
Department of Computer Science
Algorithmic Bioinformatics

Universitätsstr. 1 D–40225 Düsseldorf

Developing and Evaluating a
Cytoscape App for

Graph-Based Clustering

Philipp Spohr

Entwicklung und Evaluation einer Cytoscape-App für
graphbasiertes Clustering

Submission: 22.11.2017
Supervisor: Prof. Dr. Gunnar Klau
Second Assessor: Prof. Dr. Stefan Conrad
Advisors: Martin Engler

Sven Schrinner

Declaration

I hereby confirm that this thesis is my own work. I have documented all
sources and tools used. Any direct or indirect quote has been marked as
such clearly with specification of the source.

Düsseldorf, November 19, 2017
Philipp Spohr

Abstract

Cluster analysis is the task of grouping objects so that objects in
a group are similar to each other and dissimilar to objects of other
groups. This technique is commonly used in many areas as a prepro-
cessing step to analyze data. The Yoshiko algorithm is an algorithm
for cluster analysis that utilizes a graph-based approach. It groups
objects into clusters by transforming their relationships into a graph,
reducing it using six reduction rules and then solving Weighted Cluster
Editing (WCE).

WCE is the problem of choosing a subset of edges in an undirected
complete weighted graph so that the edge-induced subgraph consists
of disjointed cliques and the sum of edge weights is maximized. This is
achieved by either applying a heuristic approach or solving an integer
linear program (ILP) to calculate an exact solution. In this thesis we
describe an implementation of the Yoshiko algorithm as an applica-
tion for the network visualization software Cytoscape. Thereby, we
provide an intuitive tool for cluster analysis. It allows the user to set
edge-weights directly or via mapping and allows edges to be explicitly
included in or excluded from the solution.

We then evaluate the algorithm in terms of running time and qual-
ity and compare it to TransClust, another clustering algorithm based
on WCE. In addition, we analyze the effect of the reduction rules on
the running time of the algorithm. For this analysis we use the cluster-
ing evaluation framework ClustEval with 16 real world and synthetic
data sets.

We identified two rules suitable for reducing real-valued instances
and found that – on the data tested – reduction is inefficient when
using the heuristic mode as it increases running time. While the run-
ning time of Yoshiko in heuristic mode and TransClust was found to
be similar, the running time of the ILP mode was highly dependent
on the reduction, with good reductions (> 95% of input size) reducing
the running time by several orders of magnitude.

Overall, we found that both modes of the Yoshiko algorithm gen-
erate solutions of similar or identical quality compared to TransClust.
From this we draw the conclusion that, at least for the instances tested,
exact algorithms for WCE do not result in a solution quality justifying
the increase in running time.

Additionally, we observed that both graph-based algorithms per-
formed weak on path-like structures (where groups are not highly
connected).

Contents

1 Introduction 1
1.1 Cytoscape . 1
1.2 Yoshiko . 1
1.3 TransClust . 2
1.4 Objective . 2
1.5 Methods and Resources . 2

2 Algorithmic Background 2
2.1 Notation and Basic Definitions 2
2.2 Weighted Cluster Editing . 4
2.3 Yoshiko Algorithm . 4

2.3.1 Data Modeling . 5
2.3.2 Reduction Rules . 5
2.3.3 Solving . 6

3 The Yoshiko-App for Cytoscape 8
3.1 Technical Details . 8
3.2 Data Modeling . 10
3.3 Reduction Rules . 11
3.4 Status Bar . 11
3.5 Presenting Solutions . 11
3.6 Additional Options . 12

4 Evaluation of the Yoshiko Algorithm 13
4.1 Methodology . 14

4.1.1 Input Processing . 14
4.1.2 Quality Measurements 14
4.1.3 Divisive Parameter Optimization 16
4.1.4 Data Sets . 16

4.2 Results . 16
4.2.1 Parameter Optimization 16
4.2.2 Running Time Analysis 17
4.2.3 Quality Comparison 18

5 Outlook and Discussion 21
5.1 Multigraphs and Loops . 21
5.2 Limitations of the Evaluation Method 22
5.3 Limitations of WCE as a Clustering Model 23
5.4 Improving the Cytoscape-App 23

5.5 Integration in other Frameworks 25

6 Acknowledgments 25

7 Bibliography 26

A Source Code 29

B Data Sets 29
B.1 Synthetic Data Sets . 29
B.2 Natural Data Sets . 31

C Parameter Optimization Overview 32

D Parameter Optimization Curves 33

E Running Time Analysis 36
E.1 Reduction Rules . 36
E.2 Experimental Callbacks . 37
E.3 Comparison ILP, Heuristic and TransClust 38

1 Introduction

Today, we are generating and processing more data than ever. Social net-
works collect a large amount of information about users and their behavior.
In biology, databases containing information about the microscopic com-
ponents of life are growing: Every day researchers make new observations
about DNA sequences, protein interactions or molecule structures. There
are countless other examples from all disciplines as information technology
has become widespread and indispensable in nearly every field. In order to
analyze this data and gain new insights, one of the firsts steps is usually the
grouping of similar objects in order to recognize underlying structures. We
want objects that share a group to be similar while being dissimilar to ob-
jects of other groups. The process of creating such groups is usually referred
to as cluster analysis. There are various algorithms for data clustering, each
with their advantages and disadvantages, and even more implementations
of these algorithms for different systems and programming languages. As
cluster analysis becomes more common and frequently used by people with
different backgrounds, intuitive graphical interfaces that are easy to use are
gaining relevance.

1.1 Cytoscape

Cytoscape [17] is an open-source network visualization and analysis software.
It allows modeling of various network types and provides many built-in tools
for layout and analysis of the data. One of its strengths is the support of
community-provided applications (more commonly referred to as apps) that
enhance it and offer additional functionality. Many of the popular (most
downloaded) apps offer clustering algorithms [7]. Cytoscape provides an
open API as well as tutorials for developers to enable the creation of apps.
An advantage of software such as Cytoscape is that it allows users to per-
form their data analysis in a more intuitive and accessible way compared to
command-line tool pipelines.

1.2 Yoshiko

Yoshiko [12] is a command-line tool for cluster analysis written in C++ that
uses a graph-based approach (see Section 2.2). We will refer throughout this
thesis to both, the command-line tool as well as the underlying algorithm
(see Section 2.3), as Yoshiko.

1

1.3 TransClust

TransClust [21] is another graph-based clustering tool based on the same
graph problem as Yoshiko, making it a natural choice for a comparison.
It was found to be among the top performing algorithms when applied to
biomedical datasets [24].

1.4 Objective

For this thesis we modified Yoshiko to be used as a library for other software.
Next, we developed a clustering application based on Yoshiko as an app for
Cytoscape. We then analyzed the different configurations for Yoshiko in
terms of running time and solution quality on test data sets. Additionally we
compared those results to TransClust. Finally we will discuss the limitations
of our methods as well as potential future work and research.

1.5 Methods and Resources

The software created for this thesis is based on the C++ command-line tool
[12] of the Yoshiko algorithm. It makes use of LEMON [5], a graph library,
and IBM ILOG CPLEX Optimization Studio [11], a solver for linear pro-
grams. The Cytoscape app is implemented in Java using the Cytoscape
Swing App API [6]. For the creation of the evaluation software, which was
written in Java, the ClustEval library [22] was used. The evaluation ex-
periments were performed on the HHU (University of Düsseldorf, Germany)
HPC-System using 16 Intel(R) Xeon(R) E5-2667 v4 cores (3.20 GHz) as well
as 512 GB RAM.

2 Algorithmic Background

2.1 Notation and Basic Definitions

For this thesis we make the following definitions to provide a shared termi-
nology with our readers.

Definition 1 (Undirected Graph)
An undirected graph is a tuple (V,E) where V is the set of vertices and E
the set of edges with E ⊆

(
V
2

)
.

Definition 2 (Undirected Complete Graph)
An undirected complete graph is a graph G = (V,E) where E =

(
V
2

)
.

2

Definition 3 (Undirected Complete Weighted Graph)
An undirected complete weighted graph is a tuple (G, c) where G is a com-
plete graph G = (V,E) and c a cost function c : E → R ∪ {−∞,∞}.
Throughout this thesis we will refer to c(e) as the weight of e.

Definition 4 (Vertex-Induced Subgraph)
A vertex-induced subgraph GS with G = (V,E) and S ⊆ V is defined as a
graph with S as the set of vertices where the set of edges contains all edges
of G that have both endpoints in S.

Definition 5 (Edge-Induced Subgraph)
An edge-induced subgraph GS with G = (V,E) and S ⊆ E is defined as a
graph where the set of edges is S and where the set of vertices contains all
vertices of G that are incident to an edge in S.

