivoting [18].

With pivoting newline

In the first form of the BKA there are a lot of unnecessary recursive calls, in which P
is the empty set at the end, but X still contains vertices, therefore R is not a maximum
clique. It follows that the first form of the BKA is not suitable for graphs with many
non-maximum cliques. Pivot selection is a way to reduce the number of redundant calls.

The vertex u ∈ P ∪X in Figure 9 in line four is the "pivot vertex", which gives this method

3 MCES ALGORITHM 9

Algorithm 2: BKA2(P, R, X)
Input: Three sets of vertices: P, R and X
Output: Reports all maximum cliques

1 if P ∪X = ∅ then
2 Report R;
3 else
4 Choose u ∈ P ∪X maximizing |P ∩ neighbours(u)|
5 foreach v ∈ P \ neighbours(u) do
6 BKA2(P ∩ neighbours(v), R ∪ {v}, X ∩ neighbours(v));
7 P = P \ {v};
8 X = X ∪ {v};
9 end

10 end

Figure 9: Bron-Kerbosh-Algorithm with pivoting

its name. It is not necessary to consider any neighbours v′ of u in the for-loop because
any cliques containing v′ will be reported:

• Either through line five if v = u and the resulting method call:
BKA2(P ∩ neighbours(u), R ∪ neighbours(u), X ∩ neighbours(u))
Since v′ is a neighbour of u, v′ is considered in this method call.

• Or through line five if v = w, where w 6∈ neighbours(u), but w ∈ neighbours(v′)
and the resulting method call:
BKA2(P ∩ neighbours(w), R ∪ neighbours(w), X ∩ neighbours(w))
Since v′ is a neighbour of w, v′ is considered in this method call.

These two cases cover all possible cases since neighbours(v′) = u+
∑

w.
U is chosen in such a way that P ∩ neighbours(u) is maximized, since through this as
many nodes as possible do not have to be taken into account. The second variant of the
BKA finds maximum cliques of an undirected graph with n vertices inO(3n

3). Depending
on n, this is the best runtime to achieve, since there are a maximum of 3

n
3 cliques in a

graph [18].
It is shown in [6] that BKA2 comes to the same results as BKA1.

3 MCES ALGORITHM 10

a b

dc

(a)

{a, b, c, d}, ∅, ∅

{a, b, d}, {c}, ∅

{b}, {a, c}, ∅

∅, {a, b, c}, ∅

∅, {c, d}, ∅

(b)

Figure 10: Recursion tree of BKA2 (Based on [16])

In Figure 10 you can see that the number of redundant calls has been significantly re-
duced compared to BKA1. In this example, the algorithm only calls relevant recursions
that lead to a maximum clique. Instead of the previous ten calls in BKA1, the method is
now only called five times, which represents a significant improvement.
Despite this, there is an approach to sort the nodes according to their degree, which in
some cases represents a further improvement of the BKA.

With vertex ordering newline

This form of the BKA is a special form of the BKA2, whereby all nodes are sorted in as-
cending order according to the size of the respective node degree before calling the BKA2.

Algorithm 3: BKA3(P, R, X)
Input: Three sets of vertices: P, R and X
Output: Reports all maximum cliques

1 Let v1, v2, ..., vn ∈ V be a degeneracy ordering.
2 for i← 1 to n by 1 do
3 P = neigbours(vi) ∩ {vi+1, ..., vn}
4 X = neigbours(vi) ∩ {v1, ..., vi−1}
5 BKA2(P, {vi}, X)

6 end

Figure 11: Bron-Kerbosh-Algorithm with vertex ordering

The degeneracy of a graph G is the smallest number d such that every subgraph of G has
a vertex with degree d or less.
The ordering of the vertices is called degeneracy ordering, where each node has d or
fewer neighbours than all vertices after it. A degeneracy ordering is obtained in linear
time by iteratively adding the vertex with the lowest degree to the degeneracy ordering
and removing it from the graph [19]. Eppstein has also shown in [19] that the algorithm
BKA3 has a runtime of O(d3

d
3). BKA3 is optimal for graphs with small degeneracy, i.e.

for sparse graphs [20].

