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Solving the Maximum Weight Connected Subgraph Problem Using Color

Coding

by Eline van Mantgem

Analysis of large networks has become a major research topic in systems biology. The

Maximum Weight Connected Subgraph (MWCS) problem can be applied to identify

functional modules in protein-protein interaction networks. Given a vertex weighted

graph, MWCS identifies a connected subgraph that maximizes the sum of the vertex

weights. Different methods have been introduced to solve the MWCS problem, such as

integer linear programming and color coding. We propose a method that applies a pre-

processing scheme to reduce the input graph, decomposes the graph into its biconnected

components, and finds an optimal solution using an algorithm based on color coding.

We improve both the preprocessing scheme as well as the color coding algorithm as

compared to previously published methods. We test our algorithm on the ACTMOD

benchmark instances of the 11th DIMACS implementation challenge and compare the

results and performance to an already existing integer linear programming method for

solving the MWCS problem. We show that even though our algorithm cannot compete

with the performance of the integer linear programming method, it is still feasible as a

heuristic for finding the location of an optimal solution.
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Chapter 1

Introduction

In recent years, construction and analysis of large networks have become major research

topics in different fields such as systems biology, network design, social networks and

facility location planning. The Conservation Planning problem, also known in literature

as site selection or reserve network design, is one example of this kind of problem that

arises in the field of biology. The problem consists of selecting a set of land parcels for

conservation to ensure the ability for species to survive. Given a set of land parcels, a

set of biologically important land parcels, the cost of each parcel, and the habitat suit-

ability, the goal is to select a set of land parcels that connects all biologically important

parcels while keeping the cost within a limited budget [3]. The Conservation Planning

problem, like many decision and optimization problems, can be transformed to finding a

connected subgraph of a larger input graph satisfying constraints on cost and/or benefit.

These costs and benefits are associated with the vertices, edges or both, depending on

which specific problem out of this family of problems is used. Examples of this fam-

ily of problems are the Prize Collecting Steiner Tree Problem, the Minimum Steiner

Tree problem, the Point-to-Point Connection problem and the Maximum Weight Con-

nected Subgraph problem. In this thesis, we are concerned with the Maximum Weight

Connected Subgraph problem, where given an input graph with positive and negative

weights on the vertices, the goal is to find a connected subgraph that maximizes the

sum of the vertex weights.

In systems biology, research has shifted more and more to the integrated analysis of

large datasets. Due to the exponential growth of gene expressions and protein-protein

interaction (PPI) data, the identification of functional modules in protein-protein in-

teraction (PPI) networks has become of more interest in recent years. The Maximum

Weight Connected Subgraph problem can be applied to identify functional modules in

such networks. The identification of these functional models can be used to develop

1



Introduction 2

biomarkers for cancer diagnosis and treatement, and to identify genes that can be used

as predictors of drug response in cancer. Furthermore, it can be used in the analysis

of survival data of cancer to identify mutations that are clinically relevant. A wide

range of different methods have been studied to solve this problem such as integer linear

programming [4], heuristics [5] and greedy search strategies [6]. Here, we will solve the

Maximum Weight Connected Subgraph problem using the color coding technique [7], a

fixed parameter tractable method for finding patterns in graphs.

In Chapter 1 we discuss related work, our contribution and the goal of this thesis. In

Chapter 2 we discuss a collection of topics that are important to understand for the

remainder of the thesis. These topics include parameterized complexity, the Maximum

Weight Connected Subgraph problem and graph connectivity: biconnected components.

We present our method in Chapter 3 and Chapter 4 where we discuss both the theory

(Chapter 3) as well as some implementation details (Chapter 4). In Chapter 5 present

our test results. Lastely, in Chapter 6 we discuss our conclusions.

1.1 Related Work

Color coding has been applied to the Maximum Weight Connected Subgraph (MWCS)

problem in previous work to find high scoring subgraphs for bioinformatics applications.

Dao et al. [8] describe a network-based classification algorithm to identify discriminative

subnetwork markers in protein-protein interaction (PPI) networks. They apply their al-

gorithm to drug response studies. They show that their algorithm provides a better and

more stable performance and produces predictive markers that are more reproducible

across independent cohorts of breast cancer patients treated with chemotherapy com-

pared to other subnetwork methods. The authors introduce the Optimal Discriminating

k-Subnetwork problem (ODkS) which asks to compute the connected subnetwork from a

graph G such that it distinguishes samples from different classes optimally. The Optimal

Discriminating k-Subnetwork problem (ODkS) can be formalized as follows:

Definition 1.1 (ODkS). Given a PPI network G = (V,E), a weight function w on

subnetwork S, and a restriction |S| ≤ k, find the connected subnetwork Sopt, with

|Sopt| ≤ k, such that Sopt maximizes the score w(Sopt) for all w(S) in G. Sopt is called

the optimally discriminative subnetwork.

The weight function w on subnetwork S is defined as the difference between the total

distance between samples from different classes and the total distance between samples

from the same class. The authors show that weight function w can be decomposed such
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that it can be written as a sum of gene scores (w(gi)). Thus the discriminative score of

a connected subnetwork S can be rewritten as follows:

w(S) =
∑
∀i:gi∈S

w(gi)

This is equivalent to finding the connected subnetwork for which the total weight of the

vertices is maximum, i.e., MWCS.

In [9] Hansen and Vandin describe NoMAS (Network of Mutations Associated with

Survival), an algorithm based on color coding for finding the highest scoring subnetwork

in a graph in order to identify subnetworks of a large gene-gene interaction network

that have mutations associated with survival in cancer. Given an undirected graph

G = (V,E), an n×m mutation matrix M , and the survival information for the patients

in M , NoMAS first identifies a high scoring subnetwork by solving MWCS using a

color coding based algorithm. Then, NoMAS uses a permutation test to assess the

significance of the subnetwork. The authors propose a log-rank statistic as a measure

of the association between mutations in a group of genes and survival. As opposed to

the approach in [8], the log-rank statistic score of the subnetwork is not set additive and

they prove that there is a family of instances for which the algorithm cannot identify

the optimal solution. The differences between the color coding algorithms described in

both [8] and [9] compared to our algorithm are discussed in more detail in Chapter 3.

In previous work, MWCS has also been solved using other approaches. In [4], Dittrich

et al. proposed a method to identify functional modules in PPI networks which delivers

provably optimal and suboptimal solutions to the MWCS problem by integer-linear

programming (ILP) in reasonable running time. In [2], El Kebir and Klau extended this

method by adding a preprocessing scheme and by decomposing the input instance into

its biconnected and triconnected components.

1.2 Our Contribution

The method described in [2] makes use of an ILP to solve the MWCS instance. Closed

source commercial software and the commercial license that comes along with it are

needed to execute their approach. We describe another approach to solve the MWCS

problem which does not make use of an ILP, the software is completely open source

and available without a commercial license. To solve the MWCS problem, we apply the

color coding technique. To this end, we integrated our color coding implementation into

Heinz1, a software tool written by El-Kebir, which implements the ILP as described in [2].

1https://github.com/ls-cwi/heinz
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Applying color coding to solve MWVS has been done before. We slightly improved the

color coding algorithm as described by Hansen et al. [9] and Dao et al. [8]. Furthermore,

we also implemented a rooted version of the color coding algorithm. We decomposed

the input graph into its biconnected components before running a block-cut color coding

algorithm using both the rooted as well as the unrooted version on the data. We ran

experiments using both the unrooted color coding algorithm as well as the block-cut

variant and compared the results. Additionally, we made a minor improvement to the

preprocessing scheme as proposed by El-Kebir et al. [2] and combined this scheme with

our color coding implementation. We ran experiments using the preprocessing scheme

and all versions of the algorithm and analyzed the results. To test the correctness of

our solution, we implemented a minor adjustment to the ILP as implemented in Heinz

such that we were able to find a correct solution for any given size using the ILP. We

compared these results to the results found by our algorithm.

1.3 Goals

The main goal of this thesis is to investigate whether a color coding based algorithm can

compete with the aforementioned ILP approach. Additionally, we want to improve on

previously developed algorithms for solving MWCS using color coding. First, we need

to get an understanding of the color coding technique in order to develop and implement

our own algorithm for applying color coding to solve an MWCS instance. Second, we

want to study the preprocessing scheme. We want to improve the scheme and study the

impact of applying the preprocessing scheme on the input instance before running color

coding by comparing it with results found while running the algorithm on the original

input instance. Third, we want to devise a two-layer scheme for solving MWCS based

on graph decomposition and the three-layer scheme as described by El-Kebir [2].

The application for which our algorithm can be used in the field of bioinformatics,

i.e., the identification of optimal PPI subgraphs, as well as the statistics behind the

calculation of the vertex weights are out of the scope of this thesis. A more detailed

discussion of both can be found in [4].



Chapter 2

Preliminaries

In order to fully understand the methods and algorithms described in Chapter 3 some

theory knowledge is necessary. In this chapter we will discuss parameterized complexity

and parameterized algorithms (Section 2.1), the Maximum Weight Connected Subgraph

problem (Section 2.2) and graph connectivity, specifically biconnected components (Sec-

tion 2.3).

2.1 Parameterized Complexity

NP-hard problems are a set of problems to each of which any other problem in NP can

be reduced to polynomial-time. Multiple strategies have been devised for solving NP-

hard problems. One approach is to sacrifice solution quality for efficiency, for example,

by employing heuristic algorithms, or approximation algorithms. Another possibility is

to insist on exact solutions and to accept inefficiency for some inputs. In addition, a

commonly used strategy is to reduce the problem to ‘general-purpose problems’ such

as integer linear programming or satisfiability solving. Another alternative can be to

design a fixed-parameter tractable algorithm.

In a classical setting, the complexity of computational problems is only measured as

a function in the input size. Parameterized complexity focuses on the complexity of

computational problems with respect to multiple parameters of the input or output.

By measuring complexity as a function in these parameters, classification of NP-hard

problems can be done on a finer scale. Some problems can be solved by algorithms that

are polynomial in the input size and exponential (or at least super polynomial) in the

size of a fixed parameter only. These algorithms are called fixed-parameter algorithms.

Problems which can be solved efficiently when the size of a fixed parameter is small are

5
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called fixed-parameter tractable (FPT). In [1] Hüffner et al. give the following definition

of FPT:

Definition 2.1 (FPT). A parameterized problem instance consists of a problem in-

stance I of size |I|, and a parameter k. A parameterized problem is fixed-parameter

tractable if it can be solved in f(k) · |I|O(1) time for all instances I, where f is a (com-

putable) function solely depending on the parameter k.