Definition 6 (Clique)
A clique of a complete graph G = (V,E) is a subset V ′ ⊆ V so that the
vertex-induced subgraph GV ′ is a complete graph.

Definition 7 (Cluster Graph)
A cluster graph is a graph that consists of disjointed cliques.

Definition 8 (Conflict Triple)
A conflict triple in an undirected graph G = (V,E) is a triple {u, v, w} ∈

(
V
3

)
so that {u, v} ∈ E ∧ {v, w} ∈ E ∧ {u,w} /∈ E (see Figure 1).

u

v w

u

v w

u

v w

Figure 1: The three possible conflict triples

3

2.2 Weighted Cluster Editing

We have now covered the prerequisites necessary to move to our main focus.

Definition 9 (Weighted Cluster Editing)
Given an undirected complete weighted graph: Choose a subset E ′ ⊆ E so
that the edge-induced subgraph of E ′ is a cluster graph and the sum of edge
costs

∑
e∈E′

c(e) maximized.

Definition 10 (Editing Costs)

For a solution S with subset E ′ we call EC(S) =
∑
e∈E

c(e) if e > 0 ∧ e /∈ E ′

|c(e)| if e < 0 ∧ e ∈ E ′

0 else
the editing costs of S.

This can be intuitively understood as the absolute values of negative edges,
which are part of the solution, as well as the values of positive edges, which
are not part of the solution, summed up.

u

v

x

y z

5

1

4

8

→

u

v

x

y z

5 4 -1

8

1

For all missing edges c(e) = −1

Figure 2: An example of WCE and an optimal solution S with EC(S) = 0

As a practical measure we will not take edges with costs in {−∞,∞} into
account when calculating the sum of edge costs. Instead we will call an
edge e with c(e) = ∞ permanent and always include it in the solution. An
edge e with c(e) = −∞ is called forbidden and will never be included in
the solution. We note that the edge-induced subgraph is a cluster graph if
and only if it contains no conflict triples [3]. The problem WCE was found
to be NP-complete [16]. However, many instances can still be solved in a
reasonable running time [2].

2.3 Yoshiko Algorithm

We can now describe how the Yoshiko algorithm operates (see Figure 3). The
basic idea is to transform the input data into a WCE instance. We then solve
WCE and interpret the cliques in the cluster graph as the desired clusters.

4

Input

Data
Modeling

Reduction
Rules

ILP Solver

Heuristic
Solver

Generate
Output

Figure 3: Overview of the Yoshiko Algorithm

2.3.1 Data Modeling

As a first step, we transform our raw input data into an undirected complete
weighted graph. Depending on the format of the input data, we take different
approaches. We will present and discuss two of them in this thesis as we
employ one for the Cytoscape app implementation (see Section 3.2) and
another for the evaluation (see Section 4.1.1). The Yoshiko command line
application provides support for parsing various additional input formats.

2.3.2 Reduction Rules

The algorithm then reduces the instance by applying six reduction rules
exhaustively. We will not cover those rules in this thesis but rather just
acknowledge some of their properties and later analyze their performance.
For a detailed description of the reduction rules refer to Böcker, Briesemeis-
ter, and Klau [2] as well as Böcker et al. [1]. The reduction rules identify
edges that can not be part of an optimal solution for WCE or edges that
are required to be part of an optimal solution. Vertices that are known to
be connected can then be merged (while retaining the information about the
original nodes and edges). Therefore, we note that the reduction rules do not
affect the solution but may reduce the runtime. Previous analysis has shown
those rules to reduce many unweighted instances of cluster editing (meaning
the cost function is specified as c : V → {−1, 1}) to trivial or at the very
least small instances while performing less efficient on weighted instances [2].
The reduction process can result in disjointed graph components which then
can be treated as separate instances.

5

2.3.3 Solving

The remaining reduced instances can be solved in two ways. We can either
apply a heuristic that generates a cluster graph but does not necessarily
maximize edge costs or calculate an exact and therefore optimal solution
using an ILP.

ILP An exact solution for WCE can be gained by modeling and solving
the following integer linear program (ILP) [10]:
Let (G, c) be an undirected complete weighted graph with vertices V and
edges E.

Let X : E → {0, 1} =

{
1, if the edge is part of the solution

0 else

We now maximize ∑
e∈E

X(e)c(e)

subject to

X({u, v}) + X({u,w})−X({v, w}) ≤ 1

X({u, v})−X({u,w}) + X({v, w}) ≤ 1

−X({u, v}) + X({u,w}) + X({v, w}) ≤ 1

for each {u, v, w} ∈
(
V
3

)
.

Using the inequalities as constraints, we guarantee that the solution contains
no conflict triples as each inequality represents one possible conflict triple
(see Figure 1). Therefore, our definition of WCE lends itself to formulation
as an ILP naturally. A solution S for this ILP is an optimal solution for the
WCE problem [10]. Constructing a trivial example where all edges carry a
weight of zero, we realize that multiple optimal solutions are possible.
As we are restricted in X to 0 and 1 we can specify this program as a binary
linear program.

Heuristic Algorithm Yoshiko uses a modified version of the kernel al-
gorithm proposed by Böcker et al. [1] as a heuristic. For this approach we
modify our graph model slightly: We treat edges e with c(e) ≤ 0 as non-
existing edges and call edges e with c(e) = 0 zero edges. Let (G, c) be an
undirected complete weighted graph with vertices V and edges E. We call
E+ = {e : e ∈ E, c(e) > 0} the set of existing edges.

6

Definition 11 (Shared Neighborhood)
The shared neighborhood of vertices u and v is
SN(u, v) = {x ∈ V \ {u, v} : {u, x} ∈ E+ ∧ {v, x} ∈ E+}

Definition 12 (Exclusive Neighborhood)
The exclusive neighborhood of vertices u and v is
EN(u, v) = {x ∈ V \ {u, v} : {u, x} ∈ E+ Y {v, x} ∈ E+}

This leads us to the following two definitions, which are essential to our
heuristic:

Definition 13 (Induced Costs for Setting an Edge to Forbidden)
icf({u, v}) = max{0, c({u, v})}+

∑
w∈SN(u,v)

min{c({u,w}), c({v, w})}

Definition 14 (Induced Costs for Setting an Edge to Permanent)
icp({u, v}) = max{0,−c({u, v})}+

∑
w∈EN(u,v)

min{|c({u,w})|, |c({v, w})|}

We call icf(e) the induced costs of excluding edge e from the solution (mark-
ing it as forbidden) and icp(e) the induced costs of including edge e in the
solution (marking it as permanent). If we set an edge {u, v} to forbidden,
we know that there can be no shared neighbors of u and v in the solution
as that would result in a conflict triple. By assuming that, for each shared
neighbor, the edge carrying the lower weight would have to be removed from
the solution as well, we will avoid this.

u

v m

n

3

5

2

1

4

→

u

v m

n

1

2
4

5

Figure 4: An example for icf({u, v}) = 6

If we set an edge {u, v} to permanent we can simply merge both vertices into
a new vertex uv. It then needs to be decided whether we want to connect or
disconnect the vertices adjacent to uv and we will simply make the cheapest
choice in terms of editing cost.

7

Deciding to disconnect a vertex w means we will add a new edge

n = {uv, w} : c(n) = −(|c({u,w})|+ |c({v, w})|)

whereas connecting it we would add

n = {uv, w} : c(n) = |c({u,w})|+ |c({v, w})|.

n u

v m

5

4

1 -2

-3

→

n u

v m

5
-2

4

1 → n uv m
2

-4

Figure 5: Setting {u, v} to permanent, icp({u, v}) = 3

The heuristic algorithm as described by Laude [13] works as following:
We calculate icp and icf for each edge. As a next step we choose the edge
{u, v} that yields the highest icp or ilp value. We then make a decision to
either include or exclude it from the solution. If icp({u, v}) < icf({u, v})
we mark it as permanent (merging the incident nodes) else as forbidden
(setting c({u, v}) = −∞). By directly merging nodes we guarantee that
no conflict triples are created. Due to the fact that the induced costs may
now have changed for all edges incident to u or v we will update icp and
icf for all relevant edges. The process is then repeated with the next edge.
We terminate the algorithm when all edges are set as either permanent or
forbidden.

3 The Yoshiko-App for Cytoscape

3.1 Technical Details

This work builds on the C++ implementation of Yoshiko [12]. As the orig-
inal implementation did not provide any interface for other applications to
connect to, one of the first tasks was adjusting the software to support access
from other applications. In order to achieve this, we restructured the program
in a more modular fashion by strictly separating input-parsing, reduction-
rule application, solving of the reduced instances and output generation.