4 JAVA IMPLEMENTATION 11

4 Java Implementation

4.1 Chemistry Development Kit

We use the Chemistry Development Kit (CDK) version 2.1.1 in our implementation. CDK
is an open-source collection of modular Java libraries for processing chemical informa-
tion. It can be found on Gihub1.

4.2 Input

The main method can be found in the MoleculeMCES class. The program receives two
arguments that serve as input. Firstly, the path of the CSV file that contains the Smiles
is transferred. The second argument is an integer, indicating which line of the CSV file
should be read as input.

4.3 Representation of Molecules

We use CDK to transform the Smiles into the CDK internal structure IAtomContainer.
These containers preserve all information about the given molecule. We only filter out
the information that is important to us in the classes Molecule, MyAtom and MyBond.
MyAtom consists of its element symbol, a list of MyBonds it is incident with and an id
in order to identify it easily. MyBond has its two incident MyAtoms, a string holding
information of the bondtype and an id as class variables. The class Molecule holds two
lists of all contained MyAtoms and MyBonds. The whole transformation from Smiles to
our intern classes can be found in the class SmileSolver.
We chose this implementation because the three separate classes give us great flexibility
to access individual molecular components. The respective classes only hold the infor-
mation relevant to them, so that we can concentrate specifically on this molecular com-
ponent.

4.4 Representation of Linegraphs

Since the vertices of L(G) are equal to the edges of G, the vertices of our implementation
are represented as a list of MyBonds. The bonds of the linegraph are represented by a list
of LineBonds holding information which MyBonds they are incident with and the ele-
ment symbol of the corresponding atom. In order to be able to easily find the neighbours
of a vertex of the linegraph, we use a HashMap that has the vertex itself as a key and all
its incident edges as value.

4.5 Representation of the Modular Product Graph

We represent our modular product graph using only a HashMap with a string as a key
and a list of strings as value. Each vertex of the modular product graph is represented

1https://cdk.github.io/

https://cdk.github.io/

5 RESULTS 12

by its key. The string is created by concatenating the ids of the two nodes in the original
molecules. All neighbours of a vertex are saved as a list in the corresponding value.
We decide to represent the modular product graph in this way because of the following
two reasons:

• Java is able to perform arithmetic operations very quickly on a HashMap. This
is necessary because the following NP-complete problem is very computation-
intensive and can take a lot of time.

• With the help of a HashMap it is very easy to see, which vertices are adjacent to
which other vertices. This is the only important information for the subsequent
execution of the BKA.

4.6 Bron-Kerbosh-Algorithm

We use the second and third form of the BKA because they are faster than the first form
as explained in Chapter 9. Instead of reporting the maximum clique as described above,
we save the largest clique found so far. We return a list of strings where each string is a
member of the maximum clique of the modular product graph.

4.7 Output

Our output is created with the help of CDK. For this we map from the strings of the
maximum clique to the original vertices of the linegraph (i.e. to MyBonds). Since it is a
maximum clique, all of these vertices must be connected to each other, from which we
derive the original MyAtoms. We form the CDK internal structur IAtomContainer out
of these MyAtoms and MyBonds, with which we are able to illustrate our output in a
graphic.

5 Results

5.1 General Information

To test our algorithm, we wrote a Java application as described in Chapter 4, which is
available on Github2.
We applied our algorithm to 18 different Smile pairs, nine of which should represent
similar molecules (Top Bogus Smiles) and the other nine very different molecules
(Worst Bogus Smiles). The almost similiar ones can be found in the file called
top_bogus_smiles.csv, the other ones in the file worst_bogus_smiles.csv on Github3 too.
The algorithm ran on a computer with a 3.40 GHz Intel Core processor with 4 cores and

2https://gitlab.cs.uni-duesseldorf.de/van.mantgem/molecule-comparison/tree/
master/src/main/java