Typically the function f(k) is thought of as single exponential like 2k. However, the

definition allows functions to grow even faster. The crucial part of the definition is to

exclude functions of the form f(n, k), such as nk, where n = |I|.

2.1.1 Kernelization

Kernelization is the reduction of data in polynomial-time with guaranteed effectiveness.

The idea behind kernelization is to presolve those parts of the problem instance that

are easy to cope with, leaving only the parts that form the hard core, the kernel, of

the problem. The computationally expensive algorithms then only need to be applied

to this kernel. Guaranteed effectiveness means that it is often possible to prove that a

kernel with guaranteed bounds on the size of a kernel as a function of a fixed parameter

k can be found in polynomial-time. More formally, kernelization is defined as follows:

Definition 2.2 (Kernelization). Let I be an instance of a parameterized problem with

given parameter k. A reduction to a problem kernel (kernelization) is a polynomial-time

algorithm that replaces I by a new instance I ′ and k by a new parameter k′ such that

• the size of I ′ and the value of k′ are guaranteed to only depend on some function

of k, and

• the new instance I ′ has a solution with respect to the new parameter k′ if and only

if I has a solution with respect to the original parameter k.

Example: Vertex Cover. For an example of kernelization consider the Vertex Cover

problem. Finding the minimal vertex cover is a classical NP-complete problem since it

was one of Karp’s 21 NP-complete problems [10]. Furthermore, many discoveries that

influenced the field of fixed-parameter research originated from this problem. A vertex

cover of a graph is a set of vertices of a graph so that every edge is incident with at least

one vertex of the set, more formally:

Definition 2.3 (Vertex Cover). A vertex cover V ′ of an undirected graph G = (V,E)

is a subset of V such that uv ∈ E → u ∈ V ′ ∨ v ∈ V ′.
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Figure 2.1: A graph with a vertex cover (black vertices) of size 2

An example of a vertex cover for a graph is shown in Fig. 2.1.

To cover an edge in the graph one of the two endpoints must be in the vertex cover. In

case one of the two endpoints has a degree of 1, the other endpoint potentially covers

more edges than this degree-1 vertex. This realization leads to a first data reduction

rule:

Reduction Rule 1. If there is a degree-1 vertex, then put its neighboring vertex into the

cover.

After applying Reduction Rule 1 we can add the following rule in the fixed-parameter

setting where we need to find a vertex cover of size at most k:

Reduction Rule 2. If there is a vertex v of degree at least k + 1, then put v into the

cover.

If there is a vertex v in G with a degree δ ≥ k + 1 which is not put in the cover, then

the k+ 1 neighbors of v have to be in the cover in order to cover all edges incident with

v. Clearly, the resulting cover is not a solution since the maximum allowed size of the

cover is k.

After applying both reduction rules exhaustively, all vertices in the remaining graph

have at most a degree of k (Reduction Rule 2). Thus, by adding another vertex to the

cover, at most k edges can be covered. Since a vertex cover can not have more than k

vertices, the graph only has a solution of size k if the remaining graph has at most k2

edges. Because all vertices have a minimum degree of 2 (Reduction Rule 1) and there

can be at most k2 edges, the remaining graph can contain at most k2 vertices if it has a

solution set of maximum k vertices. Thus, after applying two polynomial-time reduction

rules what is left is a reduced instance whose size can be expressed solely in terms of

the parameter k. According to Definition 2.2 this resulting instance is a kernel of the

original instance.

2.1.2 Fixed-parameter Dynamic Programming

Dynamic programming is a method used for solving complex problems. The main idea

behind it is to recursively break down the problem into possibly overlapping subprob-

lems. Each of these subproblems is solved only once and, to avoid recalculation, the



Preliminaries 8

solutions are stored in a table. This technique is called memoization. Using memoiza-

tion saves computation time at the cost of a hopefully modest expenditure in storage

space. Since the running time of fixed-parameter dynamic programming algorithms

mainly depends on the table size, the main trick to obtaining useful fixed-parameter

dynamic programming algorithms is to bound the size of the table by a function of the

parameter times a polynomial in the input size. In many cases, the table size is obviously

bounded in the parameter. If this is not the case, two methods that could be used for

this are tree decomposition and color coding. Of interest for this thesis is color coding

described in the following section.

2.1.3 Color Coding

Color coding is a technique that can be used to find small patterns in graphs, e.g. to

detect simple paths or cycles of length k. A naive approach to finding a simple path

or cycle of length k with certain properties in a graph is to combinatorially try all(
n
k

)
possibilities of selecting k out of n vertices. However, this approach leads to a

combinatorial explosion, so a more sophisticated method is needed. The color coding

technique has two phases:

1. Randomly color all vertices of the graph in one of k colors.

2. Detect whether there exists a “colorful” path or cycle of length k.

A “colorful” path or cycle is one where all vertices have a distinct color. Since the

coloring is random, many coloring trials have to be performed to make sure the correct

path is found with a high probability. The number of trials needed to do so also depends

on k as will be shown later in this section. For now, suffice it to say that even very low

error probability rates, e.g. 0.1%, do not incur excessive running time costs.

Given a fixed coloring of vertices, the problem of finding a simple path or cycle can be

solved using dynamic programming. In the naive algorithm, all vertices visited need

to be stored, using O(nk) time and space. Using color coding, only the possible sets

of vertices of distinct colors need to be stored, using O(2k) · nO(1) time and space.

Choosing the number of colors poses an important trade-off: increasing k leads to a

decreased number of trials since chances of the target path or cycle becoming colorful

increase. However, this also leads to an increased running time and increased memory

requirements during dynamic programming.

Example: Minimum Weight Path. Consider the minimum weight path problem for

an example of color coding.
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Figure 2.2: An example from [1] for solving Minimum Weight Path using color coding.
The new table entry (right) is calculated using two already know entries (left and

middle)

Definition 2.4 (Minimum Weight Path). A minimum weight path of an undirected

graph G with edge weights w : E → Q+ and a non-negative integer k is a simple length-k

path in G that minimizes the sum over its edge weights.

The minimum weight path problem is NP-hard due to the requirement of finding a

simple path [11]. It can be solved using the color coding technique and dynamic pro-

gramming. Assume we have a fixed coloring of vertices using k colors. Let S be a subset

of the k colors and let c(v) denote the color of v. Furthermore, let W (v, S) denote the

minimum weight of a path that uses each color in S exactly once and ends in v. Using

dynamic programming we can compute a value W (v, S) for every vertex v ∈ V and

every cardinality-i subset S of colors. W (v, S) is computed as follows:

W (v, S) = min
e={u,v}∈E

(W (u, S \ {c(v)}) + w(e))

The resulting path is a simple path since no color is used more than once. See Fig. 2.2

for an example. In case we have a successful coloring (i.e. a coloring that colors a simple

length-k path P of minimum weight in different colors) the algorithm will find this path

in O(2k|E|) time. Furthermore, there are kk ways to arbitrarily color k vertices with

k colors and k! ways to color them. Thus the probability of any length-k path being

colorful in a single trial is k!
kk
≥ e−k. In Chapter 3 we will discuss how to apply color

coding to solve the Maximum Weight Connected Subgraph problem.

2.2 Maximum Weight Connected Subgraph Problem

The MWCS-problem can be described as follows: given an undirected, vertex weighted

graph, find a subset of vertices that induces a connected subgraph having a maximal sum
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of vertex weights. More formal definitions for both the unrooted and rooted versions of

MWCS are given by:

Definition 2.5 (MWCS). Given a connected undirected vertex-weighted graph G =

(V,E,w) with weights w : V → R, find a connected subgraph T = (Vt, Et) of G, with

Vt ⊆ V , Et ⊆ E, such that the score w(T ) :=
∑

v∈Vt w(v) is maximal.

Definition 2.6 (R-MWCS). Given a connected undirected vertex-weighted graph G =

(V,E,w) with weights w : V → R and a node set R ⊆ V , find a connected subgraph T =

(Vt, Et) of G, with Vt ⊆ V , Et ⊆ E, such that R ⊆ Vt and the score w(T ) :=
∑

v∈Vt w(v)

is maximal.

In case all vertex weights are positive an optimal solution can simply be found by deter-

mining any spanning tree. When positive and negative weights are involved, however,

the problem is not so easy to solve. In fact, in case of positive and negative vertex

weights, the MWCS problem becomes an NP-hard problem [5].

The MWCS problem is closely related to the well-known Prize-Collecting Steiner Tree

problem (PCST) which is defined as follows:

Definition 2.7 (PCST). Given an undirected graph G = (V,E) with vertex profits

p : V ⇒ R≥0 and edge costs c : E ⇒ R≥0, find a connected subgraph T = (V ∗, E∗) of G

such that p(T ) :=
∑

v∈V ∗ p(v)−
∑

e∈E∗ c(e) is maximal.

The PCST problem is frequently encountered in Operations Research where profit gen-

erating customers and the cost of creating a connecting network have to be chosen in

the most profitable way, e.g. applications such as planning district heating or telecom-

munications networks.

In [4] Dittrich et al. describe a reduction from MWCS to PCST. Let G = (V,E) and

let (G,w) be an instance of MWCS with both positive and negative vertex weights and

let w′ = minv∈V w(v) be its smallest vertex weight. Construct an instance (G, p, c) of

PCST by setting the vertex profits to p(v) = w(v)− w′ for all v ∈ V and all edge costs

c(e) = −w′ for all e ∈ E. All vertex weights and edge costs are positive and as such this

is a valid PCST instance.

Theorem 2.8. A Prize-Collecting Steiner Tree T in the transformed instance (G =

(V,E), p, c) is a connected subgraph in (G = (V,E), w) with w(T ) = p(T )− w′.

Proof. Prize-Collecting Steiner Tree T is a connected subgraph. Since T is a tree, the

profit p(T ) of T is given by:

p(T ) =
∑
v∈V ∗

p(v)−
∑
e∈E∗

−w′ =
∑
v∈V ∗

p(v) + |V ∗ − 1|w′
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The score of T is given by:

w(T ) =
∑
v∈V ∗

w(v) =
∑
v∈V ∗

(p(v) + w′) =
∑
v∈V ∗

p(v) + |V ∗|w′ = p(T )− w′

In [2] a reduction from PCST to MWCS is given. Let G = (V,E) and let G, p, c be

an instance of PCST. Construct an instance G,w of MWCS by splitting each edge

(v, w) ∈ E into two edges (v, u) and (u,w) by introducing a split-vertex u, and set the

weight of u to w(u) = −c(e).

