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Abstract

Arabidopsis thaliana has already been used as a model organism for higher plants for many
years with its genome being fully sequenced around the turn of the millennium. Even
for this rather simple organism, the complete biological processes are far from being fully
understood. With extensive research scientists could create networks that can describe in-
teractions between proteins, several of which we are going to incorporate into our work.
When paired with data on differential expression, one is able to find functional modules,
which are subgraphs in the interaction networks, that represent important pathways or
processes. We used experimental data together with online resources and a set of differ-
ent tools to come up with an automated workflow to extract these functional modules.
Our p-values came from from a transcriptomics and a phopshoproteomics analysis based
on genotypes and peptide treatments that are important for the maintenance and differ-
entiation of stem cells in the root apical meristem of Arabidopsis thaliana. Once we have
obtained statistical parameters from their distribution, we combine them with a protein-
protein interaction network to discover subgraphs of interacting, differentially expressed
genes. Afterwards we take theses results and use them to get an enrichment for our mod-
ules by comparing the genes to known data on gene ontology. By doing so, we are able
to link the network’s topology to actual biological functionality. Once the workflow has
been executed, its outputs will be organized in such a way that they easily be visualized
by using a specialized application called eXamine.

The workflow is also well suited for exploratory purposes in cases where little to no prior
knowledge of the data exists due to its top-down approach. We will explain each of the
steps in detail along with the theoretical concepts behind them and present exemplary
use cases. Several protein-protein interaction networks were tested to find differences
or similarities and potential advantages and disadvantages are discussed. We could also
access an array of p-value sets to compare towards each other. Additionally we are ex-
plaining the troubles that may arise from them. To conclude this work we are going to
take a brief look at a more bottom-up workflow taken from a textbook that can handle the
same type of input data. When using the alternative method it is essential to know be-
forehand which processes might be interesting, but to have a second approach also gave
us ideas for a few improvements which could be added to our workflow in the future.
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1 Introduction

1.1 Arabidopsis thaliana as a model organism

Arabidopsis thaliana is a small, herbaceous plant in the eudicot Brassicaceae (mustard)
family. By the end of the previous century, it has already been established as a commonly
used model organism due to its short generation time, its small, diploid genome with
around 135 million base pairs across five chromosomes, as well as its easy use for genetic
transformation mediated by Agrobacterium tumefaciens. The first complete sequencing of
Arabidopsis thaliana was finished by the end of 2000 [1, 2]. Today databases such as The
Arabidopsis Information Resource (TAIR) have information about more than 35,000 genes
available [3, 4].

1.2 The root development of Arabidopsis thaliana

Stem cells are cells in multicellular organisms that have the ability for self-renewal (regen-
eration) and can produce daughter cells for one or multiple kinds of specialized tissues
(differentiation) through mitosis. In higher plants the tissues containing stem cells are
called meristems and can be found in many different parts of the organism for the pur-
pose of growth and self-repair. For the root development, stem cells are located in the
root apical meristem (RAM) which is established during embryogenesis and remains in-
side the primary root after germination. The RAM is protected outwards by columella
cells and the root cap. Inside the RAM there are vascular, cortex/endodermal, epider-
mal/lateral root cap and columella initials, that form the stem cell niche, which has the
quiescent center (QC) in its middle [5], see Figure 1. Through asymmetric divisions these
initials generate daughter cells for the surrounding tissues simultaneously in the distal
(facing towards the tip) and proximal (facing away from the tip) direction while regener-
ating themselves. The cells in the QC on the other hand only possess low mitotic activity
and are responsible for the maintenance of the stem cell initials through short-range sig-
nals [6].

Research has already identified several factors that are responsible for the balance be-
tween stem cell maintenance and differentiation of the initials in the RAM [7]. The regula-
tory pathways related to this thesis involves the transcription factor WOX5 (WUSCHEL-
RELATED HOMEOBOX 5) [8]. As its name suggests, it has a similar function as
WUS (WUSCHEL), which can be found not in the root, but in the shoot apical meris-
tem. It has been observed that there is a link between WOX5, the peptide CLE40p
(CLAVATA3/EMBRYO-SURROUNDING REGION 40) and the receptor kinase ACR4
(ARABIDOPSIS CRINKLY4) in the differentiation of columella stem cells (CSC) distal
of the quiescent center to columella cells (CC), that are in turn distal to the CSCs [9]. One
visual indicator of cell differentiation is the presence of starch granules, which could be
found even in CSCs in wox5-1 loss-of-function mutants, showing that WOX5 can main-
tain the CSC population. CLE40p acts antagonistically to WOX5 through ACR4. In pres-
ence of CLE40p, the expression of ACR4 is increased, which leads to a down regulation
of WOX5 levels, therefore allowing for differentiation of the CSCs outside the root apical
meristem.
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Current models suggest that there are one or more other unknown factors involved since
wox5-1/cle40-2 double loss-of-function mutants could not be explained with previous as-
sumptions [10]. One possible way of discovering such factors could be done through
computational network analysis, for which we will provide a pipeline that identifies
functional modules based on differential analysis of genome-wide expression data (tran-
scriptomics and phosphoproteomics) using known protein-protein interaction networks
of Arabidopsis thaliana.