3https://gitlab.cs.uni-duesseldorf.de/van.mantgem/molecule-comparison/tree/
master/data

https://gitlab.cs.uni-duesseldorf.de/van.mantgem/molecule-comparison/tree/master/src/main/java
https://gitlab.cs.uni-duesseldorf.de/van.mantgem/molecule-comparison/tree/master/src/main/java
https://gitlab.cs.uni-duesseldorf.de/van.mantgem/molecule-comparison/tree/master/data
https://gitlab.cs.uni-duesseldorf.de/van.mantgem/molecule-comparison/tree/master/data

5 RESULTS 13

Input Runtime
Id Input 1 Input 2 BKA2 BKA3
1 CCCCCCCCCCCC(=O)OC

(=O)C1CCCN1
CCCCCCCCCCCCC(=O)N
C1CCOC1=O

2046796 2300129

2 C1C2CN(CC1C3=CC=C(
C(=O)N3C2)C4=CN=CC
=C4)CC5=CC=C(C=C5)F

C1=CC=C2C(=C1)C=CC=
C2NC(=O)C3=NN(C4=C
C=CC=C43)CCCCCF

Timeout Timeout

3 C1CC(N(C1)C(=O)C2C
CCN2C(=O)CCCC3=CC=
CC=C3)C(N)O

CC(CCCN1C=C(C2=CC=
CC=C21)C(=O)NC(C(=
O)N)C(C)(C)C)O

Timeout Timeout

4 CC1CC(=O)CC2C1(C3C
CC4(C(C3CC2)CCC4O)C)C

CC12CCC3CC(C(CC3(C
1CCC(C2=C)O)C)O)(C
)C=C

Timeout Timeout

5 CC1=CC2=C(C=C1)NC(
=C(C2=O)CN(C)C3CCN
(CC3)C)C

CCCCCN1C=C(C2=CC=C
C=C21)C(=O)N3CCN(C
C3)C

12318462 13050463

6 CC1CC2CC(C3(C2(CCC
N(CCC3)C(=O)OC(C)(
C)C)C(C1)OCOC)O)O

CCCCCC(C=CC1C(CC(C
1CC=CCCCC(=O)NC(CO
)CO)O)O)O

Timeout Timeout

7 CC(=O)NC1C(C(C(OC1N
OC(=O)NC2=CC=CC=C2
)C=O)O)O

C1CC(N(C1)N=O)C2=C
[N+](=CC=C2)C3C(C(
C(C(O3)C(=O)[O-])O)O)O

217306 245260

8 CC(C)(C)C(=NO)CNCC
(=NO)C(C)(C)C

CC(C)CC(C(=O)NC(CC
(C)C)C(=O)N)N

3335 2007

9 C1=CON(N1)NC2C(C(C
(C(O2)CO)O)O)O

C(C(C(=O)NCC(=O)NC
(CO)C(=O)O)N)O

2066 1297

Table 1: Worst Bogus Smiles

8.00 GB RAM. The used operating system was Microsoft Windows 10 Home.

We tried to find an MCES for all given instances. Since the program has a long runtime
for some instances, we set a timeout after five hours and let us output the previously
optimal result. For a more detailed analysis of the relationship between the instance and
the associated runtime, we looked more closely at the number of edges of the input and
output graphs, the number of vertices of the modular product graph and the average
number of neighbours of each vertex of the modular product graph.
We have not checked for a4Y exchange. However, since the probability of an exchange
in 2-dimensional graphs is very low, this is not of great importance [21]. Although we
have not done so, it should be done in the future, otherwise the results may be distorted.