8

As a next step, support for a virtual input format was added, meaning the
generation of the graph instance could be controlled purely through function
calls. A basic application programming interface (API) was then created to
enable external software to use the tool as a library. Those functions were
exposed via the Java Native Interface (JNI) convention to specifically allow
access from Java. In order to improve the quality of incomplete processes
in case of an early termination, we added a sorting step to the algorithm
after the reduction phase in which we sort the instances by size in ascending
order. We experienced that most runtime is spent on one difficult instance
while other, smaller instances are solved fast. Therefore we decided to solve
those first and thereby guarantee that a termination of the algorithm while
solving the biggest instance still yields a result where all smaller instances are
already finished. Finally a graphical interface that uses the Yoshiko library
was created in Java as a Cytoscape app, which we will present in the following
sections. In order to enable callbacks from the C++ part of the software back
to Java we created abstract C++ classes and implemented them in Java. The
sources for both, the library (the modified version of Yoshiko) as well as the
Cytoscape app are available, refer to Appendix A.

Cytoscape framework In order to describe the functionality of the app
we need to briefly cover some properties of Cytoscape. Graphs (referred to as
networks in Cytoscape) are displayed visually in a user-defined style, meaning
that the user can choose vertices (or nodes in Cytoscape) to be displayed for
instance as labeled circles or squares. In addition, Cytoscape has two major
panels that allow the user to interact with apps: One displaying interfaces
and the other output. In both panels, the apps are represented as separate
tabs.
For each network, tables containing additional information about the net-
work can be defined. One table using the edges as index, the edge table,
one using nodes as index, the node table, and one generic table holding in-
formation about graph properties always exist by default. The user has the
option to create new tables or add columns to existing ones. One could for
instance create a cost column in the edge table and insert values represent-
ing edge weights there. Each column contains one of five data types (String,
Integer, Long Integer, Float or Boolean). Styles can be linked to tables,
for instance a user can decide to scale node sizes according to a node table
column containing numeric values.

9

3.2 Data Modeling

The Yoshiko algorithm models the data as an undirected complete weighted
graph. As many input instances in Cytoscape do not describe such a graph
missing edges and costs need to be modeled. This is achieved by using default
values for insertion or deletion. We interpret missing edges as edges with a
weight < 0. A default insertion cost CI ∈ [−∞, 0] is used as c(e) whenever
the input instance does not contain an edge e whereas a default deletion cost
CD ∈ [0,∞] is used as c(e) whenever the input instance does contain an edge
e that has no cost associated.

Mapping Edge Costs The user has the possibility to use a numeric Cy-
toscape edge table column (which may contain integers or floating point pre-
cision numbers) as a source for the edge-cost function C. We would therefore
set the cost function for an edge to a user-defined entry in this table column,
indexed by the edge.

Insertion and Deletion Cost The default values CI and CD can be set
by the user with the default values being CI = −1 and CD = 1. This
corresponds to the unweighted cluster editing problem, assuming that no
edge-cost function is mapped. It should be noted that the insertion cost value
is not normalized by the software or in any way adjusted when a mapping is
used. This means that the user needs to choose this value wisely to fit the
data. As an example the user might have mapped the edge costs to a column
containing values in the range of 106 − 107. The default insertion cost of −1
is small in comparison and the algorithm will most likely insert all missing
edges and generate one big cluster as a solution.
In general, the ratio R = |CI |

CD
can be interpreted as a density-value. R > 1

means, that the algorithm is more likely to delete edges in the process of
generating cliques (resulting in smaller clusters), a value of R < 1 means
insertions are more likely (resulting in bigger clusters).

Mapping Permanent or Forbidden Edges The Yoshiko-App has addi-
tional convenience functions: The user can map edges to a boolean Cytoscape
column to mark them as either forbidden (meaning that those edges will never
be part of the solution) or permanent (meaning that those edges will always
be part of the solution). Marking an edge e as forbidden is equivalent to
c(e) = −∞, marking an edge e as permanent is equivalent to c(e) =∞. This
way the user is able to apply expert knowledge in the process of modeling
a suitable WCE instance in order to increase the quality of the solution.

10

Marking edges as forbidden or permanent takes precedence over mapping
edge costs.

3.3 Reduction Rules

The application allows toggling each reduction rule (refer to Section 2.3.2)
on or off. As a default option all rules are enabled, thus adopting the default
setting for the Yoshiko command line software. In addition to choosing the
rules, the user has the option of specifying a factor for the Similar Neighbor-
hood Rule. This option may improve the efficiency of this rule when using
real valued edge weights, as the rule itself rounds all numbers and uses inte-
gers in order to execute a dynamic program. Therefore multiplying all edge
values with a factor > 1 results in a higher resolution (at the cost of a higher
running time). For example the numbers 1.1 and 1.2 would be rounded to
1, losing information in the process whereas multiplying them by 10 would
have them represented as 11 and 12 respectively. We will give some cau-
tious advice for using those reduction rules later on (see Section 4.2.2). As
we consider those options to be advanced they are by default hidden in the
interface as to avoid confusion.

3.4 Status Bar

Due to the fact that the algorithm might take a substantial amount of time,
the Yoshiko-App provides feedback about the process through a status bar.
It informs the user about the currently applied reduction rule and – if the
algorithm is in the ILP solving step – outputs the current gap (meaning
1 − lb

ub
, where lb is the lower bound for the editing costs of the solution and

ub the upper bound). The user also has the option to cancel the process via
a button included in the status bar which will result in the attempt to fetch
a (potentially suboptimal) solution.

3.5 Presenting Solutions

The application gives the user a simple and clean interface for exploring and
interacting with the results. At the top of the result panel that opens when
the algorithm is finished or has terminated basic information is displayed for
instance how many clusters were found, the gap between lower and upper
bound in ILP mode or how high the editing costs for generating the solution
were.

11

As multiple optimal solutions are possible the user can switch between them
via tabs. The clusters are visually displayed in a list using the currently
selected style and layout method to render them. Upon selection, the nodes
in a cluster are highlighted in the original graph. The user can also choose
to export clusters as separate graphs (networks).
We also added a meta-graph feature (see Figure 6). This will generate one
subgraph for each cluster and then one graph where each node represents
one cluster. Nodes in this meta-graph are scaled to represent cluster size
and the edge size between clusters reflects how many edges exist between
nodes belonging to the respective clusters. Given a sufficient zoom-level the
user can also see the subgraphs embedded in the meta-graph. Through the
context menu, accessible by right-clicking a node, the user can move into
the subgraph of a given cluster node. Modifications to the original graph
are registered and a warning is issued to the user that the solution might no
longer be accurate. When a meta-graph is active, selecting a cluster in the
solution tab results in the corresponding cluster node being highlighted. All
subgraphs and meta-graphs can be disposed of when the result is discarded,
cleaning the workspace.

u

v w

a

b

c

d

m

n

→

uvw

abcd

mn

Figure 6: Model of the meta-graph feature

3.6 Additional Options

Library Selection The library section allows selection of the Yoshiko li-
brary. The location is saved on exit so it usually needs to be set only once.
It also displays basic information about the version and contains a link to
the repository where it can be downloaded.

Number of Solutions As the algorithm can generate multiple optimal
solutions the user has the option to limit the number of solutions that are to
be calculated (in order to save running time).

12

ILP Time Limit Due to the fact that the ILP part of the software can
be very expensive in terms of running time a time limit can be set. After
expiring the user is informed and can either retrieve a (possibly) suboptimal
solution or continue the algorithm.

Multithreading By default CPLEX uses as many cores as possible. This
might lead to the system becoming very unresponsive. The user has the
option to limit CPLEX to a single thread, which might be useful for experi-
menting on low-end to mid-range systems in order to maintain a responsive
operating system.

Experimental Callbacks Two experimental callbacks for CPLEX, namely
Triangle Cuts and Partition Cuts, can be toggled on or off. They modify the
way CPLEX operates in solving the ILP. We will not cover those in detail
but rather give some basic observations about their performance later on.
For more details refer to Böcker, Briesemeister, and Klau [2].

Help System We linked some panels like the data modeling panel to the
relevant chapters of this thesis, hosted in the Yoshiko-App repository, en-
abling advanced users to refer to it as an in-depth manual.

4 Evaluation of the Yoshiko Algorithm

Evaluating a clustering algorithm is a difficult task. What a valid cluster
is highly depends on the application and while a certain model might be
well suited for a given task, it could easily fail on other tasks. There is also
the technical difficulty of having to parse data sets that might appear in
any representation into a format suitable for a given algorithm. In addition,
many clustering algorithms work with one or more parameters that need to
be set as they determine the quality of the solution. In order to attempt an
evaluation, we use the ClustEval [23] framework, a software kit that converts
data sets into various formats, runs specified cluster algorithms on them
and then evaluates the found clusters with various quality measurements.
It also allows automatized tuning of parameters to determine an optimal
configuration for a certain data set.