Figure 1: Schematic of the root tip of Arabidopsis thaliana. Growth occurs from both the
distal and proximal meristems (DM/ PM). The thick outlines shows the root apical meris-
tem with the quiescent center (QC) in the middle. D1 are the (distal) columella stem cells
(CSCs), while D2 - D4 are the columella cells (CCs) with starch granules. Proximal of the
QC are the stele (or vascular) initials (SI) - from [9]
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1.3 Protein-protein interaction networks and functional modules

A wealth of genomic data becoming available around the turn of the millennium, such
as the genome of Arabidopsis thaliana [2], giving rise to the new field of functional genomics
[11]. Now that the genes have been identified (also referred to as the post-genomic era),
it became of interest how they interacted with each other and which biological func-
tion they served. To get from the genome to a protein-protein network (interactome),
several different techniques can be used [12]. The interactions can for example be di-
rectly obtained from the observation of pairwise interactions of proteins or indirectly
through the coexpression of genes with either temporal, spatial or other conditional re-
strictions. When looking at such networks from a topological standpoint, it is easy to
imagine that proteins that show a strong interconnectivity are part of or related to similar
functions. These highly-connected subgraphs are commonly referred to as (functional)
modules [13, 14]. When adding experimental data on differential expressions, we might
also use the term active modules, because the terms are (more) active in one group than in
the other.

Since many of the genes in eukaryotic organisms are orthologous, which means that they
are derived from a common ancestor, gene ontology (GO) has been established with the
goal to provide a vocabulary for core biological functions that are shared between species
[15]. This way one is able to interfere a protein’s function or interactions by comparing it
to potential orthologs based on nucleic or amino acid sequences.

The three ontologies that were introduced by the GO Consortium [16] are:

• Molecular Function - Describes what a gene product does without specifying
where or when this event takes place.

• Biological Process - Describes the biological objective to which a gene product con-
tributes. This is related to, but not equivalent to, biological pathways, which usu-
ally consists of multiple processes in succession.

• Cellular Component - Describes the place in the cell where a gene product can be
found together with others.

1.4 Objective

This work aims to explore functional modules in Arabidopsis thaliana by combining ex-
perimental transcriptomics and phosphoproteomics data with different protein-protein
interaction networks. To achieve this we created an automated, yet customizable work-
flow that will generate annotated modules that can be visualized using eXamine. We
will describe in detail the necessary steps and present preliminary findings based on the
different data that was used. We will also discuss the current limitations of our approach
and briefly compare it to an alternative workflow.
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2 Materials & Methods

2.1 Sampling and processing of the experimental raw data

For this thesis two datasets were provided containing transcriptomics and phospho-
proteomics data from Arabidopsis thaliana respectively. Samples were obtained from wild-
types (strain Columbia) and acr4-2 knockout mutants, both treated with CLE40p peptide
and a control that only contained a phosphate buffer (labeled GM from here on) for a
total of four different groups. Each group was supported by three or four repeats and
will be referred to by the following notation.

Genotype: Columbia acr4-2
without treatment Col-0_GM acr4_GM
with treatment Col-0_CLE40p acr4_CLE40p

Table 1: Labels used for referencing the different sample groups

2.1.1 Transcriptomics data

The sampling for the data was done at the Institute of Developmental Genetics at the
Heinrich-Heine-Universität in 2017. First, seeds were sown on plates with mesh and
transferred for three hours on a medium that had CLE40p treatment and the control
medium without peptide. Columella stem cells and columella cells were sampled from
the root tips after. Then the RNA was sequenced for each sample and the amount of cells
in a sample was estimated to get the average expression values per cell. In total the data
of four repeats were used for both Col-0_GM and Col-0_CLE40p as well as three repeats
for both acr4_GM and acr4_CLE40p.

To get the p-values, the R software environment for statistical computing and graphics
[17] has been used. With the DESeq2 [18] package, which is available as part of the Bio-
conductor tool kit [19], the expression values were normalized. For each of the samples a
single normalization factor sj from the median-of-ratios method was used with i enumer-
ating the different genes and j enumerating the samples in a matrix K of all expression
values:

sj = median
i:KR

i 6=0

Kij

KR
i

with KR
i =

(∏m
j=1Kij

)1/m
From the normalized data the means for each of the four sample groups were calculated.
For the fold changes (FC) Empirical Bayes shrinkage [20] was used so that weak, noisy
signals from very low read counts would not overshadow strong signals with high read
counts. With the fold changes estimates, the p-values for the differential expression of
single genes were obtained through pairwise and multifactor tests. In total the following
nine sets of p-values were provided.
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Set# Label Test type FC Comparisons
1 t_Col-0_GM_Col-0_CLE40p pairwise Col-0_GM vs. Col-0_CLE40p
2 t_acr4_GM_acr4_CLE40p pairwise acr4-2_GM vs. acr4-2_CLE40p
3 t_Col-0_GM_acr4_GM pairwise Col-0_GM vs. acr4-2_GM
4 t_Col-0_CLE40p_acr4_CLE40p pairwise Col-0_CLE40p vs. acr4-2_CLE40p
5 t_mf_genotype multifactor all Col-0 vs. all acr4-2
6 t_mf_treatment multifactor all untreated vs. all CLE40p
7 t_mf2_Col-0_treatment multifactor Col-0 Genotype vs. GM treatment
8 t_mf2_Col-0_acr4 multifactor (Col-0 + 7) vs. (acr4-2 + 7)
9 t_mf2_GM_CLE40p multifactor (Untreated + 7) vs. (CLE40p +7)

Table 2: Labels used for referencing the different transcriptomic p-values. For 5 & 6 the
samples were combined by either the genotypes or treatments. For the samples 8 & 9 the
same steps as for 5 & 6 were repeated, but this time 7, Col-0 Genotype vs. GM treatment,
was factored in as a correction factor as well.