5 RESULTS 14

Input Modular Product Graph vertices
Id Edges Input 1 Edges Input 2 Vertices Avg. neigh-

bours
Edges Output

1 21 21 441 88 18
2 32 31 992 74 (21)
3 28 27 756 70 (20)
4 25 24 600 236 (17)
5 25 25 625 58 19
6 32 30 960 154 (21)
7 26 27 702 25 18
8 16 16 256 24 10
9 18 16 288 6 9

Table 2: Worst Bogus Smiles Properties

5.2 Worst Bogus Smiles

In Table 1 all input Smiles of the Worst Bogus Smiles are listed with their associated pro-
gram runtimes in milliseconds. An MCES was found in five of the nine given instances
in less than five hours. We notice that in some instances the BKA without pivoting found
a faster result, while in the other instances the BKA with pivoting was better. The fastest
way to find a result was at instances eight and nine, namely in less than a minute.

As one can see in Table 2, all input graphs had between 16 and 32 edges. Those modular
product graphs whose input graphs had only a few edges consist of relatively few nodes.
While the smallest modular product graph consists of 256 vertices, the largest modular
product graph consists of 960 vertices. The vertices of small modular product graphs
usually have a small number of neighbours, but there are often deviations. The MCES
consists of 9 to 21 edges, whereby a number of edges in brackets means that this is not
the optimal result, but only the solution found until the timeout occured.

5.3 Top Bogus Smiles

Table 4 shows that the MCES of the Top Bogus Smiles needs to be calculated much longer
than the MCES of the Worst Bogus Smiles. Of the nine instances, only one MCES was
found within the five hour timeout.

The input graphs of the Top Bogus Smiles are much larger than the ones of the Worst
Bogus Smiles. While an input graph of the Worst Bogus Smiles still had an average of
24.4 edges, it is now an average of 32.8 edges. This means that the modular product
graphs are now also much larger and each vertex of it has on average more neighbours.
The MCES now consists of an average of 24.2 edges, instead of 17 as before. The only
result that could be found before the timeout occured was that from instance seven. It is
striking that this instance has the smallest number in all properties considered from Table
5.