13

4.1 Methodology

4.1.1 Input Processing

In order to apply our clustering method to the data sets, which are encoded
in various formats, we use ClustEval to convert each data set into a similarity
matrix.

Definition 15 (Similarity Matrix)
A similarity matrix M for a data set with n entries X1, X2, . . . , Xn is an
upper triangular matrix of size n with entries in [0,∞] ∪ {−∞}, where each
entry Ai,j corresponds to the symmetric similarity between two data points
Xi and Xj.

To transform this matrix into an undirected complete weighted graph we
use the same method that is utilized by TransClust. We use the following
algorithm: For each data point Xi (or row Ai in the matrix) we create a
vertex Vi. We then choose a threshold parameter T ∈ [0,∞). For each pair
of nodes {Va, Vb} : a 6= b we insert an edge with weight Aa,b − T .
Note that this transformation preserves forbidden and permanent edges (with
weights ∈ {−∞,∞}).
The threshold parameter can be interpreted as a density parameter.
If we choose

T = min{Ai,j : 1 ≤ i < j ≤ n}+ ε

with a small ε > 0 we generate relatively large clusters while choosing

T = max{Ai,j : 1 ≤ i < j ≤ n} − ε

with a small ε > 0 results in relatively small clusters. It is worth noting that
T ≤ min({Ai,j : 1 ≤ i < j ≤ n}) simply generates one big cluster whereas
T ≥ max({Ai,j : 1 ≤ i < j ≤ n}) will result in one cluster per vertex.

A B C

A 2 3
B 5
C

 T=3−−→

A

B C
-1

0

2

Figure 7: Transforming a similarity matrix into a WCE instance

4.1.2 Quality Measurements

In order to judge the quality of the clusters we apply two measurements.

14

Silhouette Value The silhouette value [15] is an intrinsic value, meaning
that it can be calculated without knowledge of an optimal solution (gold
standard). It is based on the concept that a good clustering has homogeneity
between elements inside the same cluster and separation between elements
that are in different clusters. In order to define it we need to cover some
mandatory definitions.

Definition 16 (Average Dissimilarity To Own Cluster)
The average dissimilarity of an object i to its cluster is a(i) = 1

|ci|
∑
j∈ci

d(i, j),

where d is a distance measure appropriate1 for the data set and ci the cluster
i is in.

Definition 17 (Average Dissimilarity To Other Clusters)
The average dissimilarity of i to all other clusters is b(i) = 1

n−|ci|
∑

j∈C\ci
d(i, j),

where n is the number of all objects and C the set of all objects.

n and C correspond to |V | and V in our graph model.

Definition 18 (Silhouette Value)

The silhouette value is defined as S = 1
n

∑
i

si, where si = 1
n

b(i)−a(i)
max{a(i),b(i)}

F1-Score The F1-Score [14] is an extrinsic value, meaning that it can only
be calculated with knowledge of an optimal solution. It originates from
binary classification where either 0 or 1 is predicted and then compared to
the actual occurrence.
If the hypothesis is 0 and the result 1 we call it a False Negative (FN).
If the hypothesis is 1 and the result 1 we call it a True Positive (TP).
If the hypothesis is 0 and the result 0 we call it a True Negative (TN).
If the hypothesis is 1 and the result 0 we call it a False Positive (FP).
In order to define the F1-Score we need to define two expressions first:

Definition 19 (Precision)
The precision of a prediction is defined as TP

TP+FP
.

Definition 20 (Recall)
The recall of a prediction is defined as TP

TP+FN
.

1 We are using similarity values as defined earlier. ClustEval generates these values by
applying a suitable distance measure to the input file. As an example, data that represents
points in the R2 linear vector space could be processed using the euclidean distance. For
a detailed description of the conversions that are actually used, refer to Wiwie [23].

15

We can now define:

Definition 21 (F1-Score)
The F1-Score of a prediction is defined as 2 · precision·recall

precision+recall

It has been found that the Silhouette value correlates strongly with the F1-
Score. It is therefore a good quality measure to optimize parameters for when
no gold standard is known [24].

4.1.3 Divisive Parameter Optimization

To optimize our threshold parameter during the input processing step, we
apply divisive parameter optimization using ClustEval. This method simply
takes an integer parameter x and divides the range of similarity values into x
uniform steps. We then apply our clustering algorithm and assess the results
with a quality measurement of choice to determine the best parameter.

4.1.4 Data Sets

For this evaluation we choose 16 of the data sets provided by ClustEval.
The data sets include synthetic data sets as well as real world examples. A
gold standard is given for each data set describing the ‘correct’ clustering.
Visualizations (if helpful) as well as sources are included in Appendix B. We
excluded some data sets shipped with ClustEval. This was either due to the
running time exceeding the scope of this project or due to errors, which we
couldn’t resolve, setting up the experiment.

4.2 Results

4.2.1 Parameter Optimization

As the ILP mode of the Yoshiko algorithm has a long running time, we
optimized the threshold parameter using the heuristic mode under the as-
sumption that both modes share a common optimal threshold. We used
divisive parameter optimization with 100 subdivisions on all 16 data sets,
choosing the silhouette value as the relevant criterion. We included the full
data (see Appendix D).
As evident from the data it is difficult to give a general recommendation
for the threshold. This is because the threshold/silhouette functions do not
follow a simple pattern. More specific, they are not monotonous and have, in
some instances, multiple maxima. Attempting to cluster using the full range
of possible parameters can therefore not be avoided.

16

Another observation was that some instances had discrete steps, meaning
that a broad range of parameters resulted in the same solution. Compar-
ing the optimal thresholds to those found by TransClust (see Appendix C)
we noted that we achieved the same threshold yielding the same silhouette
value on many data sets while performing marginally worse on others. This
led to the hypothesis that we might reach the exact same silhouette values
using more subdivision steps. We then reran the experiment on the sets
that showed a difference, using 1000 subdivisions and in addition clustered
using the optimal threshold as determined by ClustEval. Unfortunately, our
hypothesis was shown to be wrong as we achieved the same result (or even
worse silhouette values when using the TransClust configuration).
We also attempted parameter optimization, using ILP mode on few instances
with a reduced number of subdivisions and observed the exact same curves
the heuristic showed though we would refrain from drawing any conclusions
for now. In addition we looked at the curves for TransClust on some in-
stances and noted that TransClust seems to be more consistent (see Ap-
pendix D:ChangSpiral), meaning that the average silhouette value across all
parameters was higher.

4.2.2 Running Time Analysis

In order to determine the optimal configuration for Yoshiko we ran differ-
ent configurations of the software, using the previously optimized threshold
parameters.

Reduction Rules As a first step, we analyzed the efficiency of the reduc-
tion rules. Those rules do not affect the solution [2] so the only relevant
measurement is running time. We made runs on the data sets with each
of the six reduction rules toggled on alone, using the heuristic mode for the
solving step. It should be noted, that all the data sets contained real numbers
whereas some reduction rules are specifically engineered towards integers.
We found that Clique Rule, Almost Clique Rule, Critical Clique Rule and
Heavy Edge Rule performed very poorly. On most data sets no reduction
was achieved and on the remaining few we received reductions < 2%.
In contrast, the Parameter Dependent Rule achieved reductions of 99% on
some instances and the Similar Neighborhood Rule achieved reductions rang-
ing from 0.003% to ∼ 55%. Both came with an increase in running time, the
Parameter Dependent Rule elongated the process by a factor < 2 while Sim-
ilar Neighborhood Rule increased it up to a factor of 1000. Using heuristic
mode, no reduction resulted in an overall decreased running time.

17

We would therefore cautiously conclude that the first four rules are not suit-
able for real-valued instances. Furthermore we suggest using no reduction
rules at all when running in heuristic mode and Parameter Dependent Rule
as well as Similar Neighborhood Rule in ILP mode. For the full data refer to
Appendix E.1

Comparison between ILP, Heuristic and TransClust We also com-
pared both modes of Yoshiko to TransClust in terms of running time (see
Figure 8). All reduction rules were turned on for the ILP mode – assuming
that their increase in running time would be negligible compared to the ILP
solving step – while we used none in heuristic mode.
Unsurprisingly, the ILP mode was very costly in terms of running time, ex-
ceeding TransClust and the heuristic mode on some instances by a factor of
up to 104 or larger. TransClust and the heuristic mode of Yoshiko performed
comparably. We note that the ILP mode achieved running times in the same
magnitude on data sets where a large amount of reduction was achieved as is
apparent on the instances ColiFind, ColiNeed, ColiState and ColiTime. The
full data is included, refer to Appendix E.3.