2.1.2 Phosphoproteomics data

Again the sampling was done at the Institute of Developmental Genetics at the Heinrich-
Heine-Universität in 2017. For this experiment the same Col-0 and acr4-2 strains were
used, but this time grown in liquid culture with three repeats for each combination of
genotype and treatment. The treatment with CLE40p only lasted around 5 - 10 minutes.
The phosphoproteomic analysis was then carried out by the Department of Plant System
Biology at Hohenheim University employing similar methods described as described
in [21]. To obtain the fold changes the R-based program cRacker [22] was used which
obtained label-free ion intensities. These have been normalized using the fraction of total
and then averaged before being mapped to the different proteins.

Fraction of total (xi) =
ion intesity∑
all ion intesity

For the p-values a set of adjusted p-values were provided from the cRacker package.
For those, the CLE40p response was measured by subtractring the log intensities of each
genotypes treated minus the log intensities of each genotypes. To obtain raw p-values, we
used the same pairwise comparisons made for the transcriptomics data in the previous
step. Since cRacker matched short amino acid sequences to proteins, we usually had p-
values for multiple parts of a protein, in which case we chose the lowest overall p-value.
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Set# Label Test type FC Comparisons
1 p_Col-0_GM_Col-0_CLE40p pairwise Col-0_GM vs. Col-0_CLE40p
2 p_acr4_GM_acr4_CLE40p pairwise acr4-2_GM vs. acr4-2_CLE40p
3 p_Col-0_GM_acr4_GM pairwise Col-0_GM vs. acr4-2_GM
4 p_Col-0_CLE40p_acr4_CLE40p pairwise Col-0_CLE40p vs. acr4-2_CLE40p
5 p_genotype_ttest pairwise treatment effects on Col-0 vs. acr4-2
6 p_genotype_anova ANOVA treatment effects on Col-0 vs. acr4-2

Table 3: Labels used for referencing the phosphoproteomic p-values. The p-values for
1 - 5 were obtained by using R’s two-sample t-Test, while 6 used the cRacker’s ANOVA
approach. The log intensities for 5 & 6 were obtained by subtracting the control (GM)
values from the treatment (CLE40p) averages for both genotypes.

2.2 General Workflow

With the obtained p-values we want to implement a process that will take this data along
with additional online resources as input to automatically try to discover functional mod-
ules. We employ a top-down approach that starts with an uninformed topology analysis
of a weighted protein-protein interaction network. In 4.2 we will also briefly discuss a
more informed alternative.

For the following steps we will require the scripts that are available in this
work’s GitLab repository: https://gitlab.cs.uni-duesseldorf.de/klau/
BSc-thesis-network-Arabidopsis

We will shortly discuss the three steps (see Figure 2) that are required to get from the
raw p-values to the desired output before going into more detail in the upcoming sub-
sections. When valid output has been generated for a certain input, the function calls will
be skipped when the script is executed again.

1. Beta-Uniform Mixture (BUM) model - To get good results for our functional mod-
ules, we want to separate the good p-values from occurring noise by iterating all
inputs and finding their BUM model parameters.

2. Best-scoring subgraph - In this step one protein-protein interaction network and
the experimental p-values are used to find the best-scoring subgraph. By varying
the false discovery rate (FDR) cut-offs, modules of different sizes can be found.

3. Functional enrichment - Lastly, we combine our module data with GO enrichment
by cross-referencing the nodes to an existing GO map. Here we also generate the
files needed for visualization.

https://gitlab.cs.uni-duesseldorf.de/klau/BSc-thesis-network-Arabidopsis
https://gitlab.cs.uni-duesseldorf.de/klau/BSc-thesis-network-Arabidopsis
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Figure 2: Flowchart of our production pipeline. The order of the steps as well as the
required inputs for each step are illustrated. As the results from one step are required in
the following one, it is important that they are successfully generated before moving on.

2.2.1 Necessary prerequisites

All steps were implemented and tested on a virtual machine running Ubuntu 16.04 LTS.
Before the scripts can be run, the following software needs to be installed:

• R/Rscript 3.4.3 [17] with the following packages:

– Bioconductor 3.6 [19]

– BioNet [23]

– GO.db [24]

– topGO [25]

• heinz [26] - https://github.com/ls-cwi/heinz 1

After the installation heinz needs to be added to the path by using:
export PATH=~path_to_heinz/build:$PATH

• eXamine [27] - https://github.com/ls-cwi/eXamine 2

• Python 3.6 or higher
1Software required to run heinz is detailed in the repositories’ readme. An academic or commercial

license for IBM ILOG CPLEX is required
2Oracle JDK 8/ OpenJDK 8 or higher and Maven are required to build eXamine from source

https://www.r-project.org/
http://www.bioconductor.org/
http://www.bioconductor.org/packages/release/bioc/html/BioNet.html
http://bioconductor.org/packages/release/data/annotation/html/GO.db.html
http://www.bioconductor.org/packages/release/bioc/html/topGO.html
https://github.com/ls-cwi/heinz
https://www.ibm.com/products/ilog-cplex-optimization-studio
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net/
https://maven.apache.org/
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2.3 Beta-Uniform Mixture (BUM) Model Fitting

To estimate the false positives and negatives in our transcriptomics and phosphopro-
teomics p-values, we fit a beta-uniform mixture model to our data. If the expression lev-
els/ protein intensities were unaffected by the treatment, we would expect the p-values
to follow a flat, uniform distribution (null hypothesis). However, if there are observable
differences, then we would expect the p-values not to be uniformly distributed (alterna-
tive hypothesis). Even more so, we would expect that many of our p-values were close
to 0 due to their heightened significance. In that case we can expect the distribution of
our p-values to be composed of a mixture of a B(a, 1) and a uniform(0, 1) ≡ B(1, 1)
distribution [28] with a beta distribution being described as

B(a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

where Γ(x) is the gamma function and a and b are real positive shape parameters.