Theorem 2.9. A maximum weight connected subgraph T ′ in the transformed instance

corresponds to an optimal prize-collecting Steiner tree T in the original instance, and

w(T ′) = p(T )

Proof. Since for split vertex u we have w(u) = −c(e), it holds that if u ∈ T ′, its neighbors

v and w must also be in T ′, otherwise T ′\u would be a better solution. Each split vertex

can then be mapped back to its original edge. The solution has profit p(T ) = w(T ′)

and is optimal since a more profitable subgraph with respect to p would correspond to

a higher scoring subgraph with respect to w, contradicting the optimality of T .

2.3 Graph Connectivity: Biconnected Components

In graph theory, graph connectivity is an important concept which often arises in prob-

lems surrounding network reliability. As we will see in the next chapter, the notion

of graph connectivity can also be used to decompose a large input graph into smaller

subgraphs to be processed individually. The simplest form of a graph connectivity prob-

lem is the question whether or not a graph is connected, i.e. the number of connected

components in a graph.

Definition 2.10 (Connected component). Given an undirected graph G = (V,E) a

connected component of G is a subgraph G′ = (V ′, E′) which contains a path between

all vertex pairs {u, v} ∈ V ′.

For each connected component, one could then examine if the there exists one weak

link in the component, i.e., see whether the deletion of a single vertex is sufficient to

disconnect the component.

Definition 2.11 (Cut vertex). Given a graph G = (V,E) a cut vertex of G is a vertex

v ∈ V that, when removed, increases the number of connected components of G.



Preliminaries 12

Figure 2.3: A graph G with cut vertex c and two biconnected components {u, v, c}
and {w, x, c}

The graph in Fig. 2.3 has one connected component. However, when removing vertex

c (and its incident edges) the resulting graph consists of two connected components. If

such a cut-vertex c does not exist, the graph is biconnected.

Definition 2.12 (Biconnected component). A graph G = (V,E) is biconnected if G

does not contain any cut vertices. A biconnected component of a graph is a maximally

biconnected subgraph.

Any connected graph can be decomposed into a tree of biconnected components called

a block-cut tree. A block-cut tree of graph G = (V,E) is a tree such that each vertex in

the tree represents either a biconnected component or a cut vertex of G. A vertex rep-

resenting a cut vertex is connected to all vertices representing biconnected components

containing that cut vertex.

Definition 2.13 (Block-cut tree). Given a graph G = (V,E), let C ⊆ V be the set

of all cut vertices of G and let B be the set of all biconnected components of G, where

each biconnected component b is the set of all vertices v ∈ b. The block-cut tree T of G

is then given by the (bipartite) graph T = (C ∪B, {(c, b) | b ∈ B, c ∈ B, c ∈ C}).

A block-cut tree describes the structure of the biconnected components and the cut-

vertices of a connected graph (or a connected component). See Fig. 2.4 for an example

of a graph and its block-cut tree.

For each biconnected component as well as for each cut-vertex, a vertex is added to the

block-cut tree. An edge is added between each biconnected component and each cut-

vertex that belongs to it. In [12] Hopcroft and Tarjan describe a linear-time algorithm

for finding the biconnected components of a graph. The algorithm is an adapted version

of a depth-first search (DFS) and breaks the graph into its biconnected components.

Upon reaching a new vertex during the DFS, it is placed on a stack and its DFS-number

and low point (LP) are stored. The DFS-number is used to keep track of the DFS tree,

the lowpoint of a vertex is the lowest point on the stack to which it is connected. When

there is no new vertex reachable from the vertex on top of the stack (TOS), the lowpoint
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Figure 2.4: A graph (left) and its block-cut tree (right).
The bi-connected components are b1 = {1, 2}, b2 = {2, 3, 4}, b3 = {2, 5, 6, 7}, b4 =
{7, 8, 9, 10, 11}, b5 = {8, 12, 13, 14, 15}, b6 = {10, 16}, b7 = {10, 17, 18}. The cut-vertices
are c1 = 2, c2 = 7, c3 = 8, c4 = 10.

of the current top of stack is checked, if the vertex does not connect to a vertex lower

than the second vertex on the stack, then this second vertex is a cut vertex of the graph.

The top of stack is then popped from the stack and the DFS is continued from the

new top of stack. During the DFS, all edges visited are placed on a separate stack in

order to retrieve the edges of the corresponding biconnected component in case a cut

vertex is found. When the stack with vertices has only one vertex left, a complete DFS

of a connected component has been performed. In case there are no other connected

components the algorithm will terminate, otherwise, an unvisited vertex is chosen as a

new starting point. Pseudocode for the algorithm can be found in Algorithm 1.

Algorithm 1 ConstructBlockCutTree(G = (V,E))

1: vertexStack, edgeStack ← the empty stack
2: DFS-count ← 0
3: cutVertices ← ∅
4: mark all v ∈ V unvisited
5: while ∃v ∈ V s.t. v is unvisited do
6: vertexStack, edgeStack ← the empty stack
7: DFS(v) ← DFS-count++
8: vertexStack.push(v)
9: if TOS has outgoing edge e = (TOS, x) then

10: processEdge((TOS, x))
11: else
12: processVertex(v)
13: end if
14: end while
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15: function processEdge(e = (TOS, x))
16: G← G = (V,E \ e)
17: edgeStack.push(e)
18: if x is unvisited then
19: DFS(x) ← DFS-count++
20: LP(x) ← DFS(TOS )
21: vertexStack.push(x)
22: else
23: if DFS(v) < LP(TOS ) then
24: LP(TOS) ← DFS(v)
25: end if
26: end if
27: end function

28: function processVertex(v)
29: if vertexStack.size > 1 then
30: if LP(TOS ) == DFS(TOS −1) then
31: (a, b)← edgeStack.PEEK()
32: biconnectedComponents.add(findBiconnectedComponent((a, b))
33: else
34: if LP(TOS < LP(TOS)−1) then
35: LP(TOS−1) ← LP(TOS)
36: end if
37: if ∃u s.t. u is a child of v AND LP(u)≥ DFS(v) then
38: cutVertices.add(v)
39: end if
40: vertexStack.pop(v)
41: end if
42: end if
43: end function

44: function findBiconnectedComponent(e = (a, b))
45: biconnectedComponent ← ∅
46: while a! = TOS− 1 do
47: biconnectedComponent.add((a, b))
48: edgeStack.pop()
49: (a, b)← edgeStack.PEEK()
50: end while
51: return biconnectedComponent
52: end function



Chapter 3

Methods and Algorithms

In this chapter we present our method for solving MWCS using color coding. We first

discuss a preprocessing scheme to reduce the input instance (Section 3.1). In Section 3.2

we discuss the main algorithm of our method, color coding. We describe unrooted color

coding and introduce block-cut color coding, which uses both unrooted as well as rooted

color coding.

3.1 Preprocessing

In [2] El-Kebir et al. describe a set of reduction rules to simplify an instance of MWCS.

The reduction rules make use of two different operations on vertex sets: Merge and

Remove. Given a graph G = (V,E) and a vertex set V ′ ⊆ V , Remove(V ′) removes

all vertices v ∈ V ′ from V and their incident edges from E. Merge(V ′) calls the

operation Remove(V ′) and combines all vertices v ∈ V ′ into one supervertex s with

weight w(s) =
∑

v∈V ′ w(s). For every edge (u, v) ∈ E with u ∈ V ′ ∧ v /∈ V ′ an edge

(u, s) is added to E. The supervertex gets a label containing all names of all vertices in

the supervertex, e.g., Merge(v, w, z) creates a supervertex with label {v w z}.

The preprocessing scheme consists of three increasingly complex phases. Fig. 3.1,

Fig. 3.2, and Fig. 3.3 contains examples for the rules of Phase I, Phase II, and Phase III

respectively.

• Phase I consists of three simple rules.

1. Remove isolated negative vertices: Let v ∈ V be an isolated vertex with

w(v) < 0. Since v will never be part of an optimal solution v can safely be

15
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removed by calling Remove({v}). Identifying all isolated negative nodes can

be done in O(|V |) time.

2. Merge adjacent positive vertices: Let (u, v) ∈ E be an edge with w(u) ≥ 0 and

w(v) ≥ 0. Since both vertices have a positive weight, if one vertex is part of

the optimal solution, the other vertex will be as well. Thus, Merge({u, v})
can be called. Identifying all adjacent positive vertices can be done in O(|E|)
time.

3. Merge negative chains: Let P ⊆ V be a chain of degree 2 vertices, all with

a negative weight. Either all vertices in P are part of the optimal solution

since they connect two positive weighted subgraphs, or none of the vertices

in P are part of the optimal solution. As such, it is safe to call Merge(P ).

Identifying all negative chains can be done in O(|E|) time.

• Phase II consists of one rule.

1. Remove mirrored vertex : Let u, v ∈ V, u 6= v be adjacent to the same vertices

and let w(u) < 0. Without loss of generality, we can assume that w(u) <

w(v). Since v will always be preferred over u for the optimal solution and u, v

are adjacent to the same vertices, we can safely call Remove({u}). Finding

all pairs of mirrored hubs takes O(∆ · |V |2) where ∆ is the maximum degree

of the graph.

• Phase III consists of one expensive rule.

1. Least-cost rule: This rule is an adaptation from the least-cost test for the

vertex-weighted Steiner tree problem as described in [13]. Let (u, v) ∈ E and

(v, w) ∈ E, with w(v) < 0 and deg(v) = 2. We try to find the least-cost path

from u to w as follows: we construct a directed graph G′ = (V,A) where A is

the arc set obtained by introducing two directed arcs (a, b) and (b, a) for each

undirected edge (a, b) ∈ E. Let the weight of arc w(a, b) = max{−w(b), 0}.
If the least-cost path has a weight smaller than −w(v), v will not be part of

the optimal solution. Thus, Remove({v}) can safely be called. Applying the

least-cost rule takes O(|V ′| · (|E|+ |V | log |V |)) time where V ′ is the set of all

negative vertices with degree 2.