Experimental Callbacks Finally we tested the two experimental call-
backs we just briefly touched upon in Section 3.6 and compared their influ-
ence on running time. The Triangle Cuts callback appeared especially slow
on many instances due to a lack of parallelization (The callback itself can not
be run on multiple cores). Yet, it yielded exceptionally good speedups on
some instances, for example ChangSpiral or FuFlame. We would therefore
refrain from making a conclusive recommendation about its usage for now
and suggest leaving it turned off as to avoid critical instances. Employing the
Partition Cuts callback we achieved similar results to the basic ILP mode
with a tendency of a slight reduction in running time over all instances. As a
result we would advise using this callback on real-valued instances. For the
full data refer to Appendix E.2.

4.2.3 Quality Comparison

As a final step, we used our optimized parameters and compared Yoshiko
in heuristic and ILP mode to TransClust using the F1-Score (see Figure 9).
Overall both modes performed similar, with both heuristic and ILP mode of-
ten generating the exact same solution. The same holds for the comparison
to TransClust. We could also observe that differences in F1-Score were usu-
ally reflected in a difference in silhouette value though we also saw exceptions
to that rule (See Synthetic Spirals).

18

C
h

an
gP

at
h
b

as
ed

C
h

an
gS

p
ir

al

C
ol

iF
in

d

C
ol

iN
ee

d

C
ol

iS
ta

te

C
ol

iT
im

e

F
u

F
la

m
e

S
y
n
th

et
ic

C
as

si
n

i

S
y
n
th

et
ic

C
u

b
oi

d

S
y
n
th

et
ic

S
p

ir
al

s

T
C

G
A

T
w

on
or

m
50

d

T
w

on
or

m
10

0d

V
ee

n
m

an
R

15

Z
ah

n
C

om
p

ou
n

d

0

2

4

6

8

10

12

Data Set

R
u
n
n
in

g
ti

m
e

(s
)

TransClust
Yoshiko Heuristic

Figure 8: Running time comparison TransClust and Yoshiko Heuristic

19

Across all data sets the ILP mode did not always yield better results than the
heuristic mode as can be seen looking at Synthetic Spirals. Summing this up
we reach the conclusion that heuristic approaches to WCE yield good results.
As the ILP mode calculates an exact solution to WCE we can conclude that
the heuristic algorithms find the exact solution to WCE on many data sets
as well. Equivalently, exact algorithms might not deliver results justifying
the increase in runtime.

C
h

an
gP

at
h
b

as
ed

C
h

an
gS

p
ir

al

C
ol

iF
in

d

C
ol

iN
ee

d

C
ol

iS
ta

te

C
ol

iT
im

e

F
u

F
la

m
e

G
io

n
is

A
gg

re
ga

ti
on

S
y
n
th

et
ic

C
as

si
n

i

S
y
n
th

et
ic

C
u

b
oi

d

S
y
n
th

et
ic

S
p

ir
al

s

T
C

G
A

T
w

on
or

m
50

d

T
w

on
or

m
10

0d

V
ee

n
m

an
R

15

Z
ah

n
C

om
p

ou
n

d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Set

F
1
-S

co
re

Yoshiko ILP
Yoshiko Heuristic

TransClust

Missing F1-Scores mean that the algorithm exceeded a runtime of six hours.

Figure 9: Clustering quality comparison

20

5 Outlook and Discussion

5.1 Multigraphs and Loops

As Cytoscape supports multigraphs and loops (meaning there can be more
than one edge connecting the same pair of vertices as well as edges connecting
a node to itself), we were faced with the situation that our model (WCE)
was not sufficient for a generic Cytoscape clustering application. Before
discussing how to modify the Yoshiko algorithm in order to cover multigraphs
one needs to clarify how those structures are to be interpreted in terms of
data clustering.
For example, given a graph representing interactions between objects, one
could think of a multigraph where the edges contain two properties: The
type of interaction and the strength of interaction. We could then reduce
the graph instance under the assumption that the interaction type is chosen
from a finite set by assigning an associated weight factor. Merging all edges
connecting two vertices using the sum of the weighted strengths, we would get
an undirected weighted graph. This method could be applied for a network
of protein-protein interactions where multiple experiments are merged into
one graph. In this case we would define a given experiment as an interaction
type and assign a weight based on the quality of the experiment. There
are other possible scenarios and it is therefore difficult to think of a generic
approach to clustering such objects. (One could even discuss whether such
a structure is in itself useful for clustering.)

a b

Figure 10: A small multigraph with a loop

There are also several interpretations of what a loop represents: In some
cases it might represent feedback mechanisms and in others those loops might
simply be artifacts from converting data. The basic model we use does not
support loops at all but one could easily think of methods that take loops into
account. One way would be a graph model where both, edges and vertices,
contain weights and where the weight of a node is the weight of all incident
edges summed up. In such a model loops would be taken into account.

21

For our implementation we decided to ignore both objects (and simply warn
the user when his input data contains such an object). Future research could
analyze whether the reduction rules are applicable to multigraphs and loops
while retaining optimality and adjust WCE to support such structures.

5.2 Limitations of the Evaluation Method

While we achieved some valuable insights during the evaluation process there
are still many open questions. This is in part due to the limited scope of
the project. The overall assessment of runtime might be inaccurate due to
various factors:
As we performed the evaluation on multiple cores using ClustEval we had no
direct control over threading and could not guarantee a uniform processing
of all configurations. We noted fluctuations running the same experiment
multiple times although they remained < 1s.
For a comprehensive statement as to whether using the ILP is really use-
ful one would need to perform a complete parameter optimization using the
ILP or alternatively, find a proof for the assumption that an optimal heuris-
tic threshold is always an optimal ILP threshold. We also think that the
amount of data is unsatisfactory. In order to observe patterns and find opti-
mal configurations depending on certain characteristics of the input instance
we would have to analyze more data sets (for a start those that had an ex-
cessive runtime). In addition, we presume that a broader variety of input
instances could be useful to gain additional insights. As an example, we had
neither data sets containing permanent or forbidden edges (similarity values
∈ {−∞,∞}), nor data sets consisting of integer values.
Generally speaking, the process of transforming all input instances into sim-
ilarity matrices might not be applicable for every real life application. One
could think of a graph model, where missing edges have fixed costs indepen-
dent of the similarity between their vertices. Forcing each input instance into
a similarity matrix might then come with a loss of information.
Summing this up, we are looking forward to more future research on the
aspects mentioned, hopefully resulting in new insights.

22

5.3 Limitations of WCE as a Clustering Model

WCE is an intuitive and successful model for the clustering of data but it
can not be applied to all real-world problems. This is due to the fact that
there is no fixed definition of what a ‘valid’ clustering is. While using WCE
as a model assumes that the clusters are highly-connected groups of objects
there might be cases that are not covered. We would like to elaborate on this
using the data set Synthetic Spirals (see Appendix B) as an example. The
data set consists of points in R2 describing two intertwined spirals.
When processing this object using the optimal threshold, Yoshiko transforms
the similarity matrix into an undirected weighted complete graph. This graph
consists of two connected components. We now note that those two connected
components are already the clusters that one would intuitively group those
points into by simply looking at the plot. Those components however, are
not cliques. Therefore our algorithm will now split the spirals into little clus-
ters (even triangles) as this is the most cost-efficient way of creating cliques.
We are now left with a strange solution.
Generalizing this problem, one could define ‘path-like’ structures as such
where objects are similar to at most two other objects of the same clus-
ter while being potentially more dissimilar to other objects of their cluster
than to objects of another cluster. Those structures are trivially not well-
represented using WCE.
Further research could formalize such objects more precisely and find ways
of identifying them. Our algorithm could then be adjusted to scan for those
objects in a preprocessing step and change the approach accordingly.

5.4 Improving the Cytoscape-App

While the main functionality is implemented, the Yoshiko-App has many as-
pects that can be improved.
A natural step would be to publish the app or submit it to the Cytoscape app
store. Right now this is impossible due to our software relying on CPLEX,
which we can not distribute. We are therefore forced to require potential users
having CPLEX installed in order to use the app. This could be avoided using
a free alternative to solve the ILP. We could also imagine a basic version of
the software employing the heuristic approach that would detect an existing
CPLEX installation and then offer the ILP mode as an optional feature.
Similar to the method used during our evaluation process we could envision
a threshold cutoff feature that would transform complete similarity graphs
consisting exclusively of weighted positive edge values into a real valued in-
stance.