5 RESULTS 15

Id Output 1 Output 2
newline

3

C

C

C C

C

C

C

C

C

C

O

N

C
C

C

C

C

O N

C

C

CC

CCO

N C

C

C

C

C

N

C

C

C

C

C

C

C

C

C O

N

C C

O

N

C

C

C

C

O

newline
newline

5

C

C

C

C

C

C

O

C

C

N

C

C

C

N

C

C

C

C

N

C

C

C

C

C

N C

C

C N

C

C O

C

C

C

N

C

C

C

C

C

C

C

C

C

C

newline
newline

8

N N

O O

C

C

C

C

C C

C N

C

C

C

C

C

C

C

C

C

C

N

C

C

C

C

C

N

O

O

C

N

C

Table 3: Worst Bogus Smiles Output Examples

5 RESULTS 16

Input Runtime
Id Input 1 Input 2 BKA2 BKA3
1 CCCCCN1C=C(C2=CC=C

C=C21)C(=O)NC3=CC=
CC4=CC=CC=C43

CCCCCN1C=C(C2=CC=C
C=C21)C(=O)NC3=CC4=
CC=CC=C4C=C3

Timeout Timeout

2 CCCCCC=CCC=CCCCCC
CCC(=O)NCC(=O)C1=C
NC2=CC=CC=C21

CCCCCC=CCC=CCCCCC
CCC(=O)NCC(=O)C1=CC
2=CC=CC=C2N1

Timeout Timeout

3 CN1CCCCC1CN2C=C(C3
=CC=CC=C32)C(=O)C4=
CC=CC5=CC=CC=C54

CN1CCCCC(C1)N2C=C(C
3=CC=CC=C32)C(=O)C4=
CC=CC5=CC=CC=C54

Timeout Timeout

4 CCCCCC(C=CC1C(CC(C1
CC=CCCCC(=O)NCCO)O
)O)O

CCCCCC(C=CC1C(CC(=
O)C1CCCCCCC(=O)NCC
O)O)O

Timeout Timeout

5 CC1=CCC2=CC=C(N2)C
3=NC(C(O3)COC(=O)C
(CC(=O)OC4C1OC(=O)C
4(C)CO)CC(C)C)C=C5
C(OCC5=C(C)C=CCOC)
CC(C)C

CC1=CCC2=CC=C(N2)C
3=NC(C(O3)COC(=O)C
(=CC(=O)OC4C1OC(=O
)C4(C)CO)CC(C)C)C=
C5C(OCC5=C(C)CCCOC
)CC(C)C

Timeout Timeout

6 CC(=O)OC1C=CC2C3CC4
=C5C2(C1OC5=C(C=C4
)OC(=O)C)CCN3C

CC(=O)N1CCC23C4C1C
C5=C2C(=C(C=C5)OC)
OC3C(C=C4)OC(=O)C

Timeout Timeout

7 CC(=O)N(C1CCN(CC1)
CCC2=CC=CS2)C3=CC=
CC=C3

CCC(=O)N(C1CCN(CC1)
CC2=CC=CS2)C3=CC=C
C=C3

2823666 3236020

8 CCC(=O)N(C1CCN(CC1
C)CCC2=CC=CS2)C3=C
C=CC=C3

CCC(=O)N(C1CCN(CC1
)C(C)CC2=CC=CS2)C3=
CC=CC=C3

Timeout Timeout

9 C1=CC=C2C(=C1)C=CC=
C2OC(=O)C3=CN(C4=C
C=CC=C43)CCCCCF

C1=CC=C2C(=C1)C=CC=
C2C(=O)C3=CN(C4=CC
=CC=C43)CCCC(CF)O

Timeout Timeout

Table 4: Top Bogus Smiles

6 DISCUSSION 17

Input Modular Product Graph vertices
Id Edges Input 1 Edges Input 2 Vertices Avg. neigh-

bours
Edges Output

1 30 30 900 94 (22)
2 33 33 1089 181 (22)
3 33 33 1089 119 (26)
4 28 28 784 151 (22)
5 57 57 3249 369 (28)
6 31 31 961 78 (25)
7 25 25 625 41 23
8 27 27 729 57 (25)
9 31 31 961 88 (25)

Table 5: Top Bogus Smiles Properties

6 Discussion

In the following chapter, we will focus on the Worst Bogus Smiles, since we received
most of the relevant results before the timeout occured. However, this discussion can be
generalized to any input graph, especially to the Top Bogus Smiles.

6.1 Relationship between Inputgraphs and Modular Product Graph

In the following, we will consider to what extent there is a connection between the two
input graphs and the resulting modular product graph.
From the definition of the modular product graph it follows that the number of vertices
corresponds to the product of the number of edges of the two input graphs. From this
follows: The larger the respective input graphs, the larger the resulting modular product
graph.
A basic requirement for two adjacent vertices in the modular product graph is that the
corresponding four vertices in the linegraph have the same label. For this reason, we
have examined which edges occur most frequently in the two input graphs. We have
found that in all instances the most common type of connection is a single covalent bond
between two C atoms. If one now counts the cumulative number of edges of this type
in the two input graphs, this gives a guideline with how many vertices a vertex in the
modular product graph is adjacent on average.

6 DISCUSSION 18

Id Number of single covalent C-Bonds Avg. neighbours of the mpg
1 30 88
2 30 74
3 29 70
4 43 236
5 23 58
6 40 154
7 20 25
8 20 24
9 10 6

Table 6: Relationship between the number of C bonds in the input graph and adjacent
neighbours in the modular product graph

This relationship is illustrated in Table 6. For those input graphs that have few C bonds,
the resulting modular product graph is sparse and for those input graphs that have many
C bonds, the resulting modular product graph is dense.