The Remove mirrored vertex rule is slightly different from the rule as described by El-

Kebir. In [2], El-Kebir states that both u, v ∈ V need to be negatively weighted in order

for this rule to be triggered. It is however sufficient for only one vertex to be negative as

is described here. This allows for more relaxed constraints, i.e., only one of the vertices

has to be negative, for the application of this rule.
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Figure 3.1: An example for each of the rules of Phase I. On the left the graph is
shown before application, on the right the result is shown after the specific rule is
applied. The first example shows the removal of isolated negative vertex v. The second
example merges adjacent positive vertices t, u, v into a supervertex labeled {t u v}
with weight w(t) + w(u) + w(v). The last example merges negative chain u, v into a

supervertex labeled {u v} with weight w(u) + w(v).
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Figure 3.2: An example for the rule of Phase II. On the left the graph is shown before
application, on the right the result is shown after negative mirrored vertex v is removed.
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Figure 3.3: An example for the rule of Phase III. On the left the graph is shown
before application, on the right the result is shown after the least-cost rule is applied,

removing vertex v.
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Figure 3.4: The preprocessing scheme adapted from [2]: an MWCS instance passes
through each phase of rules that are applied exhaustively.

These phases are applied to an MWCS instance exhaustively until no rules of that phase

can be applied anymore. A more detailed scheme of how exactly these phases are applied

can be seen in Fig. 3.4. Phases I and II are applied exhaustively, repeatedly, in that

order. If no changes are made in the last iteration, Phase III is applied. If changes were

made, the whole process repeats again. Otherwise the preprocessing is finished. The

result after preprocessing is a reduced MWCS instance.

3.2 Color Coding for MWCS

The color coding technique has been described in Chapter 2, where it was applied to find

the minimum weight path of a graph. Here, we will describe a dynamic-programming

algorithm based on the color coding technique to solve MWCS. We will describe algo-

rithms to solve both the unrooted and rooted versions of MWCS (Sections 3.2.1 and 3.2.2

resp.). In addition, in Section 3.2.3 we will describe an algorithm for solving MWCS

which first creates a block-cut tree of the input graph, after which it runs both the un-

rooted and rooted versions on each block (biconnected component) separately in order

to find an optimal solution.

3.2.1 Unrooted Color Coding

In this section, we describe a dynamic-programming algorithm that uses the color cod-

ing technique to solve the unrooted MWCS problem (Def. 2.5). Our proposed algorithm



Methods and Algorithms 19

finds an optimal solution up to size k for the unrooted MWCS problem, given a certain

error probability. Similar to the color coding algorithm as described in Chapter 2 our

algorithm runs for a predefined number of iterations, which depends on the error prob-

ability. Since we have no information on the number of vertices in an optimal solution,

we need to account for the worst-case scenario. This means that, for each iteration,

the probability that an optimal solution of at most k is colorful, i.e., all vertices have

a different color, is k!
kk

> e−k. Thus, to ensure that the success probability of finding

an optimal solution is at least 1− δ, given an error probability δ, we need O(ln(1/δ)ek)

iterations.

During each iteration the algorithm builds a dynamic-programming table (DP-table).

Given the input instance G = (V,E), vertex weights w and the number of colors k, let

C be a set of k colors and w(v) the weight of v ∈ V . In addition, let P ⊆ C and let

S be a connected subnetwork of G with S = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E.

Entries in the DP-table are of the form T [v, P ] = S indicating that an optimal colorful

connected subnetwork S = (V ′, E′) has been found containing a vertex of each color c ∈
P exactly once and v ∈ V ′. The weight of subnetwork S is given by w(S) =

∑
v∈S w(v).

Pseudocode for the algorithm is shown in Algorithm 2.

Algorithm 2 solveUnrooted(G = (V,E), w, δ, k)

1: for each iteration ≤ ln(1/δ)ek do
2: C ← a set of colors with |C| = k
3: colorVertices(V,C)
4: Table T ← initializeTable(V,w,C)
5: for 2 ≤ i ≤ k do
6: for each vertex v ∈ V do
7: for each P ⊆ C with |P | = i do
8: if c(v) ∈ P then
9: T [v, P ]← dpLookup(G, v,w, P )

10: end if
11: end for
12: end for
13: end for
14: return T [v, P ] : max

v∈V

{
max

P 6=∅,P⊆C,|P |≤k
{w(T [v, P ])}

}
15: end for

16: function colorVertices(V,C)
17: for each v ∈ V do
18: c(v)← a random color c ∈ C
19: end for
20: end function

Let each vertex v ∈ V be colored uniformly at random with one of k colors at the start

of each iteration. To initialize the DP-table the following entries are inserted into the
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21: function initializeTable(V,w,C))
22: for each vertex v do
23: for each color c ∈ C do
24: if c(v) then
25: T [v, {c(v)}]← {v}
26: end if
27: end for
28: end for
29: end function

DP-table for each v ∈ V and each color set P ⊆ C with |P | = 1:

T [v, {c}] =

{v} if c(v) ∈ P

∅ otherwise

Algorithm 2 initializeTable(V,w,C) shows the pseudocode for initializing the DP-

table. In contrast to the pseudocode as described by Hansen [9] our algorithm fills the

DP-table sparsely. We only create an entry T [v, {c(v)}] if vertex v has color c. As

such, our DP-table will take up less memory than if we would fill the DP-table densely.

Furthermore, the number of DP-lookups that need to be done later in our algorithm is

greatly decreased.

After inserting all entries for |P | = 1 into the DP-table, entries for |P | = 2, . . . , k are

inserted. Here, we only need to perform a DP-lookup if c(v) ∈ P , i.e., if the color of v is

an element of the current color set. This additional step is also a slight improvement to

the algorithm since it decreases the number of DP-lookups that have to be performed.

The intuition behind a DP-lookup for each entry T [v, P ] is the following: for each

neighbor u of v with c(u) ∈ P \ c(v) and for each non-empty subset Q ⊂ P , the entries

T [v,Q] and T [u, P \Q] are looked up in the DP-table. Note that the first requirement,

c(u) ∈ P \ c(v), is again a minor improvement of the algorithm as described in both [9]

and [8]. By adding this constraint we prevent that a DP-lookup takes place for a

neighbor u of vertex v that cannot be part of a solution since c(u) /∈ P \ c(v). Those

entries whose union has a maximum weight are then stored in the table as a new entry

T [v, P ] = (T [v,Q] ∪ T [u, P \ Q]). More formally, new entries are inserted into the

DP-table according to the following recurrence:

T [v, P ] =
{
T [v,Q] ∪ T [u,R] : max

∀u:uv∈E

{
max

∀Q,R:Q∩R=∅,Q∪R=P

{
w(T [v,Q]) + w(T [u,R])

}}}

First, for each vertex v ∈ V and each set Pi of i = 2 colors, T [v, P2] is computed.

After each round, i is increased by one and T [v, Pi] is computed and inserted into the
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DP-table for each vertex v ∈ V and each set Pi ⊂ C of i colors. In the final round,

T [v, Pk] = T [v, C] is computed for each vertex v ∈ V . Let S∗ be a colorful maximum

weight subgraph of G. When the table is completely filled, S∗ can be computed as

follows:

S∗ = T [v, P ] : max
∀v:v∈V

{
max

∀P :P 6=∅,|P |≤k

{
T [v, P ]

}}
The score of S∗ is w(S∗) =

∑
v∈S∗ w(v).

30: function dpLookup(G = (V,E), v, w, P ))
31: currentBest← ∅
32: for each neighbor u of v do
33: if c(u) ∈ P \ c(v) then
34: for each Q ⊂ P with Q 6= ∅ do
35: R← P \Q
36: if c(v) ∈ Q and c(u) ∈ R then

37: candidate ←
{

max
∀Q,R:Q∩R=∅,Q∪R=P

{
w(T [v,Q]) + w(T [u,R])

}}}
38: if w(candidate) > w(currentBest) then
39: currentBest = candidate
40: end if
41: end if
42: end for
43: end if
44: end for
45: return currentBest
46: end function

Let deg(u) be the degree of vertex u. It takes O(deg(u)2|T |) = O(deg(u)2k) time to

compute w(u, T ) for each vertex u and each color set T . Given a coloring, the com-

putation of the DP-table can be performed in O(2k
∑

u∈V deg(u)2k) = O(|E|4k). Since

O(ln(1/δ)ek) iterations are sufficient to ensure that the probability of an optimal solution

S∗ being found is ≥ 1− δ, the overall time complexity is O(ln(1/δ)|E|(4e)k).

3.2.2 Rooted Color Coding

The rooted color coding algorithm differs from the unrooted version in that it takes

one extra parameter as input, a set of root vertices. Instead of finding any optimal

solution we are now only interested in an optimal solution containing each node in the

root set (Def 2.6). The DP-table is initialized and created the same way as described

in the previous section. However, when returning an optimal solution we have an extra

constraint – we return an entry in the DP-table which has maximum weight and contains

all vertices of root set X. Thus S∗ can be computed as follows:

S∗ = T [v, P ] : max
∀v:v∈V

{
max

∀P :P 6=∅,|P |≤k,∀u∈X:u∈P

{
w(T [v, P ])

}}
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The score of S∗ is w(S∗) =
∑

v∈S∗ w(v).

Algorithm 3 solveRooted(G = (V,E), w, δ, k, X)

1: for 1 ≤ iteration ≤ ln(1/δ)eK do
2: C ← a set of colors with |C| = k
3: colorVertices(V,C)
4: Table T ← initializeTable(G,w,C)
5: for 2 ≤ i ≤ k do
6: for each vertex v ∈ V do
7: for each P ⊆ C with |P | = i do
8: if c(v) ∈ P then
9: T [v, P ]← dpLookup(G, v,w, P )

10: end if
11: end for
12: end for
13: end for
14: return T [v, P ] : max∀v:v∈V

{
max∀P :P 6=∅,|P |≤k,∀u∈X:u∈P {w(T [v, P ])}

}
15: end for

3.2.3 Blockcut Color Coding

Apart from the preprocessing scheme to reduce an MWCS instance, El Kebir et al. [2]

also introduce a two-layer divide-and-conquer scheme for solving MWCS to provable

optimality based on decomposing the input graph into its connected and biconnected

components (Algorithm 4). In the first layer, all connected components of the input

graph are considered individually. For each connected component, a block-cut tree

(Def. 2.13) is constructed. This block-cut tree is then processed from the leaves up to

the root, thus only those blocks with degree 0 or 1 are allowed to be processed. For each

biconnected component (block) it is first checked whether it is block-negative. If for all

v ∈ B we have w(v) ≤ 0, i.e. the block is negative, processing it can be skipped – since

the blocks are processed in a bottom up fashion, an entirely negative block can never

be part of any optimal solution. Otherwise, the block does contain positive vertices and

it needs to be processed. After processing a block, an optimal solution for the block is

stored and the block-cut tree is updated, i.e. the processed block and its incident edges

are removed from the tree. Fig. 3.5 shows an example of how color coding is applied to

a block-cut tree.