2.3.1 Mathematical & algorithmic background

The beta-uniform mixture distribution B(1, 1) +B(a, 1) can be simplified for x ∈ (0, 1] to
the following probability density function:

f(x|a, λ) = λ+ (1− λ)axa−1

λ is the mixture parameter and can be understood as the uniform distribution of noise,
also referred to as the null component. a is the shape parameter of the alternative compo-
nent, the B(a, 1) distribution. It asymptotes the y-axis and then decreases monotonically.

When approximating the values for λ and a algorithmically with BioNet [23], maximum-
likelihood estimates through numerical optimization are used. This yields the values λ̂
and â. We can infer an upper bound for the noise π by adding λ̂ and the minimum of the
alternative component:

π = λ̂+ (1− λ̂)â

This allows us to partition our distribution into signals above and noise below the hori-
zontal line defined by y = π. Additionally we can assume x = τ as the vertical line rep-
resenting the significance threshold. As shown in Figure 3, we get four different sectors
representing the possible outcomes of a hypothesis test. Instead of selecting τ directly,
we can specify an upper bound α̃ for the false discovery rate (FDR) so that ˆFDRub(τ) ≤ α̃.
To describe τ̂ as a function of α̃ using our estimates λ̂, â and the derived π̂, this formula
is used:

τ̂(α̃) =

(
π̂ − α̃λ̂
α̃(1− λ̂)

)1/(â−1)
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Figure 3: Schematic illustration of the BUM distribution. The intersection of noise level
π and significance threshold τ divides the distribution in four sectors. Upper-left: true
positives, upper-right: false negatives, lower-left: false positives and lower-right: true
negatives [28].

2.3.2 Obtaining BUM model fits from experimental p-values

The first thing we want to obtain are the BUM model estimates λ̂ and â. To do this we first
need to save our input p-values as one or more .csv files similarly to the example nodes
in this work’s repository using tab as a separator and if needed remove NaN values when
no reads/ phosphopeptides were measured.

To process a single input file, we can use the function fitBumModel(p) of the BioNet
R-package. This will create a data frame that contains the desired values along with
their logarithmic likelihood and can also be used to output a histogram of the p-values
overlaid with the corresponding BUM distribution.

To obtain λ̂ and â from multiple files containing p-values, we can use the bum.sh shell
script. We need to specify our output to be located in the same folder as the p-values. For
the example data, this means:

bash bum.sh Input/Nodes/bum.txt

The script will now iterate over all .csv-files in Input/Nodes and try to fit a BUM



2 MATERIALS & METHODS 10

model to the p-values. The values λ̂, â and the log-likelihood are stored in the out-
put file and are required in the next step. Additionally, the histograms are saved in
Input/Nodes/Graphs.

The script will skip over all files for which the BUM model fit has been already calculated,
so if changes are made to the p-value files, they should be saved under a new name or
the corresponding rows in the output need to be removed.

2.4 Calculation of the modules using Heinz

Once we have obtained the beta-uniform mixture (BUM) model parameters, we use it
together with the p-values and a reference protein-protein-interaction (PPI) network in
heinz ("heavy induced subgraphs") [26] to find functional modules. For this work the
following PPI networks were tested:

Name #Interactions Citations
AINM 1 11,374 [29]

BioGRID 2 35,646 [30, 31]
AraNet 3 341,821 [32]

Table 4: Labels used for referencing the protein-protein-interaction (PPI) networks.
AINM uses a pipeline used for yeast two-hybrids (Y2H) [33] to find reliable binary pro-
tein–protein interactions. BioGRID has curated information from a large collection of
primary sources. AraNet is a probabilistic network using data from orthologous genes in
other species to estimate interactions. In this work we only used the unfiltered data from
its benchmark set.

2.4.1 The scoring function in heinz

When we combine our p-values with the interactome data, we can regard each protein
that has a p-value as a node in a complex network whereas the interactions represent
the edges. Using our data, we want to find out which of the genes are differentially
expressed, which means they are in any form amplified or reduced based on the genotype
or our treatment as described in 2.1. Based on a given beta-uniform mixture (BUM) model
fit, heinz [26] will partition the data into signal and noise with a certain threshold that is
defined as the false discovery rate (FDR). To do this, heinz scores the p-values with an
adjusted log likelihood ratio given as

SFDR(x) = log

(
axa−1

aτa−1

)
= (a− 1) (log x− log τ(α̃)) .

τ(α̃) here is the threshold p-value based on the chosen FDR value and the BUM model
fit parameters λ and a. There is a change of sign once the observed p-value x becomes

1http://interactome.dfci.harvard.edu/A_thaliana/index.php
2https://thebiogrid.org/ (v3.4.157)
3http://www.functionalnet.org/aranet/

http://interactome.dfci.harvard.edu/A_thaliana/index.php
https://thebiogrid.org/
http://www.functionalnet.org/aranet/
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bigger (negative) or smaller (positive) than the threshold value. If a = 1 all p-values are
subject to a uniform (B(1, 1)) distribution and therefore the scores are always 0.

To see this in practice, we anticipate some of the results for an example for the resulting
threshold from the expression data for untreated genotypes (t_Col-0_GM_acr4_GM):

λ̂ ≈ 0.543, â ≈ 0.174,FDR = 0.08

π̂ = λ̂+ (1− λ̂)â ≈ 0.543 + 0.457 · 0.174 ≈ 0.623

τ̂(α̃) =

(
π̂ − α̃λ̂
α̃(1− λ̂)

)1/(â−1)

≈
(

0.623− 0.08 · 0.543

0.08 · 0.457

)−2.193
≈ 0.072

In this example all p-values smaller than the threshold of 0.072 would score positively,
while all of the bigger p-values would receive a negative score. While the scoring of the
nodes is independent from the PPI network, the resulting modules are not.