6.2 Relationship between Modular Product Graph and Runtime

In Table 2 you can easily see that the runtime depends both on the number of nodes and
on the average number of neighbours per vertex. In general, the denser and larger the
modular product graph, the longer it takes the program to find an MCES.
In order to be able to estimate the runtime only on the basis of the modular product
graph, we divide the two properties into two groups:

Small Medium
Number of vertices 0− 600 601−∞

Avg. neighbours 0− 60 61−∞

Table 7: Categories for the properties of the modular product graph

We have derived the rule of thumb from this classification that if the modular product
graph is small in one of the two properties, the MCES can be calculated successfully
before the timeout. How fast the runtime is within these five hours depends on how
close the respective values are to the limits. If one of the two values is very low and the
other is high, this still results in a low runtime, as can be seen in instance seven.
However, if the value of a property is far higher than its limit, the runtime may lie outside
the timeout, although the other property would have to be classified in the small category.
This can be shown using the example of instance four: Although the number of vertices
could be assigned to the category "Small", no result could be found within the timeout,
since the number of average neighbours of each vertex corresponds to 236, which is four
times the limit.

6 DISCUSSION 19

6.3 BKA2 versus BKA3

As can be seen in the Tables 1 and 4, the BKA with vertex ordering is only faster in
instances 8 and 9 of the Worst Bogus Smiles than the BKA without vertex ordering. As
already mentioned in Chapter 10, Eppstein has shown that the BKA with vertex ordering
is only effective in graphs with a small degeneracy. This is also shown in Table 3. BKA3
was faster than BKA2 only in instance 8. One can see that the associated graphs are much
thinner due to the lack of circles and thus also have a smaller degeneracy than the ones
of instances 3 and 5.

6.4 4Y Exchange

We have not checked in our implementation whether a4Y exchange occurs. As a result,
an incorrect MCES may be detected. As soon as we find an isomorphism between the
linegraphs without checking, it is not guaranteed that this also results in an edge iso-
morphism between the two input graphs [12]. It follows that we think we have found a
match between two edges of the input graph, even though they are not isomorphic at all.
The detected MCES thus becomes larger than it actually is.

6.5 Timeout

Due to the frequent occurrence of timeouts, we switched off the timeout for some in-
stances and ran it with the BKA with vertex ordering to see how long the instances take
to output the optimal result. These experiments were performed on the HPC-System of
the Heinrich Heine Univerität Düsseldorf using 2 Intel(R) Xeon(R) E5-2667 v4 cores (3.20
GHz) as well as 4 GB RAM. We therefore tested the smallest instances where we did not
have a result before the timeout. These were instance 3 of the Worst Bogus Smiles and
instance 4 of the Top Bogus Smiles.

Instance Runtime Edges MCES before Timeout Edges MCES without Timeout
3 (Worst Bogus) 92542714 (20) 20
4 (Top Bogus) > 1 week (22) (22)

Table 8: Runtime of Timeout instances

We stopped calculating instance 4 of the Top Bogus Smiles after still not getting a result
after a week. However, Table 8 shows that, at least for these medium-sized instances, the
result on reching of the timeout serves as a good heuristic, since the number of edges of
the optimal MCES and that of the MCES found before the timeout are the same. However,
due to the high runtime of 25.7 hours on the first and over a week on the second example,
we decided not to consider any other instances without a timeout.

7 CONCLUSIONS 20

7 Conclusions

In this thesis, we combined two already known methods to develop an algorithm that
finds the MCES of a chemical molecule. Then we implemented this algorithm.
The algorithm works by creating a common modular product graph from two input
strings and finding the maximum clique in it.
The algorithm works well on relatively small input graphs, but takes a long time to find
an MCES in large graphs. This makes sense since clique finding is an NP-complete prob-
lem. We have found that molecules that have few identical bonds can be calculated faster.
Unfortunately, the calculation of large molecules took too long, which is why we set a
timeout and used the best result so far. In the future, one could have the algorithm ter-
minated without a timeout and compare these results with ours to see whether timeout
is a good heuristic for finding the MCES.