In the second layer the biconnected components are considered (Algorithm 4 function

ProcessBicomponent(G = (V,E), w)). Cut-vertices are special vertices that are

processed as part of the blocks they belong to. We distinguish between two cases, either

the block B has a cut-vertex c, or block B does not have a cut-vertex. If block B does

have a cut-vertex c, maximal solutions for both the unrooted color coding algorithm (V ∗u )
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Figure 3.5: An example of how our algorithm is applied to a block-cut tree. One of
the leafs of the tree, block A, is processed first, both unrooted color coding as well as
the rooted version with cut-vertex u as the root are executed. A maximum solution of
these two calls is stored in S∗. Furthermore, the weight of cut-vertex u is updated to
the weight of the solution found by the rooted color coding (shown here as u′). This
process is repeated for all leafs. After each processed block, a maximal solution found
up until that point is stored in S∗ and the weight of the cut-vertex is updated. Finally,
only the unrooted version has to be executed on the last remaining block D and an

optimal solution for the entire graph is stored in S∗.

Algorithm 4 SolveBlockcut(G = (V,E), w, δ, k)

1: V ∗ ← ∅
2: for each connected component C of G do
3: Preprocess(C)
4: TB ← block-cut vertex tree of C
5: while biconnected component B ∈ TB has degree 0 or 1 do
6: if B 6= block-negative then
7: V ∗ ← ProcessBicomponent(B,w, δ, k)
8: update TB
9: end if

10: end while
11: end for
12: return V ∗
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as well as for the rooted color coding algorithm with c as the root (V ∗r ) will be stored. The

maximal solution for the entire block is then given by argmaxV ∗∈{Vu,Vr}{
∑

v∈V ∗ w(v)}.
As a last step, the cut-vertex is updated to V ∗r if

∑
v∈V ∗r w(v) > w(c) to make sure this

possible partial solution will be taken into account whenever a biconnected component

containing the same cut-vertex c is being processed.

13: function ProcessBicomponent(G = (V,E), w, δ, k)
14: let c be the corresponding cutnode, if applicable
15: if c ∈ V then
16: V ∗u ← solveUnrooted(G,w, δ, k)
17: V ∗r ← solveRooted(G,w, δ, k, c)
18: V ∗ ← argmaxV ∗∈{Vu,Vr}{

∑
v∈V ∗ w(v)}

19: if
∑

v∈V ∗r w(v) > w(c) then
20: c← V ∗r
21: end if
22: else
23: V ∗ ← solveUnrooted(G,w, δ, k)
24: end if
25: return V ∗

26: end function



Chapter 4

Implementation

In this chapter we will discuss how our method was integrated into Heinz1 and we will

briefly describe the implementation itself. After discussing the Heinz integration in

general (Section 4.1) we explain the data structures used (Section 4.2) and we describe

the adapter needed for the Heinz integration in more detail (Section 4.3).

4.1 Heinz integration

Our algorithm is implemented as part of Heinz and implemented using C++. All three

versions of the algorithm as described in Chapter 3 (unrooted, rooted and blockcut color

coding) have been implemented. Furthermore, the number of iterations and the number

of colors that should be used while executing the algorithm can be passed to Heinz as

arguments. The reason for choosing the number of iterations as a parameter over error

probability δ has to do with the fact that it gives the user more control over the running

time of the algorithm since this is the most restricting factor of the algorithm. The

user can run the algorithm for a specific k and 1 iteration and calculate the number

of possible iterations i that can be performed in the desired running time. The error

probability δ can then be calculated by δ = e( − i/ek).

Heinz makes use of Lemon (Library for Efficient Modeling and Optimization in Net-

works) for the implementation of graphs. Lemon is a C++ template library providing

efficient implementations of common data structures and algorithms with focus on com-

binatorial optimization tasks connected mainly with graphs and networks. For the im-

plementation of color coding, however, using a library like Lemon proved too slow and

thus we decided to implement our algorithm with our own data structure. This data

structure is described in Section 4.2.
1https://github.com/ls-cwi/heinz
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The preprocessing algorithm (Section 3.1) as well as the algorithm to create a blockcut

tree of the input graph were already implemented in Heinz and as such, these imple-

mentations were re-used. However, because of the different data structures used in the

already existing ILP implementation of Heinz and our new color coding implementation

as described in the next section, the processing of the blockcut tree had to be imple-

mented differently. In order to be able to work with the two different data structures

(one for the preprocessing and creating the blockcut tree, and one for color coding algo-

rithm) and to make the integration as modular as possible, an adapter was written to

which control is given in case the color coding algorithm has to be run.

For testing purposes we adjusted the existing ILP to be able to restrict the size, the

number of vertices, of the optimal solution found.

4.2 Data structures

Using Lemon for our implementation of color coding proved to slow. In order to increase

the performance of our algorithm we adjusted the data structure used for the graph. To

store all data needed about the vertices we used the class vector of the standard library

of C++. For storing the labels of the vertices and their weights we use two separate

vectors, labels and weights resp., such that the data of each vertex is stored at the

same index position of each vector, i.e. w(labels[v]) = weights[v]. A label can be

seen as the name of the vertex. It is either the name of the original vertex from the

input graph, or the names of the merged vertices inside a supervertex created by the

preprocessing phase, e.g., {u v w}. Since we need to look up the neighbors of each vector

often during the execution of the algorithm we also used a vector neighbors such that

neighbor[v] contains a vector with the index positions of all neighbors of v allowing

for direct lookup of the data of these neighbors in all vectors.

The DP-table is implemented as a 3-dimensional vector. The indices of the first vector

correlate to the indices of the vertices of the graph. Then, each index position contains a

vector in which all color sets for which there are entries (the DP-table is filled sparsely)

for the current vertex are stored. Each color set also contains a vector storing the weight

in the first index position for quick access and the indices of the neighbors that are part

of this subgraph in the following indices.

Each color set is stored as an unsigned integer of 32 bits (uint 32), where each bit

represents a color. If a bit is set to 1 this means this color is present in the set, if it is

set to 0 the color is not an element of the set. This allows for quick comparison between

sets using bit manipulation and it requires very little memory to store each color set.



Results and Discussion 27

As will be shown in Chapter 5 pushing the algorithm to run with 9 colors is already

a far stretch and thus being able to store a maximum 32 colors should be more than

sufficient.

4.3 Adapter

Whenever Heinz is called with the color coding flag set control is passed to the color

coding adapter. The adapter checks the version of color coding it needs to run. In case

of block cut color coding, the adapter processes each connected component of the input

graph individually. For each component the adapter creates a subgraph using Lemon,

preprocesses the subgraph if needed, and calls the function to create the block cut tree

from this subgraph. For each block with degree 0 or 1 the block negativity is checked. If

the block is not negative, the adapter transforms the data structure from a Lemon graph

into the data structure as described in the previous section. The block is then processed

by calling the unrooted and, if needed, rooted color coding functions. If only the rooted

or unrooted color coding versions need to be executed, the adapter preprocesses the

graph if needed, transforms the graph from Lemon into the color coding data structure

and calls either the unrooted or the rooted color coding function.



Chapter 5

Results and Discussion

We tested the performance of our algorithm using the ACTMOD dataset of the DI-

MACS11 challenge. The full names and the abbreviations used in this thesis can be

found in Table 5.1.

Name Abbr.

drosophila001 dro1
drosophila005 dro5
drosophila0075 dro75
HCMV HCMV
lymphoma lymph
metabol expr mice 2 meta2
metabol expr mice 3 meta3

Table 5.1: The full name and abbreviation for each dataset.

All experiments were run on a single CPU of a machine with 16 CPUs of the type Intel

Xeon ES-2667 v4 (3.20GHz) and 512GB of memory. We adjusted the ILP in Heinz such

that it returned an optimal solution up to a specific k in order to compare our results

to the optimal solution of size k. We set δ to 0.1, resulting in a success probability of

0.9 for each experiment. We chose a cut-off time of two hours for our tests. In the case

that an experiment would run longer than two hours, the maximum possible number of

iterations were calculated such that a single run would not exceed the two hour mark.

As such, δ was increased for these runs. To determine the number of iterations for each

test, we ran 1 iteration. Let t1 be the time it takes to run exactly 1 iteration of the

algorithm. We then calculated ittime = 7200/t1, the maximum number of iterations

that could be run in 2 hours. We also calculated itδ, the number of iterations needed

to get a maximum error probability δ of 0.1. We then chose the minimum of both, i.e.,

min(ittime, itδ).

28
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We tested our algorithm from k = 4 to k = 9 for each dataset. Table 5.2 shows the

adjusted values of the success probability per k per dataset. For k = 4 and k = 5 we

were able to run all iterations needed to keep the success probability at 0.9. For k ≥
however, we had to decrease the success probability to make sure a single run would not

take longer than two hours.

4 5 6 7 8 9

drosophila001 0.9 0.9 0.3 0.04 0.003 0.0002
drosophila005 0.9 0.9 0.31 0.03 0.003 0.0002
drosophila0075 0.9 0.9 0.32 0.04 0.003 0.0002
HCMV 0.9 0.9 0.9 0.32 0.03 0.002
lymphoma 0.9 0.9 0.9 0.37 0.04 0.003
metabol expr mice 2 0.9 0.9 0.9 0.9 0.21 0.02
metabol expr mice 3 0.9 0.9 0.9 0.9 0.69 0.03

Table 5.2: The success probability (1− δ) per k per dataset.