2.4.2 The Prize-Collecting Steiner Tree (PCST) Problem

Given the edges in the PPI network and our now scored nodes, heinz starts identifying
the best-scoring (also called maximum-weight) connected subgraph. The total score for
a given subgraph is obtained by adding all the individual scores for each node together.
Since the insignificant (which are the ones higher than our threshold τ ) p-values result in
a negative score, we want to avoid penalties as much as possible. However in some cases
it is beneficial to incorporate a negative node in the subgraph if it allows us to reach an
otherwise unreachable positive node with a net gain. To solve this NP-complete problem
more efficiently, it gets transformed to another problem: the Prize-Collection Steiner Tree
(PCST) problem to eliminate negative weights. To get from finding maximum-weight
connected subgraph to the best PCST, the node with the most negative score is sought.
Afterwards each node’s score gets incremented by the positive equivalent of this score to
make up the p̈rizes.̈ Additionally the negative value is added as costs to every edge.

This reformulated problem’s objective is now to maximize the gain by visiting highly
prized nodes while using as little edges as possible. This is solved by heinz by expand-
ing upon the algorithm used in a program called dhea (district heating) [34]. One of the
expansions is the ability to obtain k similar, yet suboptimal solutions, because the result-
ing modules might give some additional insight as well as add otherwise undiscovered
nodes to the tree.

2.4.3 Automated process for varying the false discovery rate (FDR)

For this step three different inputs are required: First, we need the BUM model fits calcu-
lated in 2.3.2. Because the output of this step is located in the same folder as our p-value
files, we can iterate all files to which we could successfully fit a BUM model while skip-
ping those with a log-likelihood of 0.0, because then we cannot distinguish the signals
from noise. The second input is the chosen PPI network, that is a tab-separated file that
only contains the two interaction partners without additional information. The last input
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is a file that contains the desired FDR values in exponential or decimal notation. For this
work we generally kept the FDR between 1E-5 and 5E-12, but when the networks were
still too small or too big, we made adjustments to cover values between 1E-1 and 1E-15.
For the example data and the BioGRID PPI network, we would use the following call:

bash enrichment.sh Input/Nodes/bum.txt Input/BioGRID.txt Input/fdr.txt

The output will be saved in a folder called Heinz which contains subfolders for the
different p-value sets in which the scores and an image of the found network are stored
in correspondence to the FDR-values. Combinations of FDR and p-value file names that
have already been calculated will be skipped in subsequent calls.

2.5 Functional enrichment with topGO

When we have successfully identified one or more modules with heinz, we can have a
look at whether we can find biological context in them. With our current knowledge
we know which protein-protein-interaction are supported by our data of differentially
expressed genes, but it is also desirable to find out which purpose the interaction serves.

2.5.1 Gene Ontology (GO) modules

In order to obtain the Gene Ontology (GO) enrichment for the discovered modules, the
R package topGO [25] is used. To prepare, an existing GO map is compressed to a single
line per gene along with the experimental p-value. All GO terms related to a gene are
split across the three different GO domains: Molecular Function, Biological Process and
Cellular Component. We also add the information whether or not the gene is part of the
modules obtained via heinz, because package allows us to input a list of interesting genes
to be featured in the output for several statistical tests. In this work, the so called classic
test (each GO domain is tested individually) with Fisher statistics has been used. This
will generate a list of up to 20 of the GO terms with the highest significance per domain
that are then merged into one file for further analysis.

2.5.2 Putting it all together

For the enrichment we need the output generated by heinz as well as a mapping of the
proteins to GO terms. In this work we have used ATH_GO from he Arabidopsis Informa-
tion Resource (TAIR) [35] and written merge.py with specifically this map’s structure in
mind. If other maps were to be used, then the column indices for the following informa-
tion would need to be specified in the file: locus name, GO ID and the GO domain (C, F
or P). A script call needs to reference the GO map file and the interactome that should be
used:

bash enrichment.sh Input/ATH_GO_GOSLIM.txt Input/BioGRID.txt
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This will first find all unique GO terms in the map file and their ancestors by comparing
with the dataset of GO.db [24] for R. Afterwards the script will iterate all the heinz out-
puts that were generated and will find the best GO terms for each domain. In a folder la-
beled Output the data for visualization will be stored separated by dataset and false dis-
covery rates (FDR). The other output folders Enrichment (for topGO results), eXamine
(for .exm files for visualization with older versions of eXamine, see 2.6) and GO (for the
GO terms of the nodes) are currently used to store intermediate results. As with the other
scripts, this will also skip over successfully enriched modules.

2.6 Visualization with eXamine

Finally, the results can be visualized with eXamine [27] using the latest release of a stand-
alone version3 for further analysis. With it one can select interesting GO modules from
a list of annotated terms and the displayed graph will reorganize itself in such a manner
that all biologically connected nodes are outlined by a contour. This can be done for one
or multiple GO terms at a time. Also a single gene can be selected and all the interac-
tions of it are highlighted. Support for multiple datasets is enabled and so it is possible
to compare results for different false discovery rate (FDR) values as well as suboptimal
solutions. In the last step of the script described in 2.5.2, the files that can be used with
eXamine have been created. The required files and their contents are:

• proteins.nodes - A list of all proteins in the module with their respective score
(see 2.4.1) and possibly additional information such as labels or URLs

• modules.annotations - This contains all labeled modules. However for this
work the file is hard-coded since we only output a single module.