23

As a user might be content with a solution that is not optimal in the sense
of a WCE solution, a feature that would let the user specify a target gap and
then cancel the ILP solving process as soon as this gap is reached, might be
of benefit. Throughout the analysis we occasionally observed, that the solver
spent most of its time closing gaps < 1%. Such an option could therefore
potentially reduce the runtime significantly.
Newer versions of Cytoscape focus on automation; We could therefore sup-
port callbacks to process multiple graphs using external scripts and generat-
ing the solutions as meta-graphs.
An important insight while working on this thesis was the importance of the
graph modeling phase. In order to choose an efficient configuration for our
algorithm as well as an appropriate method of transforming the input into
a graph we need to have a clear understanding of our input data. While
cluster analysis is usually thought of as the first step in processing data it
might be useful to add more preprocessing steps. As of now the user is still
responsible for representing her/his input data in a way that fits the WCE
model. For instance, having a graph with exclusively negative edge weights
requires transformations before we get a meaningful WCE problem as the
algorithm would simply create one cluster per vertex otherwise. Similarly, as
most Cytoscape networks are not complete graphs, choosing an appropriate
insertion cost is vital to the quality of the resulting clustering. We could
therefore implement different strategies for suggesting such a value (for in-
stance a mean value of all edge weights). Throughout our evaluation process
we also found that some instances can be processed in a short running time
using the Triangle Cuts callback. It would be valuable to identify for which
input instances this callback is helpful and for which it is not. Ideally a final
version of Yoshiko could suggest a complete configuration based on the input
instance to the user that would result in the lowest expected runtime and the
highest expected silhouette value. Assuming that the instance is weighted
with floating point precisions values, we would, for instance, turn off the first
four reduction rules.
Another scenario that –as of now– is not supported is a modified version of
WCE where the user specifies the number of clusters he wants to achieve. For
this we would have to modify our model so that a fixed number of clusters
is generated.
Most certainly, many other things can be added or improved. Having released
the software as open-source software, we are looking forward to contributions,
feedback or suggestions.

24

5.5 Integration in other Frameworks

Given the fact that Yoshiko has been transformed from a C++ command
line application to a library it is now possible to implement the algorithm for
other frameworks beside Cytoscape with relative ease. While Cytoscape is es-
pecially engineered towards working with biomedical data one could think of
implementations for frameworks that focus on social networks but also com-
pletely different applications such as embedding the algorithm in language
analysis tools.

6 Acknowledgments

I would like to express my deep gratitude to the supervisor of this thesis Prof.
Dr. Gunnar Klau for his support and constructive feedback throughout the
process. In addition I want to thank Martin Engler and Sven Schrinner for
their advice and valuable guidance. Information from Dr. Christian Wiwie
regarding his ClustEval platform was indispensable and I would like to thank
him for his patience with my many questions. Computational support and
infrastructure for the software evaluation was provided by the “Centre for
Information and Media Technology” (ZIM) at the University of Düsseldorf
(Germany). Lastly, I would like to specifically thank Philipp Rehs for assist-
ing me in working with the HPC and even setting up a R environment with
the required packages for this project.

25

7 Bibliography

References

[1] Sebastian Böcker, Sebastian Briesemeister, Quang B.A. Bui, and Anke
Truss. “Going weighted: Parameterized algorithms for cluster edit-
ing”. In: Theoretical Computer Science 410.52 (2009). Combinatorial
Optimization and Applications, pp. 5467–5480. issn: 0304-3975. doi:
https://doi.org/10.1016/j.tcs.2009.05.006. url: http://www.
sciencedirect.com/science/article/pii/S0304397509003521.

[2] Sebastian Böcker, Sebastian Briesemeister, and Gunnar W. Klau. “Ex-
act Algorithms for Cluster Editing: Evaluation and Experiments”. In:
Algorithmica 60.2 (June 2011), pp. 316–334. issn: 0178-4617. doi: 10.
1007/s00453-009-9339-7. url: http://dx.doi.org/10.1007/
s00453-009-9339-7.

[3] Sebastian Briesemeister. “Weighted cluster editing for clustering bio-
logical data”. Diplomarbeit. Friedrich-Schiller Universität Jena, Dec.
2007.

[4] Hong Chang and Dit-Yan Yeung. “Robust Path-based Spectral Clus-
tering”. In: Pattern Recogn. 41.1 (Jan. 2008), pp. 191–203. issn: 0031-
3203. doi: 10.1016/j.patcog.2007.04.010. url: http://dx.doi.
org/10.1016/j.patcog.2007.04.010.

[5] Egerváry Research Group on Combinatorial Optimization. LEMON
LEMON C++ Graph Library. url: http://lemon.cs.elte.hu/

trac/lemon (visited on 11/03/2017).

[6] Cytoscape Consortium. Cytoscape 3.5.1 Cytoscape Swing App API.
url: http://chianti.ucsd.edu/cytoscape-3.5.1/API (visited
on 11/03/2017).

[7] Cytoscape Consortium. Cytoscape App Store. url: http : / / apps .

cytoscape.org/apps (visited on 11/03/2017).

[8] Limin Fu and Enzo Medico. “FLAME, a novel fuzzy clustering method
for the analysis of DNA microarray data”. In: BMC Bioinformatics 8.1
(Jan. 2007), p. 3. issn: 1471-2105. doi: 10.1186/1471-2105-8-3. url:
https://doi.org/10.1186/1471-2105-8-3.

[9] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. “Clustering
Aggregation”. In: ACM Trans. Knowl. Discov. Data 1.1 (Mar. 2007).
issn: 1556-4681. doi: 10.1145/1217299.1217303. url: http://doi.
acm.org/10.1145/1217299.1217303.

26

http://dx.doi.org/https://doi.org/10.1016/j.tcs.2009.05.006
http://www.sciencedirect.com/science/article/pii/S0304397509003521
http://www.sciencedirect.com/science/article/pii/S0304397509003521
http://dx.doi.org/10.1007/s00453-009-9339-7
http://dx.doi.org/10.1007/s00453-009-9339-7
http://dx.doi.org/10.1007/s00453-009-9339-7
http://dx.doi.org/10.1007/s00453-009-9339-7
http://dx.doi.org/10.1016/j.patcog.2007.04.010
http://dx.doi.org/10.1016/j.patcog.2007.04.010
http://dx.doi.org/10.1016/j.patcog.2007.04.010
http://lemon.cs.elte.hu/trac/lemon
http://lemon.cs.elte.hu/trac/lemon
http://chianti.ucsd.edu/cytoscape-3.5.1/API
http://apps.cytoscape.org/apps
http://apps.cytoscape.org/apps
http://dx.doi.org/10.1186/1471-2105-8-3
https://doi.org/10.1186/1471-2105-8-3
http://dx.doi.org/10.1145/1217299.1217303
http://doi.acm.org/10.1145/1217299.1217303
http://doi.acm.org/10.1145/1217299.1217303

[10] Martin Grötschel and Yoshiko Wakabayashi. “A Cutting Plane Algo-
rithm for a Clustering Problem”. In: Math. Program. 45.1 (Aug. 1989),
pp. 59–96. issn: 0025-5610. doi: 10.1007/BF01589097. url: https:
//doi.org/10.1007/BF01589097.

[11] IBM. CPLEX IBM ILOG CPLEX Optimization Studio. url: https:
//www.ibm.com/us-en/marketplace/ibm-ilog-cplex (visited on
11/03/2017).

[12] Mohammed El-Kebir, Gunnar Klau, and Emanuel Laude. Yoshiko GitHub
Repository. url: https://github.com/ls-cwi/yoshiko (visited on
11/03/2017).

[13] Emanuel Laude. “Identifikation von Arten durch gewichtetes Cluster-
Editing”. Bachelor’s thesis. Julius-Maximilians-Universität Würzburg,
Feb. 2013.

[14] Cornelis Joost van Rijsbergen. Information Retrieval. url: http://
www.dcs.gla.ac.uk/Keith/Preface.html (visited on 11/03/2017).

[15] Peter J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis”. In: Journal of Computational and
Applied Mathematics 20.Supplement C (1987), pp. 53–65. issn: 0377-
0427. doi: https://doi.org/10.1016/0377- 0427(87)90125- 7.
url: http://www.sciencedirect.com/science/article/pii/

0377042787901257.

[16] Ron Shamir, Roded Sharan, and Dekel Tsur. “Cluster Graph Modifica-
tion Problems”. In: Discrete Appl. Math. 144.1-2 (Nov. 2004), pp. 173–
182. issn: 0166-218X. doi: 10.1016/j.dam.2004.01.007. url: http:
//dx.doi.org/10.1016/j.dam.2004.01.007.

[17] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan
T. Wang, Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey
Ideker. “Cytoscape: A Software Environment for Integrated Models
of Biomolecular Interaction Networks”. In: Genome Res 13.11 (Nov.
2003). 14597658[pmid], pp. 2498–2504. issn: 1088-9051. doi: 10.1101/
gr.1239303. url: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC403769/.