8 Future work

In Chapter 6 we analyzed which properties of the input graphs lead to a short runtime.
As can be seen in Tables 1 and 4, these properties unfortunately only apply to seven of the
eighteen instances, and only in six of these we could find an MCES within a reasonable
time.
The main component of the calculations is the BKA with pivoting or with vertex order-
ing. We chose this algorithm to solve the NP-complete problem, because on the one hand
it is a new synergy of two already known algorithms and on the other hand the BKA is
easy to understand and implement.
In the future, one can try to solve the NP-complete clique problem in a different way
and maybe even use the molecular properties of the input. We particularly recommend
the work of Gardiner and Willet [22], who use a Branch-and-Bound algorithm to find the
cliques. They use upper and lower limits, which are derived from the properties of the
respective molecules and are therefore optimally tailored to this problem. In addition,
the authors have developed two pruning techniques that also work with the properties
of the underlying molecules.
Another possibility to improve the runtime could be an iterative solution, which is pro-
cessed in several threads at the same time. Since the BKA is a recursive algorithm, we
were only able to run the program in a single thread.
Furthermore, it would also be a good extension of the present program to check whether
there is a4Y exchange.

9 Acknowledgements

First of all, I would like to thank Eline van Mantgem, who has been at my side with
advice all the time and has therefore made understanding, implementing and writing
much easier for me. I would also like to thank Prof. Dr. Gunnar Klau, who made the
thesis possible and always took the time to help me with major problems. I thank all of
my fellow students who discussed with me and thus revealed further aspects to me.

REFERENCES 21

References

[1] Richard A Lewis, Jonathan S Mason, and Iain M McLay. “Similarity measures for
rational set selection and analysis of combinatorial libraries: the diverse property-
derived (DPD) approach”. In: Journal of chemical information and computer sciences
37.3 (1997), pp. 599–614.

[2] Peter Willett. “Matching of chemical and biological structures using subgraph and
maximal common subgraph isomorphism algorithms”. In: Rational Drug Design.
Springer, 1999, pp. 11–38.

[3] E Gifford et al. “Structure-reactivity maps as a tool for visualizing xenobiotic
structure-reactivity”. In: Network Science 2 (1996), pp. 1–33.

[4] Lingran Chen and Wolfgang Robien. “Application of the maximal common sub-
structure algorithm to automatic interpretation of 13C-NMR spectra”. In: Journal of
Chemical Information and Computer Sciences 34.4 (1994), pp. 934–941.

[5] Giorgio Levi. “A note on the derivation of maximal common subgraphs of two
directed or undirected graphs”. In: Calcolo 9.4 (1973), p. 341.

[6] Ina Koch. “Enumerating all connected maximal common subgraphs in two
graphs”. In: Theoretical Computer Science 250.1-2 (2001), pp. 1–30.

[7] HC Johnston. “Cliques of a graph-variations on the Bron-Kerbosch algorithm”. In:
International Journal of Computer & Information Sciences 5.3 (1976), pp. 209–238.

[8] Nenad Trinajstic. Chemical graph theory. Routledge, 2018.

[9] David Weininger. “SMILES, a chemical language and information system. 1. Intro-
duction to methodology and encoding rules”. In: Journal of chemical information and
computer sciences 28.1 (1988), pp. 31–36.

[10] VG Vizing. “Reduction of the problem of isomorphism and isomorphic entrance to
the task of finding the nondensity of a graph”. In: Proc. Third All-Union Conference
on Problems of Theoretical Cybernetics. 1974, p. 124.

[11] Harry G Barrow and BURSTALL RM. “Subgraph isomorphism, matching rela-
tional structures and maximal cliques.” In: (1976).

[12] Hassler Whitney. “Congruent graphs and the connectivity of graphs”. In: Hassler
Whitney Collected Papers. Springer, 1992, pp. 61–79.

[13] Victor Nicholson et al. “A subgraph isomorphism theorem for molecular graphs”.
In: Graph Theory and Topology in Chemistry 51 (1987), pp. 226–230.

[14] V Kvasnicka and J Pospichal. “Maximal common subgraphs of molecular graphs”.
In: Reports Molecular Theory 1 (1990), pp. 99–106.