All instances were preprocessed before the color coding algorithm was applied. Table 5.3

shows the size of the reduced graph after preprocessing. Table 5.4 and Table 5.5 show

|V | |E| |C| prep(|V |) prep(|E|) prep(|C|)
dro1 5226 93394 1 3796 88810 1
dro5 5226 93394 1 3743 86505 1
dro75 5226 93394 1 3702 84854 1
HCMV 3863 29293 78 1387 8188 4
lymph 2034 7756 1 1308 6721 1
meta2 3514 4332 166 637 1029 1
meta3 2853 3335 166 426 722 1

Table 5.3: Number of vertices (|V |), edges (|E|) and components (|C|) for each
dataset, before and after the preprocessing phase.

the number of vertices in the (optimal) solutions per k found by color coding and the ILP

respectively. It is clear that preprocessing the input instance has significant consequences

for the possible size of the found solution. Without preprocessing, any solution found

would have a maximum size of k. Using preprocessing, solutions of up to 79 vertices

were found.

We ran both the unrooted as well as the block-cut versions of our algorithm on the

data and found that there is no significant difference between the two methods, both

with respect to the running time as well as with respect to the solution found. The

differences that we did find are the result of the error probability δ ≥ 0.1 combined with

luck depending on the randomized assignment of colors to the vertices. Running the

algorithm multiple times on smaller graphs (blocks) does not improve the running time

of the algorithm as a whole. A reason for this could be the fact that even though the
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4 5 6 7 8 9

dro1 1 1 1 1 1 9
dro5 29 30 40 41 43 43
dro75 58 59 72 72 78 79
HCMV 4 5 5 7 10 5
lymph 13 16 18 19 20 21
meta2 6 10 10 12 15 15
meta3 17 24 24 26 26 26

Table 5.4: Solution size in number of vertices while running color coding after pre-
processing.

4 5 6 7 8 9 ∞
dro1 1 1 1 1 9 9 38
dro5 29 30 40 41 43 48 175
dro75 58 59 72 73 79 79 240
HCMV 4 5 5 7 10 11 17
lymph 13 16 18 19 20 21 46
meta2 6 10 10 12 15 15 24
meta3 17 24 24 26 26 28 87

Table 5.5: Solution size in number of vertices while running the ILP after preprocess-
ing.

graph is decomposed into smaller subgraphs, one large block with a size almost as big

as the entire (preprocessed) graph remains in all datasets. These large blocks account

for the biggest part of the running time. Table 5.6 shows the total number of vertices

left after preprocessing and the largest block size in each graph.

prep(|V |) blocks size of largest block

dro1 3796 21 3738
dro5 3743 21 3685
dro75 3702 21 3644
HCMV 1387 8 1342
lymph 1308 1 1308
meta2 637 1 637
meta3 426 1 426

Table 5.6: The number of vertices after the preprocessing phase, the number of
vertices in the largest block per dataset and the number of blocks.

As an example, Table 5.7 and Table 5.8 show the running time, the optimal weight found

and the number of iterations for the unrooted color coding version and the block-cut

color coding version for the dataset HCMV. It is clear that the differences found in both

the running time as well as the optimal weight found are negligible. The other datasets

show the same behavior – Appendix A shows the test results on all datasets. Since these
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two versions of color coding do not show any significant difference in their behavior or

results, we will not make any distinction between the two from here on.

4 5 6 7 8 9

Weight 5.50 5.70 5.70 6.02 6.51 5.70
Time 26.26 305.04 3471.11 6579.98 7024.49 6968.51
Iterations 125 341 928 423 104 22

Table 5.7: Running time and optimal weight found for the HCMV dataset using
unrooted color coding

4 5 6 7 8 9

Weight 5.50 5.70 5.70 6.02 6.52 5.70
Time 26.24 303.80 3437.00 6477.19 6997.82 6909.38
Iterations 125 341 928 423 104 22

Table 5.8: Running time and optimal weight found for the HCMV dataset using
blockcut color coding

From our experiments it has become clear that the color coding algorithm cannot com-

pete with the ILP based algorithm as implemented in Heinz. In all cases, the optimal

solution found by the ILP without a restriction on k was much better than what our

algorithm found on any of the runs.

As long as we were able to keep the success probability at 0.9 our method was able

to find the optimal solution for a given k, albeit in a much slower running time than

the ILP did. As soon as the two hour mark was hit and the success probability was

decreased, only one of all solutions found by our algorithm was an optimal solution. The

exponential increase in running time can be seen in the table in Appendix A for each

dataset, even though it is capped off at two hours (7200sec).

The results of our experiments for each dataset can be found in Table 5.9. The left top

corner shows the name of the dataset and each column represents a value for k. The

first row (ILP) show the optimal weight found by the ILP and the second row shows the

optimal weight found by color coding. To get a better insight into the relation between

these weights, the third row shows the relative weight of the color coding solution to

the ILP solution, as given by w(CC)
w(ILP) . For all tests with 1 − δ = 0.9 the optimal solu-

tion for that k was found. For all but one dataset (drosophila005), optimal solutions

were found by color coding as long as the success probability was above 0.3. In some

cases, the optimal solution was found with even lower success probabilities, such as for

drosophila005 with k = 8 and 1 − δ = 0.003 and metabol expr mice 2 with k = 9 and

1 − δ = 0.02. Furthermore, in all cases, the relative weight found was at least 80% of

the optimal solution.
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dro1 4 5 6 7 8 9

ILP 11.9359 11.9359 11.9359 11.9359 14.6241 14.6241
CC 11.9359 11.9359 11.9359 11.9359 11.9359 13.231
weight score 1 1 1 1 0.81 0.90
J(labels) 1 1 1 1 0 0.78
J(vertices) 1 1 1 1 0 0.8

dro5 4 5 6 7 8 9

ILP 40.131 42.6671 50.2389 55.868 58.4041 67.2555
CC 40.131 42.6671 49.3262 52.7423 58.4041 59.3297
weight score 1 1 0.98 0.94 1 0.88
J(labels) 1 1 0.71 0.56 1 0.5
J(vertices) 1 1 0.95 0.87 1 0.78

dro75 4 5 6 7 8 9

ILP 77.6151 80.5567 92.6747 98.6696 103.359 112.632
CC 77.6151 80.5567 92.6747 95.0692 102.001 103.387
weight score 1 1 1 0.96 0.96 0.91
J(labels) 1 1 1 0.56 0.6 0.5
J(vertices) 1 1 1 0.93 0.94 0.92

HCMV 4 5 6 7 8 9

ILP 5.49602 5.70381 5.70381 6.27261 6.69949 7.00598
CC 5.49602 5.70381 5.70381 6.27261 6.01626 5.70381
weight score 1 1 1 1 0.89 0.81
J(labels) 1 1 1 1 0.78 0.27
J(vertices) 1 1 1 1 0.82 0.23

lymph 4 5 6 7 8 9

ILP 30.0599 31.5504 35.2917 39.8447 43.0887 45.1728
CC 30.0599 31.5504 35.2917 39.8447 40.5045 40.1543
weight score 1 1 1 1 0.96 0.88
J(labels) 1 1 1 1 0.6 0.64
J(vertices) 1 1 1 1 0.82 0.83

meta2 4 5 6 7 8 9

ILP 148.751 162.361 162.361 190.1 214.472 214.472
CC 148.751 162.361 162.361 190.1 214.472 214.472
weight score 1 1 1 1 1 1
J(labels) 1 1 1 1 1 1
J(vertices) 1 1 1 1 1 1

Table 5.9: The weights found by both the ILP and color coding, the relative weight
and both Jaccard indices for all datasets.

To get a better understanding of the overlap between the subgraphs themselves found

by both the ILP and color coding, we calculated the Jaccard indices. The Jaccard index
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meta3 4 5 6 7 8 9

ILP 252.293 356.923 356.923 373.095 373.095 376.932
CC 252.293 356.923 356.923 373.095 373.095 373.095
weight score 1 1 1 1 1 0.98
J(labels) 1 1 1 1 1 0.78
J(vertices) 1 1 1 1 1 0.93

Table 5.9: The weights found by both the ILP and color coding, the relative weight
and both Jaccard indices for all datasets (continued).

is a measuring statistic for the similarity of finite sets, given by:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|

The next two rows of Table 5.9 show Jaccard indices for each dataset. The first index

(J(labels)) is based on the labels as created during the preprocessing phase. Each label

can contain one or more vertices from the original input graph. Even when only taking

these merged vertices into account, the subgraph found by color coding shows a large

overlap with the labels found by the ILP. The last row (J(vertices)) shows the Jaccard

indices for the single vertices contained inside all labels of the solution. Thus, this shows

the similarity between the vertices in the solutions and the vertices as they existed in

the original input graph. As can be expected, the Jaccard indices show results similar

to the weights. With a success probability of 0.9 color coding found the same optimal

solutions as the ILP did. Here the positive influence of the preprocessing becomes clear.

The Jaccard indices based on the labels are considerable lower when compared to those of

the actual vertices found. Apart from the test with k = 9 for the HCMV dataset, which

has a Jaccard index of 0.23 based on the vertices, the similarity of the ILP solutions

and the color coding solutions is at least 0.78. This shows that for higher k and lower

success probabilities our algorithm is able to at least identify the location of an optimal

solution.

To compare the results of the optimal solution found by the ILP without any restrictions

on k and the solution found by our algorithm, we used the Tversky index [14] based

on the optimal ILP solution and the solutions found by our algorithm for k = 9. We

decided to use the results for k = 9 since this is the furthest we could push the running

time of our algorithm. The Tversky index is an asymmetric similarity measure on sets

that compares a variant to a prototype. Here, the prototype is the optimal solution and

the variant is the solution of our algorithm. The Tversky index is given by:

T(α,β)(X,Y ) =
|X ∩ Y |

|X ∩ Y |+ α|X − Y |+ β|Y −X|
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In our calculations, X represents the optimal solution and Y represents our solution.

Setting α = 1, β = 0 then indicates the similarity between the vertices in the optimal

solution and the vertices in the solution found by color coding, i.e., T(1,0)(X,Y ) = 1

means all vertices that are part of the optimal solution are found by our algorithm,

whereas T(1,0)(X,Y ) = 0 means that none of the vertices of the optimal solution are

found by our algorithm. As can be seen in Table 5.10 in the first column labeled

T(1,0)(X,Y ), our algorithm does not perform very well since only a small part of the

optimal solution is found. Only in one case T(1,0)(X,Y ) is larger than 0.5. Setting α = 0,

β = 1, the Tversky index T(0,1)(X,Y ) gives us an indication of how many vertices of

our solution are indeed part of the optimal solution, i.e., T(0,1)(X,Y ) = 1 indicates that

the entire subgraph found by our algorithm is part of the optimal solution, whereas

T(0,1)(X,Y ) = 0 indicates that none of the vertices found by our algorithm are part of

the optimal solution. The second column of Table 5.10, labeled T(0,1)(X,Y ), shows that

the subgraph found by our algorithm in most cases is almost completely a part of the

optimal solution found by the ILP without any restrictions on k.