• modules.links - This file links each proteins to a module.

• interactions.links - A list of all the edges in the module(s).

• go_and_kegg.annotations - A selection of the best-scoring GO terms that are
contained in the module(s) with annotations.

• go_and_kegg.links - This file links each protein to a GO term if possible.

For this subtask the workflow is very similar to the overall approach described in 2.2.
We have again a subdivision into three scripts nodes.py, interactions.py and
go_modules.py in which the results from one step are passed as input to the next one.
First the nodes are gathered and linked to a single module, then the edges are selected
from the interactome that was used. In the last step the GO annotations are written and
a link between nodes and GO terms is established.

3https://github.com/AlBi-HHU/eXamine-stand-alone

https://github.com/AlBi-HHU/eXamine-stand-alone
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3 Results

3.1 Beta-Uniform-Mixture (BUM) model fits of the data

By using the BioNet package [23] in R, we obtained a first insight into the distribution
of p-values in our datasets. Differential expression was best observed between the two
species in an untreated (t_Col-0_GM_acr4_GM, log likelihood: 28415.998) and treated
state (t_Col-0_CLE40p_acr4_CLE40p, log l.: 44427.138), and also in the pooled results
between genotypes (t_mf_genotype, log l.: 79440.775) as well as the pooled results con-
sidering the effects of the treatment on the wild type (t_mf2_Col-0_acr4, log l.: 44427.259).

Set# Label Nodes Mixture λ̂ Shape â log likelihood
1 t_Col-0_GM_Col-0_CLE40p 24966 1.000 1.000 0.000
2 t_acr4_GM_acr4_CLE40p 24966 0.909 0.308 846.368
3 t_Col-0_GM_acr4_GM 24966 0.543 0.174 28415.998
4 t_Col-0_CLE40p_acr4_CLE40p 24966 0.510 0.139 44427.138
5 t_mf_genotype 24936 0.431 0.107 79440.775
6 t_mf_treatment 24938 1.000 1.000 0.000
7 t_mf2_Col-0_treatment 24966 0.953 0.301 330.630
8 t_mf2_Col-0_acr4 24966 0.510 0.139 44427.259
9 t_mf2_GM_CLE40p 24966 0.909 0.308 846.429

10 p_Col-0_GM_Col-0_CLE40p 1592 1E-05 0.821 33.143
11 p_acr4_GM_acr4_CLE40p 1592 1E-05 0.895 10.227
12 p_Col-0_GM_acr4_GM 1592 1E-05 0.870 16.227
13 p_Col-0_CLE40p_acr4_CLE40p 1592 1E-05 0.807 39.186
14 p_genotype_ttest 1592 1E-05 0.841 25.348
15 p_genotype_anova 1592 0.604 0.683 24.952

Table 5: Beta-Uniform Mixture (BUM) model fits parameters for the samples. Results
were rounded to three decimal places.

We observed very different distributions of p-values between most of the samples,
but there were also some with very similar parameters. While not visible in the
rounded results, there were small differences (<1E-5) in the values for λ̂ and â
for the samples t_acr4_GM_acr4_CLE40p and t_mf2_GM_CLE40p as well as t_Col-
0_CLE40p_acr4_CLE40p and t_mf2_Col-0_acr4.

In the following steps all model fits with a log likelihood of 0 (t_mf_treatment, t_Col-
0_GM_Col-0_CLE40p) were skipped as they did not follow the desired beta-uniform
model (BUM) distribution. Here λ̂ will be 1 so that the signal term in the formula
π̂ = λ̂ + (1 − λ̂)â disappears completely and we only get a horizontal line instead of
an asymptotic curve. The amount of noise can also be seen in the histogram outputs
(Figure 4). As described in 2.4.3 a lower log likelihood requires a more generous false
discovery rate (FDR) for the following step in our pipeline. For the phosphoproteomic
data the log likelihood was barely above 0 and overall not usable for further analysis.
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Figure 4: Two sample distributions of p-values when comparing the untreated wild-
type (Col-0 GM) to the untreated mutant (acr4_2 GM, left) and treated wildtype (Col-0
CLE40p, right). The red line is the beta-distributed component and the blue line is the
uniform component. If our sample p-values do not follow a beta-uniform mixture distri-
bution (λ̂ = â = 1), both lines converge.



3 RESULTS 16

3.2 Descriptive analysis of the discovered modules

After we ran heinz, we compared the varying sizes of the networks dependent on the
dataset (and FDR values) used for the nodes as well as the different interactomes and
briefly summarized the intermediate results. The metrics that we will use are the total
number of nodes as well as the scores per module.

As discovered in the previous step, the p-values of t_acr4_GM_acr4_CLE40p and
t_mf2_GM_CLE40p as well as t_Col-0_CLE40p_acr4_CLE40p and t_mf2_Col-0_acr4 fol-
lowed had almost identical distribution. By using heinz we could also see that save
for negligible small differences in the scores the resulting trees were identical for all FDR
values and interactomes. This means that two more (t_mf2_GM_CLE40p and t_mf2_Col-
0_acr4) of the remaining seven datasets could potentially be left out in further analysis.

3.2.1 Summary of the intermediate outputs from the "omic" data

The module sizes across the different datasets changed in accordance to the BUM model
fits, so the datasets with the smallest log likelihood also had the lowest scores as well as
the least amount of nodes for a set FDR value and interactome with the resulting trees
often consisting of a single node with the highest p-value. On average the number of
nodes went up in a quadratic manner compared to the score as we also added more and
more hub nodes to the graph.