[15] Richard M Karp et al. “Complexity of computer computations”. In: Reducibility
among combinatorial problems 23.1 (1972), pp. 85–103.

[16] Jelmer Mulder. “Local Network Alignment by Enumerating Common Subgraphs”.

[17] Coen Bron and Joep Kerbosch. “Algorithm 457: finding all cliques of an undirected
graph”. In: Communications of the ACM 16.9 (1973), pp. 575–577.

REFERENCES 22

[18] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. “The worst-case time com-
plexity for generating all maximal cliques and computational experiments”. In:
Theoretical computer science 363.1 (2006), pp. 28–42.

[19] David Eppstein, Maarten Löffler, and Darren Strash. “Listing all maximal cliques
in sparse graphs in near-optimal time”. In: International Symposium on Algorithms
and Computation. Springer. 2010, pp. 403–414.

[20] David Eppstein and Darren Strash. “Listing all maximal cliques in large sparse real-
world graphs”. In: International Symposium on Experimental Algorithms. Springer.
2011, pp. 364–375.

[21] John W Raymond and Peter Willett. “Maximum common subgraph isomorphism
algorithms for the matching of chemical structures”. In: Journal of computer-aided
molecular design 16.7 (2002), pp. 521–533.

[22] John W Raymond, Eleanor J Gardiner, and Peter Willett. “Rascal: Calculation of
graph similarity using maximum common edge subgraphs”. In: The Computer Jour-
nal 45.6 (2002), pp. 631–644.

LIST OF FIGURES 23

List of Figures

1 Smile . 2

2 Undirected Labeled Graph . 2

3 Linegraph . 3

4 Modular Product Graph . 4

5 Maximum Common Edge Subgraph . 5

6 4Y Exchange . 6

7 Bron-Kerbosh-Algorithm without pivoting 8

8 Recursion tree of BKA1 (Based on [16]) . 8

9 Bron-Kerbosh-Algorithm with pivoting . 9

10 Recursion tree of BKA2 (Based on [16]) . 10

11 Bron-Kerbosh-Algorithm with vertex ordering 10

List of Tables

1 Worst Bogus Smiles . 13

2 Worst Bogus Smiles Properties . 14

3 Worst Bogus Smiles Output Examples . 15

4 Top Bogus Smiles . 16

5 Top Bogus Smiles Properties . 17

6 Relationship between the number of C bonds in the input graph and adja-
cent neighbours in the modular product graph 18

7 Categories for the properties of the modular product graph 18

8 Runtime of Timeout instances . 19

A APPENDIX 24

A Appendix

A.1 Output Worst Bogus Smiles

Id Output 1 Output 2

1

2

A APPENDIX 25

3

4

5

A APPENDIX 26

6

7

8

A APPENDIX 27

9

A APPENDIX 28

A.2 Output Top Bogus Smiles

Id Output 1 Output 2

1

2

3

A APPENDIX 29

4

5

6

A APPENDIX 30

7

8

9

	Introduction
	Preliminaries
	Molecules and Simplified Molecular Input Line Entry Specification
	Undirected Labeled Graph
	Linegraph
	Modular Product Graph
	Subgraph, Maximum Common Induced Subgraph and Maximum Common Edge Subraph

	MCES Algorithm
	Explanation
	Procedure
	Maximum Clique Detection

	Java Implementation
	Chemistry Development Kit
	Input
	Representation of Molecules
	Representation of Linegraphs
	Representation of the Modular Product Graph
	Bron-Kerbosh-Algorithm
	Output

	Results
	General Information
	Worst Bogus Smiles
	Top Bogus Smiles

	Discussion
	Relationship between Inputgraphs and Modular Product Graph
	Relationship between Modular Product Graph and Runtime
	BKA2 versus BKA3
	Y Exchange
	Timeout

	Conclusions
	Future work
	Acknowledgements
	List of Figures
	List of Tables
	Appendix
	Output Worst Bogus Smiles
	Output Top Bogus Smiles