[18] Nora Speicher. “Towards the identification of cancer subtypes by inte-
grative clustering of molecular data”. Master’s thesis. Universität des
Saarlandes, Dec. 2012.

[19] Princeton University. ”About WordNet.” WordNet. Princeton Univer-
sity. url: http://wordnet.princeton.edu (visited on 11/03/2017).

27

http://dx.doi.org/10.1007/BF01589097
https://doi.org/10.1007/BF01589097
https://doi.org/10.1007/BF01589097
https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
https://github.com/ls-cwi/yoshiko
http://www.dcs.gla.ac.uk/Keith/Preface.html
http://www.dcs.gla.ac.uk/Keith/Preface.html
http://dx.doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://dx.doi.org/10.1016/j.dam.2004.01.007
http://dx.doi.org/10.1016/j.dam.2004.01.007
http://dx.doi.org/10.1016/j.dam.2004.01.007
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC403769/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC403769/
http://wordnet.princeton.edu

[20] Cor Veenman, Marcel Reinders, and Eric Backer. “A maximum vari-
ance cluster algorithm”. In: 24 (Oct. 2002), pp. 1273–1280.

[21] Tobias Wittkop, Dorothea Emig, Sita Saunders, Sven Rahmann, Mario
Albrecht, John Morris, Sebastian Böcker, Jens Stoye, and Jan Baum-
bach. “Partitioning biological data with transitivity clustering”. In: 7
(June 2010), pp. 419–20.

[22] Christian Wiwie. clusteval-lib Clusteval Library. url: https://gitlab.
compbio.sdu.dk/clusteval/clusteval-lib (visited on 11/03/2017).

[23] Christian Wiwie. “Development of an integrated clustering evaluation
framework for cluster analysis”. Master’s Thesis. Saarland University
Center for Bioinformatics, May 2013.

[24] Christian Wiwie, Jan Baumbach, and Richard Rottger. “Comparing
the performance of biomedical clustering methods”. In: Nat Meth 12.11
(Nov. 2015). Analysis, pp. 1033–1038. issn: 1548-7091. url: http:

//dx.doi.org/10.1038/nmeth.3583.

[25] Charles T. Zahn. “Graph-Theoretical Methods for Detecting and De-
scribing Gestalt Clusters”. In: IEEE Trans. Comput. 20.1 (Jan. 1971),
pp. 68–86. issn: 0018-9340. doi: 10.1109/T-C.1971.223083. url:
http://dx.doi.org/10.1109/T-C.1971.223083.

28

https://gitlab.compbio.sdu.dk/clusteval/clusteval-lib
https://gitlab.compbio.sdu.dk/clusteval/clusteval-lib
http://dx.doi.org/10.1038/nmeth.3583
http://dx.doi.org/10.1038/nmeth.3583
http://dx.doi.org/10.1109/T-C.1971.223083
http://dx.doi.org/10.1109/T-C.1971.223083

A Source Code

Note: The following links were checked on November 19, 2017.
The source code for the Cytoscape plugin is accessible at:
https://gitlab.cs.uni-duesseldorf.de/spohr/YoshikoWrapper
The latest version of the Yoshiko library can be found at:
https://github.com/spqrPh/yoshiko

B Data Sets

B.1 Synthetic Data Sets

The sets Twonorm50d and Twonorm100d are part of ClustEval and consist
of data in R50 and R100 respectively.

5 10 15 20 25 30 35

10

20

30

Figure 11: ChangPathbased[4]

5 10 15 20 25 30

10

20

30

Figure 12: ChangSpiral [4]

29

https://gitlab.cs.uni-duesseldorf.de/spohr/YoshikoWrapper
https://github.com/spqrPh/yoshiko

0 2 4 6 8 10 12 14

15

20

25

Figure 13: FuFlame [8]

10 20 30
0

10

20

30

Figure 14: GionisAggregation [9]

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1

0

1

2

Figure 15: SyntheticCassini [24]

0.2 0.4 0.6 0.8

0.5

1
0

0.5

1

Figure 16: SyntheticCuboid [24]

−1 0 1

−1

0

1

Figure 17: SyntheticSpirals [24]

4 6 8 10 12 14 16 18

5

10

15

Figure 18: VeenmanR15 [20]

30

10 20 30 40

5

10

15

20

Figure 19: ZahnCompound [25]

B.2 Natural Data Sets

TCGA[18] is a data set that contains information about gene expression in
three cancer types and combines three different properties into a combined
similarity value for various molecules.

WordNet Data Sets The sets ColiFind, ColiNeed and ColiState are part
of WordNet [19]. They analyze the occurrences of specific words in a body
of text. By comparing the neighborhood of the words, similarities are calcu-
lated. It is then attempted to identify similar context or word meaning.

31

C Parameter Optimization Overview

C
h

an
gP

at
h
b

as
ed

C
h

an
gS

p
ir

al

C
o
li

F
in

d

C
o
li

N
ee

d

C
o
li

S
ta

te

C
o
li

T
im

e

F
u

F
la

m
e

G
io

n
is

A
g
gr

eg
at

io
n

S
y
n
th

et
ic

C
as

si
n

i

S
y
n
th

et
ic

C
u

b
oi

d

S
y
n
th

et
ic

S
p

ir
al

s

T
C

G
A

T
w

on
o
rm

50
d

T
w

on
o
rm

10
0d

V
ee

n
m

an
R

15

Z
ah

n
C

o
m

p
ou

n
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Data Set

S
il
h
ou

et
te

V
al

u
e

Yoshiko Heuristic
TransClust

Figure 20: Optimized Parameters

32

D Parameter Optimization Curves

0 5 10 15 20 25 30

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

ChangPathbased

0 5 10 15 20 25 30

−1

−0.5

0

0.5

1

Threshold (T)
S
il
h
ou

et
te

V
al

u
e

ChangSpiral

YoshikoH
TransClust

0.9 0.92 0.94 0.96 0.98 1

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

ColiFind

YoshikoH and YoshikoILP

0.94 0.96 0.98 1

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

ColiNeed

YoshikoH and YoshikoILP

0.88 0.9 0.92 0.94 0.96 0.98 1

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

ColiState

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

ColiTime

33

0 5 10 15

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

FuFlame

0 10 20 30 40

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

GionisAggregation

0 1 2 3 4

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

SyntheticCassini

0 0.5 1 1.5

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

SyntheticCuboid

0 1 2 3

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

SyntheticSpirals

0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

TCGA

34

0 5 10 15

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

Twonorm50d

0 5 10 15 20

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

Twonorm100d

0 2 4 6 8 10 12 14

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

VeenmanR15

0 10 20 30 40

−1

−0.5

0

0.5

1

Threshold (T)

S
il
h
ou

et
te

V
al

u
e

ZahnCompound

If not specified otherwise, the curves refer to Yoshiko in heuristic mode.

Figure 20: Visualization of the optimization process

35

E Running Time Analysis

E.1 Reduction Rules

D
a
ta

S
et

C
o
n

fi
g

N
o
n

e
C

R
A

C
C

C
H

E
P

D
S

N

C
h

a
n

g
P

a
th

b
a
se

d
3
.0

9
9
(0

%
)

3
.1

2
0
(0

%
)

3
.1

2
6
(0

%
)

3
.1

2
9
(0

%
)

3
.5

2
2
(0

%
)

5
.9

7
7
(0

%
)

3
4
.5

6
5
(2
.3

3
3
%

)
C

h
a
n

g
S

p
ir

a
l

0
.5

6
4
(0

%
)

0
.5

8
1
(0

%
)

0
.6

4
3
(0

%
)

0
.5

6
8
(0

%
)

0
.4

3
6
(1
.6

0
8
%

)
0
.9

8
1
(0

%
)

2
.8

1
5
(0
.8

9
2
%

)
C

o
li
F

in
d

6
.2

8
1
(0

%
)

6
.1

6
7
(0

%
)

6
.2

0
2
(0

%
)

6
.2

9
8
(0

%
)

7
.3

0
2
(0

%
)

1
0
.1

0
9
(9

9
.5

2
3
%

)
4
6
7
.8

0
4
(5

%
)

C
o
li
N

ee
d

0
.1

0
7
(0

%
)

0
.1

0
4
(0

%
)

0
.1

0
4
(0

%
)

0
.1

0
6
(0

%
)

0
.1

2
2
(0

%
)

0
.1

5
9
(9

8
.0

9
5
%

)
0
.1

6
0
(5

4
.2

8
6
%

)
C

o
li
S

ta
te

0
.5

5
2
(0

%
)

0
.5

5
2
(0

%
)

0
.5

5
1
(0

%
)

0
.5

4
9
(0

%
)

0
.6

5
9
(0

%
)