Because the score of each node increases linearly with the logarithm of the FDR, we ob-
served many cases where the tree completely changed its topology once a certain thresh-
old value has been reached. The isolated nodes that resulted from a protein with no
reported interactions or only interactions with not well supported proteins were then
replaced by a completely different tree with multiple interactions.

3.2.2 Summary of the intermediate outputs from the interactome data

Unlike the log likelihood for our BUM model fits, when it came to the interactomes it did
not hold true that more edges meant that the the resulting networks would be bigger. In
fact, for our data the medium sized BioGRID network had the best performance in every
test that was run. To find out the similarity between the different networks, we have
calculated the number of identical (undirected) edges.

BioGRID (35646 Edges) AraNet (341821 Edges)
AINM (11374 Edges) 8886 = 78% 670 = 6%
BioGRID (35646 Edges) 1417 = 4%

Table 6: Number of intersecting edges between the interactomes. The percentages relate
to the smaller interactome. The intersection of all three interactomes consisted of 561
edges which corresponds to 5% of AINM.

While AINM and BioGRID were quite similar in regards to the edges that they contained,
the biggest differences were found between each of them and the probabilistic AraNet
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network. This also had a significant influence on the modules that were obtained as the
genes included in the networks showed little overlap as well. While no benchmarks on
the runtime were run, it became apparent that only the usage of AINM and BioGRID
resulted in short enough runtimes for heinz to be used in a setup with many different
datasets and FDR values. As finding the modules is a NP-hard problem, the runtimes
for AraNet were problematic when we tried to run 30 or more tests in succession with
runtimes often thirty times higher than when using BioGRID.

3.3 Analysis of the discovered GO terms

For the next step we have taken a look a closer look at the GO terms that were identified.
The total number of modules that were calculated for a single interactome were between
50 and 59. As the modules in heinz were obtained by looking at differentially expressed
genes, a GO function or process in the context of our experimental data should mean
that the differences between the two groups led to a significant up- or downregulation of
said GO domain due to differences in treatments or the genotype. Because topGO also
looked at nodes that were outside of our modules, GO terms were oftentimes also found
for nodes that weren’t part of the modules. These terms had to be excluded in the final
step to produce the output files for visualization. Using the default setting of the twenty
top scoring GO terms for each domain, only two to three GO processes were left in the
final output. However it is generally possible to add more enrichment to the data by
increasing the desired amount of GO terms for the output and repeat the final step of our
workflow.

As mentioned in 3.2.1 the false discovery rate (FDR) had a direct influence on the size
of the modules. When we look at the changes of the p-values of the GO terms, no such
correlation can be found. When the network gets bigger, the p-values for certain terms
became smaller as more nodes were added as support while for others more unrelated
nodes diluting the GO terms meant a lower significance. In this list are the most frequent
terms for GO processes for each of the interactomes used in descending order by the
number of their occurrence:

• AINM: mitochondrial electron transport, succinate to ubiquinone (GO:0006121),
signal transduction (GO:0007165), regulation of seed germination (GO:0010029)

• AraNet: mitochondrial electron transport, succinate to ubiquinone (GO:0006121),
defense response (GO:0006952), multicellular organismal development
(GO:0007275)

• BioGRID: mitochondrial electron transport, succinate to ubiquinone (GO:0006121),
signal transduction (GO:0007165), response to hormone (GO:0009725)

As before the results were showing that AINM and BioGRID had more similar results
than AraNet, but the top scoring GO process for all interactomes was mitochondrial elec-
tron transport, succinate to ubiquinone (GO:0006121) which seems to be influenced espe-
cially by the CLE40p treatment of acr4-2 mutants.
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We were also interested in the variability of both GO terms as well as module nodes
in certain interactomes, because we saw some of the GO terms only appear once for
all of the datasets. The Venn diagrams used were generated using the web application
InteractiVenn [36].

Figure 5: Intersections of nodes and GO terms. The total numbers of modules that were
pooled are 56 for AINM, 50 for AraNet and 59 for BioGRID. Diagram 1A shows the
intersections of unique nodes. For each interactome the total number of pooled nodes
is given beside the interactome names and the number of unique nodes is in brackets.
The average numbers of nodes per module therefore are 53 for AINM, 74 for AraNet
and 98 for BioGRID. Diagram 1B represents the intersections of the pooled GO processes.
Here the total number of pooled GO processes is given beside the interactome names and
the number of unique processes is in brackets. Here the averages per module are 2 GO
processes for AINM and 3 for AraNet and BioGRID topGO’s default settings.

For all of the interactomes the ratio of unique to overall nodes was around 1 to 5. This
might be in part explained by the fact that the modules were based on multiple datasets,
so a certain variety should be expected. It can be seen that the intersections of the unique
nodes are showing a similar behavior to the overlap of edges between the interactomes,
so when using PPI networks with a higher similarity, the resulting modules also con-
tained more of the same nodes. The overlap in terms of unique nodes between AINM
and BioGRID is so big that only 24% of AINM’s nodes were not shared between the two.

The ratio of unique GO processes to overall GO processes was very different for each in-
teractome while the percentages of the overlap were again similar to our previous com-
parisons. Interestingly, while having the most nodes and GO processes, the BioGRID
modules were also the most stable ones in terms of the GO processes they contained. This
can be interpreted as BioGRID being the least affected by variability of the biological pro-
cesses found in the modules. While the size of the networks changed greatly depending
on the FDR values, the most probable GO terms seemed to be fairly conserved here.
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3.4 Visualization of the obtained modules

While it is impossible to discuss all of the modules found in this work, we want to focus
on giving one detailed example of a visualized module. Given all that we have learned
thus far about the different interactomes used, we think that the most suitable modules
that were found came from using the BioGRID interactome with the modules having
the highest score in heinz and the most conserved GO processes. When it came to in-
terpreting the modules, size was always an important factor to consider as some of the
very complex, which is why we decided to crop the module in Figure 6 for illustrational
purposes. The full version is included in the appendix.