T(1,0)(X,Y ) T(0,1)(X,Y )

dro1 0.16 0.67
dro5 0.23 0.93
dro75 0.31 0.95
HCMV 0.29 1
lymph 0.41 0.90
meta2 0.62 1
meta3 0.23 0.77

Table 5.10: The Tversky indices for all datasets
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Conclusions

Our algorithm consist of a 2-layer scheme which was introduced in [2]. There, the authors

actually went a step further and implemented a 3-layer scheme which also decomposes

the input instance into its triconnected components using SPQR-trees. However, since

decomposing the input instance into its triconnected components did not work there for

similar reasons as mentioned here for the biconnected components, we decided not to

implement the 3-layer scheme. A detailed description on decomposing an input graph

into its triconnected components can be found in [2].

Our experiments show that our algorithm cannot compete with the ILP method. One of

the main reasons for this is the exponential explosion in running time with increasing k

and as such the lower number of iterations resulting in a lower success probability. Here,

luck with the random coloring of the vertices plays a role. To decrease the running time

one could look into parallelizing the implementation since the algorithms is very suit-

able for parallelisation. Furthermore, another direction would be to investigate possible

heuristics to improve the coloring of the vertices, or derandomization of the vertices.

Even though color coding cannot compete with the ILP approach, it does have benefits

and might serve well as a heuristic. Similar to the ILP method, color coding is able

to give intermediate results and as such can give a quick indication of the location of

an optimal solution in the input instance. Furthermore, the Jaccard indices indicate

that even for a high k and a low δ our algorithm is able to identify a large part of the

subgraph containing an optimal solution of roughly the same size. Even in case the

optimal solution is much larger than any solution our algorithm is able to find due to a

restriction on k, the Tverski indices show that a significant part of the vertices found are

part of the optimal solution. Our algorithm also does not make use of any commercial,

closed source licenses such as CPLEX in case of the ILP implementation in Heinz. In
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the end, the size of the solutions found with color coding combined with preprocessing

make it a suitable heuristic to use for applications where an indication of the location

of an optimal solution would be sufficient.



Appendix A

Test results

This appendix contains results of all experiments. Each table contains the data for one

dataset and one version of the color coding algorithm, i.e., unrooted or blockcut. In each

table, k is the number of colors, i is the number of iterations, w is the weigth found, s

is the time in seconds it took to perform the test, and vertices is the optimal solution

found by the algorithm.

drosophila001 — unrooted
k i w s vertices

4 125 11.9359 270.825 (1869)
5 341 11.9359 3172.38 (1869)
6 147 11.9359 5798.42 (1869)
7 41 11.9359 6847.38 (1869)
8 9 12.5998 6574.49 (372) (4272) (3114) (4858) (4330) (1575) (1852) (1822)
9 2 6576.16 11.9359 (1869)

drosophila001 — blockcut
k i w s vertices

4 125 11.9359 276.009 (1869)
5 341 11.9359 3213.68 (1869)
6 146 11.9359 7200 (1869)
7 41 11.9359 6891.82 (1869)
8 10 11.9359 7200 (1869)
9 2 13.231 6874.12 (1575) (4309) (3152 2262) (3675) (4272) (372) (168)

(1822)
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drosophila005 — unrooted
k i w s vertices

4 125 40.131 264.527 (4152 4903 1413 2842 802 1899 739 2381 3332 3634)
(4748) (4698 4799 2635 616 2136 1214 4272 372 4157
3114 4483 4422) (3411 2937 2922 2921 2593 2556)

5 341 42.6671 3107.12 (444) (4748) (4698 4799 2635 616 2136 1214 4272 372
4157 3114 4483 4422) (4152 4903 1413 2842 802 1899
739 2381 3332 3634) (3411 2937 2922 2921 2593 2556)

6 146 50.1371 5668 (4152 4903 1413 2842 802 1899 739 2381 3332 3634)
(4748) (4698 4799 2635 616 2136 1214 4272 372 4157
3114 4483 4422) (3093) (1168 572 4163 3551 883 1421
5088 1787 128 109) (3411 2937 2922 2921 2593 2556)

7 42 55.868 6846.65 (3411 2937 2922 2921 2593 2556) 4748 (4698 4799 2635
616 2136 1214 4272 372 4157 3114 4483 4422) (3022)
(1168 572 4163 3551 883 1421 5088 1787 128 109) (3152
2262) (4152 4903 1413 2842 802 1899 739 2381 3332
3634)

8 9 55.2977 6422.75 1117 (4698 4799 2635 616 2136 1214 4272 372 4157 3114
4483 4422) (2979) (2584 2564 933 2450 464 103) (1168
572 4163 3551 883 1421 5088 1787 128 109) (4748) (4152
4903 1413 2842 802 1899 739 2381 3332 3634) (3411 2937
2922 2921 2593 2556)

9 2 56.2043 6705.28 (3411 2937 2922 2921 2593 2556) (4748) (4698 4799 2635
616 2136 1214 4272 372 4157 3114 4483 4422) (3148)
(1168 572 4163 3551 883 1421 5088 1787 128 109) (3920)
(4152 4903 1413 2842 802 1899 739 2381 3332 3634)
(4858) (1575)

drosophila005 — blockcut
k i w s vertices

4 125 40.131 268.852 (3411 2937 2922 2921 2593 2556) (4748) (4698 4799 2635
616 2136 1214 4272 372 4157 3114 4483 4422) (4152 4903
1413 2842 802 1899 739 2381 3332 3634)

5 341 42.6671 3170.8 (4748) (4698 4799 2635 616 2136 1214 4272 372 4157
3114 4483 4422) (4152 4903 1413 2842 802 1899 739
2381 3332 3634) (3411 2937 2922 2921 2593 2556) (444)

6 150 49.3263 5846.4 (4748) (4152 4903 1413 2842 802 1899 739 2381 3332
3634) (3100) (4698 4799 2635 616 2136 1214 4272 372
4157 3114 4483 4422) (1168 572 4163 3551 883 1421
5088 1787 128 109) (3411 2937 2922 2921 2593 2556)

7 37 52.7423 6569.55 (4152 4903 1413 2842 802 1899 739 2381 3332 3634)
(4748) (4948) (4698 4799 2635 616 2136 1214 4272 372
4157 3114 4483 4422) (3148) (1168 572 4163 3551 883
1421 5088 1787 128 109) (3411 2937 2922 2921 2593
2556)

8 9 58.4041 6640.23 (1168 572 4163 3551 883 1421 5088 1787 128 109) (3022)
(3152 2262) (4698 4799 2635 616 2136 1214 4272 372
4157 3114 4483 4422) (4748) (4152 4903 1413 2842 802
1899 739 2381 3332 3634) (3411 2937 2922 2921 2593
2556) (444)

9 2 59.3297 6712.63 (4748) (4698 4799 2635 616 2136 1214 4272 372 4157
3114 4483 4422) 1186 (1168 572 4163 3551 883 1421
5088 1787 128 109) (1802) (1575) (4152 4903 1413 2842
802 1899 739 2381 3332 3634) (3411 2937 2922 2921
2593 2556) (444)



Appendix 39

drosophila0075 — unrooted
k i w s vertices

4 125 77.6151 259.74 (3411 2937 2922 2921 2593 2556) (4748) (2584 2564 933
2450 464 103 3669 4992 4326 4698 3945 4272 372 1356
1852 1822 1980 3912 1340 4175 4435 4976 2635 2341
726 260 813 2136 2266 3804 3114 4517 1582 616 1214
4799 4483 4422 4157) (4152 2985 2970 4903 1413 2842
802 1899 739 2381 3332 3634)

5 341 80.5567 3051.17 (444) (4748) (2584 2564 933 2450 464 103 3669 4992
4326 4698 3945 4272 372 1356 1852 1822 1980 3912 1340
4175 4435 4976 2635 2341 726 260 813 2136 2266 3804
3114 4517 1582 616 1214 4799 4483 4422 4157) (4152
2985 2970 4903 1413 2842 802 1899 739 2381 3332 3634)
(3411 2937 2922 2921 2593 2556)

6 156 92.6747 5922.71 (2584 2564 933 2450 464 103 3669 4992 4326 4698 3945
4272 372 1356 1852 1822 1980 3912 1340 4175 4435 4976
2635 2341 726 260 813 2136 2266 3804 3114 4517 1582
616 1214 4799 4483 4422 4157) (268 2578) (1168 572
4163 3568 3551 883 1160 1421 5088 1787 128 109) (4748)
(4152 2985 2970 4903 1413 2842 802 1899 739 2381 3332
3634) (3411 2937 2922 2921 2593 2556)

7 43 94.875 6870.8 (444) (4748) (2584 2564 933 2450 464 103 3669 4992
4326 4698 3945 4272 372 1356 1852 1822 1980 3912 1340
4175 4435 4976 2635 2341 726 260 813 2136 2266 3804
3114 4517 1582 616 1214 4799 4483 4422 4157) (1117)
(1168 572 4163 3568 3551 883 1160 1421 5088 1787 128
109) (4152 2985 2970 4903 1413 2842 802 1899 739 2381
3332 3634) (3411 2937 2922 2921 2593 2556)

8 10 96.4936 6995.06 (3411 2937 2922 2921 2593 2556) (4748) (2584 2564 933
2450 464 103 3669 4992 4326 4698 3945 4272 372 1356
1852 1822 1980 3912 1340 4175 4435 4976 2635 2341
726 260 813 2136 2266 3804 3114 4517 1582 616 1214
4799 4483 4422 4157) (4647) (3323) (1168 572 4163 3568
3551 883 1160 1421 5088 1787 128 109) (4152 2985 2970
4903 1413 2842 802 1899 739 2381 3332 3634)