0
.8

8
1
(9

8
.9

4
7
%

)
9
.9

3
6
(2

2
.1

0
5
%

)
C

o
li
T

im
e

1
2
.1

1
7
(0

%
)

1
1
.5

4
8
(0

%
)

1
1
.7

0
6
(0

%
)

1
1
.7

2
(0

%
)

1
4
.1

2
8
(0

%
)

1
9
.5

7
5
(9

9
.4

1
2
%

)
1
5
5
0
.2

(2
.5

4
4
%

)
F

u
F

la
m

e
2
.1

6
7
(0

%
)

2
.1

8
9
(0

%
)

2
.7

8
9
(0

%
)

2
.1

8
0
(0

%
)

2
.3

8
4
(0

%
)

4
.2

5
5
(0

%
)

5
.7

8
8
(0

%
)

G
io

n
is

A
g
g
re

g
a
ti

o
n

9
3
.2

9
1
(0

%
)

9
3
.3

9
6
(0

%
)

9
3
.0

2
4
(0

%
)

9
1
.9

2
9
(0

%
)

1
0
1
.7

7
7
(0

%
)

1
8
6
.6

0
9
(0

%
)

1
0
4
5
.7

8
(0
.0

0
3
%

)
S

y
n
th

et
ic

C
a
ss

in
i

1
.9

2
9
(0

%
)

2
.0

0
6
(0

%
)

1
.9

3
7
(0

%
)

2
.0

3
6
(0

%
)

2
.1

7
4
(0

%
)

3
.8

3
7
(0

%
)

5
.4

5
8
(3
.2

%
)

S
y
n
th

et
ic

C
u
b

o
id

0
.9

7
7
(0

%
)

0
.9

8
4
(0

%
)

1
.2

3
7
(0

%
)

0
.9

7
7
(0

%
)

1
.0

6
9
(0

%
)

1
.8

5
6
(0

%
)

2
.5

6
7
(0

%
)

S
y
n
th

et
ic

S
p

ir
a
ls

0
.5

9
8
(0

%
)

0
.5

9
6
(0

%
)

0
.6

5
2
(0

%
)

0
.6

0
5
(0

%
)

0
.3

8
8
(0

%
)

1
.0

9
0
(0

%
)

0
.8

5
7
(0

%
)

T
C

G
A

2
.0

9
7
(0

%
)

2
.1

7
0
(0

%
)

2
.1

0
9
(0

%
)

2
.1

3
5
(0

%
)

2
.4

9
5
(0

%
)

4
.1

0
0
(0

%
)

2
.3

1
3
(0

%
)

T
w

o
n

o
rm

5
0
d

0
.6

2
6
(0

%
)

0
.6

2
4
(0

%
)

0
.6

3
1
(0

%
)

0
.6

2
4
(0

%
)

0
.7

5
3
(0

%
)

1
.1

4
5
(1

0
%

)
5
.1

0
7
(0

%
)

T
w

o
n

o
rm

1
0
0
d

0
.6

5
7
(0

%
)

0
.6

3
5
(0

%
)

0
.6

3
7
(0

%
)

0
.6

3
9
(0

%
)

0
.7

5
5
(0

%
)

1
.2

0
3
(2

%
)

1
.7

9
4
(0

%
)

V
ee

n
m

a
n

R
1
5

5
.8

8
1
(0

%
)

5
.9

2
6
(0

%
)

7
.0

8
8
(0

%
)

5
.8

8
2
(0

%
)

6
.4

9
4
(0

%
)

1
1
.3

6
2
(4

5
.5

%
)

2
3
.0

9
8
(4

5
.8

3
3
%

)
Z

a
h

n
C

o
m

p
o
u

n
d

6
.6

0
2
(0

%
)

6
.5

7
8
(0

%
)

6
.6

2
5
(0

%
)

6
.5

7
1
(0

%
)

7
.6

1
3
(0

%
)

1
2
.9

2
0
(0

%
)

3
8
7
.4

1
3
(0

%
)

C
R

=
C

li
q
u

e
R

u
le

,
A
C

=
A

lm
o
st

C
li
q
u

e
R

u
le

,
C
C

=
C

ri
ti

ca
l

C
li
q
u

e
R

u
le

,
H
E

=
H

ea
v
y

E
d

g
e

R
u

le
,

P
D

=
P

a
ra

m
et

er
-D

ep
en

d
en

t
R

u
le

,
S
N

=
S

im
il
a
r

N
ei

g
h
b

o
rh

o
o
d

R
u
le

A
ll

en
tr

ie
s

a
re

in
th

e
fo

rm
a
t
t(
r
)

w
h

er
e

t
is

th
e

ru
n

n
in

g
ti

m
e

in
se

co
n

d
s

a
n

d
r

th
e

in
p

u
t

re
d

u
ct

io
n

in
%

.
N
o
te

:
W

e
u

se
d

n
o

sc
a
li
n

g
fa

ct
o
r

fo
r
S
N

.

T
ab

le
1:

R
ed

u
ct

io
n

ru
le

s
ru

n
n
in

g
ti

m
e

an
d

effi
ci

en
cy

36

E.2 Experimental Callbacks

DataSet
Configuration

None TC PC

ChangPathbased 28130 Timeout 27324
ChangSpiral 28 1 16
FuFlame 31831 14883 21167
SyntheticCassini 16926 Timeout 17585
SyntheticCuboid 141 6 138
SyntheticSpirals 5 0.737 4
TCGA Timeout 52 Timeout
Twonorm50d 107 13 106
Twonorm100d 960 8 952
VeenmanR15 481 35 465
ZahnCompound Timeout 2840 Timeout
TC = Triangle Cuts - callback
PC = Partition Cuts - callback

All entries describe the running time in seconds. For this experiment all reduction rules

were turned on. The running time is calculated as total running time on all cores meaning

that the actual clock time might be lower. A ‘Timeout’ entry means the actual running

time exceeded at least 6 hours real-time. We omitted sets where all modes timed out as

well as sets where the algorithm did not enter the ILP phase (as a solution was already

found through reduction).

Table 2: Experimental callbacks running time

37

E.3 Comparison ILP, Heuristic and TransClust

DataSet
Configuration

TransClust ILP Heuristic

ChangPathbased 4.202 28130 3.099
ChangSpiral 3.385 28.254 0.781
ColiFind 6.238 11.659 6.281
ColiNeed 2.352 0.176 0.106
ColiState 2.997 0.993 0.552
ColiTime 8 22 12
FuFlame 3.500 31831 2.167
GionisAggregation 11 Timeout 93
SyntheticCassini 1.280 16926 1.929
SyntheticCuboid 1.319 141 0.977
SyntheticSpirals 2.781 5 0.598
TCGA 3.525 Timeout 2.097
Twonorm50d 3.080 108 0.626
Twonorm100d 3.683 960 0.657
VeenmanR15 4.321 481 5.881
ZahnCompound 4.732 Timeout 6.602

All entries describe the running time in seconds. For this experiment all reduction rules were

turned on for the ILP and off for the heuristic. We measured TransClust using the unix com-

mand ‘time’ while we used the C++ ‘clock()’ command to measure Yoshiko. This was due

to the fact that ClustEval did not support shared walltime monitoring yet. TransClust might

be disadvantaged by this method as it was measured on its own, causing overhead for each

measurement on the HPC system, whereas all Yoshiko measurements were taken in one run. A

‘Timeout’ entry means the actual running time exceeded at least six hours.

Table 3: Comparison of running time between TransClust, Yoshiko
(ILP) and Yoshiko (Heuristic)

38

	Introduction
	Cytoscape
	Yoshiko
	TransClust
	Objective
	Methods and Resources

	Algorithmic Background
	Notation and Basic Definitions
	Weighted Cluster Editing
	Yoshiko Algorithm
	Data Modeling
	Reduction Rules
	Solving

	The Yoshiko-App for Cytoscape
	Technical Details
	Data Modeling
	Reduction Rules
	Status Bar
	Presenting Solutions
	Additional Options

	Evaluation of the Yoshiko Algorithm
	Methodology
	Input Processing
	Quality Measurements
	Divisive Parameter Optimization
	Data Sets

	Results
	Parameter Optimization
	Running Time Analysis
	Quality Comparison

	Outlook and Discussion
	Multigraphs and Loops
	Limitations of the Evaluation Method
	Limitations of WCE as a Clustering Model
	Improving the Cytoscape-App
	Integration in other Frameworks

	Acknowledgments
	Bibliography
	Source Code
	Data Sets
	Synthetic Data Sets
	Natural Data Sets

	Parameter Optimization Overview
	Parameter Optimization Curves
	Running Time Analysis
	Reduction Rules
	Experimental Callbacks
	Comparison ILP, Heuristic and TransClust