Figure 6: Visualization of a functional module in eXamine (cropped). This module has
been obtained by using the t_acr4_GM_acr4_CLE40p p-values and the BioGRID interac-
tome at an FDR of 0.08. The nodes are colored by the log fold changes after the CLE40p
treatment, red: positive, blue: negative. One group of the GO process nucleus organization
has been highlighted to demonstrate eXamine’s capabilities.

In this module we can see how the visualization of the modules generally looked like.
For the color gradient, we chose to use the observed log fold changes, but the nodes can
also be weighted with the scores received from heinz, compare 2.4.1. In the networks
generated by heinz nodes in the periphery of the module always possess a positive score,
so that the p-values are lower than our margin defined by the FDR. Only in modules
with a high FDR setting, we were able to find WOX5, which has been described in 1.2
and which is here connected to TOPLESS (TPL), SCARECROW-LIKE 27 (SCL27) and
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MYOSIN XI B (XI B). However it has to be noted that the fold change of WOX5 expression
levels is not well supported which is why this node received the most negative score. We
already saw that CLE40p was not affecting WOX5 levels much in acr4-2 knockouts [37],
so it is debatable if any differential expression occurred.

4 Discussion & Outlook

4.1 Evaluation of the results

For this work we successfully created an automated workflow that employs several dif-
ferent techniques to output functional modules based on a combination of experimental
and literature data. The workflow is also able to be resumed in case of singular faulty
inputs and is open for extension in terms of working processes or parameter changes for
the scripts. The outputs were tested and up to a certain size could be visualized with
eXamine.

However, for the specific data at hand, we unfortunately weren’t able to find many reli-
able or interesting modules. Oftentimes nodes relating to the same GO process showed
no real interconnectivity, probably due to important nodes along the process missing
from the module due to bad scores. One source of the problems was probably the use
of unfiltered interactome data, especially in the case of AraNet. With more insight on
the data and by limiting the number of interactions, it could be possible to increase the
reliability of the results.

Another factor can also arise from the experimental data, more specifically the number
of samples, is that the raw p-values often were very low, sometimes down to to E-200.
This meant that very low false discover rate (FDR) values had to be selected and even
with 1E-15 the modules remained too large for the BioGRID interactome. This is due to
the way heinz will score each of the nodes according to the FDR value creating a big bias
towards those samples that came up with the best p-values.

4.2 Comparison to an alternate workflow

As mentioned in 2.3.2 our workflow relies a lot on a suitable distribution of the raw p-
values. In some cases this may even lead to finding no modules at all and sometimes
no raw p-values might be available. An alternative workflow is the one described in
“Auxins and Cytokinins in Plant Biology” [38]. While the tools used weren’t that much
different from ours, the approach is a lot more bottom-up in a sense that a process or
other GO term of interest has to be specified beforehand, see Figure 7.

We have tried this approach using strict p-value cutoffs and the BioGRID interactome
in an attempt to double-check some of our modules or find results where we couldn’t
before. We used one of the phosphoproteomics datasets (p_genotype_anova: p-value:
0.05), but weren’t able to find any good modules again. We also tried two transcriptomics
datasets (t_Col-0_GM_acr4_GM, p-value: 1E-8 & t_mf_genotype, p-value: 1E-15) that
performed well with our workflow, but then ran into difficulties when settling for smaller
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Figure 7: Alternative workflow to find functional modules as described in [38]. Here the
process analysis is made before looking at the network topology, while in our workflow
these steps were reversed, see Figure 2 for comparison.
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GO terms to investigate, because the networks still had around 700 nodes left at that point
and the GO processes did not cluster well. However these results are more likely related
to the experimental data than the workflow itself, so an extensive evaluation using more
datasets might be interesting.

4.3 Outlook

Probably the biggest addition that can be made to the process is the implementation of
an even usability. As of now the execution of all the steps requires to follow a certain
protocol as well as the installation of various required software. With build tools such as
Snakemake [39] the steps can be further unified as well as simplified so that the builds
always run using the same dependencies. Additionally the automation might also be able
to keep the footprints of generated data small if desired or give detail files for all the steps
along the way as it does now. Another addition could be to extend the workflow with
DESeq2 [18] or similar tools to automate the analyze starting with the raw expression/
ion intensity data.

As it stands the workflow still relies in some parts on manual analysis, but when com-
bined with a list of certain goals set a priori, such as interesting nodes or GO terms, we
think that the results may become more reliable. In that case we could look for modules
with the highest score to size ratio or which are in a certain margin for the number of
nodes. Other parameters that might be interesting to change could also be the number of
GO terms that were output by topGO as we have seen that sometimes only two or three
processes were contained in our modules. or certain nodes. On top of that it might also
be good to make searches a little easier a posteriori for a more exploratory analysis like
we did in this work.

When it comes to visualization, in the current state the nodes contain only the identifier,
gene name and the score. Additional information might be useful such as the inclusion of
links to online resources such as Uniprot [40] or for Arabidopsis thaliana specifically TAIR
[3]. It might also be interesting to have the outputs not only cover either the scores, the
p-values or the fold changes, but also information on all three at the same time.
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Figure 8: Visualization of a functional module in eXamine (complete)
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