9 2 94.6256 6578.64 (3829) (3410) (2584 2564 933 2450 464 103 3669 4992
4326 4698 3945 4272 372 1356 1852 1822 1980 3912 1340
4175 4435 4976 2635 2341 726 260 813 2136 2266 3804
3114 4517 1582 616 1214 4799 4483 4422 4157) (1168
572 4163 3568 3551 883 1160 1421 5088 1787 128 109)
(2180) (1609) (3411 2937 2922 2921 2593 2556) (1575)
(4152 2985 2970 4903 1413 2842 802 1899 739 2381 3332
3634)



Appendix 40

drosophila0075 — blockcut
k i w s vertices

4 125 77.6171 264.463 (4748) (2584 2564 933 2450 464 103 3669 4992 4326 4698
3945 4272 372 1356 1852 1822 1980 3912 1340 4175 4435
4976 2635 2341 726 260 813 2136 2266 3804 3114 4517
1582 616 1214 4799 4483 4422 4157) (4152 2985 2970
4903 1413 2842 802 1899 739 2381 3332 3634) (3411
2937 2922 2921 2593 2556)

5 341 80.5567 3070.41 (2584 2564 933 2450 464 103 3669 4992 4326 4698 3945
4272 372 1356 1852 1822 1980 3912 1340 4175 4435 4976
2635 2341 726 260 813 2136 2266 3804 3114 4517 1582
616 1214 4799 4483 4422 4157) (4748) (4152 2985 2970
4903 1413 2842 802 1899 739 2381 3332 3634) (3411
2937 2922 2921 2593 2556) (444)

6 150 92.6747 5738.87 (3411 2937 2922 2921 2593 2556) (4748) (2584 2564 933
2450 464 103 3669 4992 4326 4698 3945 4272 372 1356
1852 1822 1980 3912 1340 4175 4435 4976 2635 2341
726 260 813 2136 2266 3804 3114 4517 1582 616 1214
4799 4483 4422 4157) (268 2578) (1168 572 4163 3568
3551 883 1160 1421 5088 1787 128 109) (4152 2985 2970
4903 1413 2842 802 1899 739 2381 3332 3634)

7 42 95.0692 7200 (1168 572 4163 3568 3551 883 1160 1421 5088 1787 128
109) (3093) (2584 2564 933 2450 464 103 3669 4992 4326
4698 3945 4272 372 1356 1852 1822 1980 3912 1340 4175
4435 4976 2635 2341 726 260 813 2136 2266 3804 3114
4517 1582 616 1214 4799 4483 4422 4157) (4748) (4152
2985 2970 4903 1413 2842 802 1899 739 2381 3332 3634)
(3411 2937 2922 2921 2593 2556) (444)

8 10 102.001 7200 (5018) (4873 3067 1209 4500 440 557) (4748) (3094)
(2584 2564 933 2450 464 103 3669 4992 4326 4698 3945
4272 372 1356 1852 1822 1980 3912 1340 4175 4435 4976
2635 2341 726 260 813 2136 2266 3804 3114 4517 1582
616 1214 4799 4483 4422 4157) (1168 572 4163 3568 3551
883 1160 1421 5088 1787 128 109) (3411 2937 2922 2921
2593 2556) (4152 2985 2970 4903 1413 2842 802 1899 739
2381 3332 3634)

9 2 103.387 7200 (4748) (3411 2937 2922 2921 2593 2556) (2584 2564 933
2450 464 103 3669 4992 4326 4698 3945 4272 372 1356
1852 1822 1980 3912 1340 4175 4435 4976 2635 2341 726
260 813 2136 2266 3804 3114 4517 1582 616 1214 4799
4483 4422 4157) (1101) (130) (4873 3067 1209 4500 440
557) (4594) (1168 572 4163 3568 3551 883 1160 1421
5088 1787 128 109) (4152 2985 2970 4903 1413 2842
802 1899 739 2381 3332 3634)



Appendix 41

HCMV — unrooted
k i w s vertices

4 125 5.49602 26.2604 (1632) (1405) (2733) (972)
5 341 5.70381 305.039 (972) (1405) (2733) (1632) (3176)
6 928 5.70381 3471.11 (972) (1405) (2733) (1632) (3176)
7 423 6.0226 6579.98 (972) (1232) (2733) (1632) (695) (1954) (1270)
8 104 6.51791 7024.49 (920) (1232) (2733) (2243) (1270) (1954) (1632) (972)
9 22 5.70381 6968.51 (972) (1405) (2733) (1632) (3176)

HCMV — blockcut
k i w s vertices

4 125 5.49602 26.2442 (972) (1405) (2733) (1632)
5 341 5.70381 303.797 (2733) (1405) (1632) (3176) (972)
6 928 5.70381 3437 (3176) (1405) (2733) (1632) (972)
7 423 6.27261 6477.19 (2733) (1232) (2243) (1270) (1954) (1632) (972)
8 104 6.01626 6997.82 (1954) (695) (2162 3125 2746) (1232) (2733) (1632)

(920) (972)
9 22 5.70381 6909.38 (3176) (1405) (2733) (1632) (972)

lymphoma — unrooted
k i w s vertices

4 125 30.0599 23.0169 (380 59 58 57) (776) (814 63 808 4 696 528) (615 62)
5 341 31.5504 251.438 (380 59 58 57) (782) (650) (814 63 808 4 696 528) (1155

429 28 927)
6 928 35.2917 2864.39 (380 59 58 57) (1360) (1155 429 28 927) (776) (814 63

808 4 696 528) (615 62)
7 553 39.8447 7100.88 (380 59 58 57) (512) (1155 429 28 927) (615 62) (681)

(931) (814 63 808 4 696 528)
8 126 39.9158 7024.3 (380 59 58 57) (512) (896 556) (1155 429 28 927) (615

62) (681) (931) (814 63 808 4 696 528)
9 27 40.1543 7048.33 (380 59 58 57) (512) (551) (542) (473) (1155 429 28 927)

(615 62) (793) (814 63 808 4 696 528)

lymphoma — blockcut
k i w s vertices

4 125 30.0599 21.1206 (776) (814 63 808 4 696 528) (380 59 58 57) (615 62)
5 341 31.5504 250.087 (814 63 808 4 696 528) (782) (650) (1155 429 28 927)

(380 59 58 57)
6 928 35.2917 2833.1 (1360) (380 59 58 57) (776) (814 63 808 4 696 528) (615

62) (1155 429 28 927)
7 514 39.8447 6644 (1155 429 28 927) (512) (380 59 58 57) (681) (931) (814

63 808 4 696 528) (615 62)
8 126 40.5045 7037 (931) (151) (1155 429 28 927) (512) (1769) (380 59 58

57) (615 62) (814 63 808 4 696 528)
9 27 40.1543 7052.31 (380 59 58 57) (512) (551) (542) (473) (1155 429 28 927)

(615 62) (793) (814 63 808 4 696 528)



Appendix 42

metabol expr mice 2 — unrooted
k i w s vertices

4 125 148.751 3.87601 (214 181 178 177) (690) (691)
5 341 162.361 41.0248 (214 181 178 177) (690) (691) (216) (831 2946 60)
6 928 162.361 460.302 (214 181 178 177) (690) (691) (216) (831 2946 60)
7 2525 190.1 5089.36 (2835 825 2834) (661) (74) (75) (71) (216) (214 181

178 177)
8 720 214.472 6242.05 (71) (831 2946 60) (216) (214 181 178 177) (75) (74)

(661) (2835 825 2834)
9 180 214.472 7200 (71) (831 2946 60) (216) (214 181 178 177) (75) (74)

(661) (2835 825 2834)

metabol expr mice 2 — blockcut
k i w s vertices

4 125 148.751 3.87652 (214 181 178 177) (690) (691)
5 341 162.361 41.048 (214 181 178 177) (690) (691) (216) (831 2946 60)
6 928 162.361 456.891 (214 181 178 177) (690) (691) (216) (831 2946 60)
7 2525 190.1 5089.36 (2835 825 2834) (661) (74) (75) (71) (216) (214 181

178 177)
8 730 214.472 6423.5 (71) (831 2946 60) (216) (214 181 178 177) (75) (74)

(661) (2835 825 2834)
9 185 214.472 7200 (71) (831 2946 60) (216) (214 181 178 177) (75) (74)

(661) (2835 825 2834)



Appendix 43

metabol expr mice 3 — unrooted
k i w s vertices

4 125 252.293 2.6583 (195) (194 582 164 165 161 160) (67 66 1 106 2285 58
68 570 107 105)

5 341 356.923 28.6636 (404 2174 686 2173 71 102) (72) (67 66 1 106 2285 58
68 570 107 105) (195) (194 582 164 165 161 160)

6 928 356.932 321.122 (67 66 1 106 2285 58 68 570 107 105) (72) (404 2174
686 2173 71 102) (195) (194 582 164 165 161 160)

7 2525 373.095 3561.29 (194 582 164 165 161 160) (195) (67 66 1 106 2285 58
68 570 107 105) (45) (2183) (72) (404 2174 686 2173
71 102)

8 1107 373.095 6709.29 (67 66 1 106 2285 58 68 570 107 105) (45) (2183) (72)
(404 2174 686 2173 71 102) (195) (194 582 164 165 161
160)

9 251 373.095 7069.88 (67 66 1 106 2285 58 68 570 107 105) (45) (2183) (72)
(404 2174 686 2173 71 102) (195) (194 582 164 165 161
160)

metabol expr mice 3 — blockcut
k i w s vertices

4 125 252.293 2.67325 (195) (194 582 164 165 161 160) (67 66 1 106 2285 58
68 570 107 105)

5 341 356.923 28.7284 (195) (194 582 164 165 161 160) (67 66 1 106 2285 58
68 570 107 105)

6 928 356.923 326.719 (404 2174 686 2173 71 102) (72) (67 66 1 106 2285 58
68 570 107 105) (195) (194 582 164 165 161 160)

7 2525 373.095 6712.32 (195) (194 582 164 165 161 160) (67 66 1 106 2285 58
68 570 107 105) (45) (2183) (72) (404 2174 686 2173
71 102)

8 1055 373.095 7051.72 (195) (194 582 164 165 161 160) (67 66 1 106 2285 58
68 570 107 105) (45) (2183) (72) (404 2174 686 2173
71 102)

9 218 373.095 6855.87 (67 66 1 106 2285 58 68 570 107 105) (45) (2183) (72)
(404 2174 686 2173 71 102) (195) (194 582 164 165 161
160)
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