
0.3.0
Technical Documentation

Kim-Thomas Rehmann, Christian Wolf,
Kevin Beineke and Michael Schöttner

Heinrich-Heine-Universität Düsseldorf, Germany

March 19, 2012

ECRAM 0.3.0 Contents

Contents

1 Introduction 1

2 ECRAM Interface 2
2.1 Objects . 2
2.2 Consistency . 3
2.3 Condition variables . 4
2.4 Nameservice . 4
2.5 Debug Interface . 4
2.6 Unstable Interface . 5

3 Developing Applications 6
3.1 Prerequisites . 6
3.2 Running ECRAM Applications 7
3.3 Understanding Distributed Objects 7
3.4 Example Applications . 9

4 Objects 10
4.1 Object Allocation . 10
4.2 Object Accesses . 11
4.3 Naming Objects . 14

5 Replication 15
5.1 Versions and Replicas . 15
5.2 Module Interface . 15
5.3 Version Comparison . 16
5.4 Replica Access . 16

6 Consistency 17
6.1 Call Dispatcher . 17
6.2 Speculative Execution . 17
6.3 Transaction Information . 18

i

ECRAM 0.3.0 Contents

6.4 Transaction Validation . 18
6.5 Local Commits . 19

7 Messaging 20
7.1 Networking . 20
7.2 Node Management . 21
7.3 Sending and Receiving Messages 21

8 Debugging and Monitoring 23
8.1 Debugging . 23
8.2 Monitoring . 24
8.3 Wireshark Packet Dissector . 24

9 DTK – Job Management 26
9.1 Preprocessor definitions . 26
9.2 Interface functions . 26
9.3 Internal functions . 28
9.4 Data structures . 29
9.5 Debug functions . 31
9.6 Code example . 31

10 DTK – MapReduce 34
10.1 MapReduce . 34
10.2 ECRAMMapReduce Framework 34
10.3 Framework . 35
10.4 Preprocessor definitions . 41
10.5 Code example . 42

ii

ECRAM 0.3.0 Chapter 1. Introduction

Chapter 1

Introduction

This document explains interface, design and high-level implementation of the
ECRAM library. The best and most accurate documentation for ECRAM is
probably the source code itself. Therefore, the code contains Doxygen-formatted
comments and normal comments. See the ECRAM website1 for the source code
archive, which contains an up-to-date version of this document.

To help finding a way through the source code, this document specifies the
names of files and functions. Preprocessor definitions that can be set in the con-
figuration dialog (make menuconfig) are specified in footnotes.

First, we present the ECRAM library’s interface. Second, we give a general
introduction to developing applications with ECRAM. Third, we present the in-
ternals of ECRAM’s various components and modules.

1http://www.cs.uni-duesseldorf.de/AG/BS/english/Research/ECRAM

1

http://www.cs.uni-duesseldorf.de/AG/BS/english/Research/ECRAM
http://www.cs.uni-duesseldorf.de/AG/BS/english/Research/ECRAM

ECRAM 0.3.0 Chapter 2. ECRAM Interface

Chapter 2

ECRAM Interface

The ECRAM interface is defined in file ecram.h. A node participates
in a distributed application by using the functions ecram_startup and
ecram_shutdown. When a bootstrap node is not specified, the node starts a
distributed application as the first node. Otherwise, it tries to join an already run-
ning distributed application.

2.1 Objects
An ECRAM object is identified by an object ID (OID of type
ecram_object_id_t) that is unique in the scope of a distributed appli-
cation. The width of OIDs is configurable at compile-time.1

ECRAM either supports direct-mapped objects or flexible objects.2 Direct-
mapped objects reside in the CPU’s virtual address space, such that their OIDs
coincide with their virtual address. Flexible objects are not permanently associ-
ated with virtual memory addresses.

The characeristics of direct-mapped objects are as follows:

• OIDs are 64 bit wide.

• Atomic objects are 1 byte large. OIDs of atomic objects are consecutive,
i.e. offset 1 from OID x is object x+1.

• An OID is a memory address.

1config parameter ECRAM_OBJECT_ID
2config parameter ECRAM_IN_MEMORY_OBJECTS

2

ECRAM 0.3.0 Chapter 2. ECRAM Interface

• Accesses are transparently detected via MMU.3 Alternatively, the applica-
tion can use ecram_read/ecram_write for explicit accesses.4

The characeristics of flexible objects are as follows:

• OID width is not restricted.

• Objects have variable size. OIDs of atomic objects are not necessarily con-
secutive. This is not fully implemented yet.

• An OID is independent of object storage.

• The functions ecram_read/ecram_write must be used to access ob-
jects.5 Access detection via MMU is not supported.

Objects are created using ecram_alloc and destroyed using
ecram_free. Files can be mapped as objects with ecram_mmap simi-
larly to the mmap system call.6 The ecram_munmap function deletes an object
that has been mapped using ecram_mmap, but currently it does not synchronize
the object with the file. The function ecram_msync is not implemented yet,
because file mappings are not managed globally.

2.2 Consistency
Applications can start transactions with ecram_bot and finish them with
ecram_eot. ECRAM executes transactions speculatively. If ECRAM detects
a conflict with a concurrent transaction, it transparently restarts the transaction.7

The semantics of non-transparent restart are still undefined. The restart mecha-
nism can optionally restart the CPU’s floating-point unit.8 An extended library
interface could allow weakly consistent object accesses.9

To allow experimenting with transaction properties, the
ecram_transaction_attributes_t structure enables setting vari-
ous attributes in calls to ecram_bot. For example, transaction statistics can
be exported to the calling application.10 Access to transaction statistics is also

3config parameter ECRAM_ENABLE_ACCESS_DETECTION
4config parameter ECRAM_ENABLE_READ_WRITE
5config parameter ECRAM_ENABLE_READ_WRITE
6config parameter ECRAM_ENABLE_MMAP
7config parameter ECRAM_ENABLE_TRANSPARENT_RESTART
8config parameter ECRAM_ENABLE_FPU
9config parameter ECRAM_ENABLE_SYNC

10config parameter ECRAM_ENABLE_TRANSACTION_INFO

3

ECRAM 0.3.0 Chapter 2. ECRAM Interface

possible using the function ecram_get_statistics.11 The validation phase
can optionally be skipped if the developer can preclude or tolerate conflicts.12

2.3 Condition variables
ECRAM provides a simple mechanism to avoid busy waiting for object
state changes, similar to synchronization with condition variables.13 The
ecram_wait call blocks until an object is in a specific state. However, upon
returning from the call, an application must check whether the object is still in the
requested state. Also, short durations of specific states can remain unnoticed, be-
cause, unlike pthread_cond_wait, ecram_wait is not coupled to a mutex.

2.4 Nameservice
A simple nameservice has been built into ECRAM (currently only usable with
direct-mapped objects).14 An application can store an object ID under a name
using ecram_nameservice_get, and retrieve the object ID for a specified
name using ecram_nameservice_set.

To explore subtrees in the nameservice, the nameservice contains two
functions that apply a passed function to several entries in turn. The
function ecram_nameservice_apply applies the function recursively to
the decendants of a specified nameservice entry. Similarly, the function
ecram_nameservice_list applies the function non-recursively to the chil-
dren of an entry.

2.5 Debug Interface
Each ECRAM module should have a function module_debug taking a pointer
to a string, i.e. a char **.15 If a string is supplied, it can be parsed to read
additional debug parameters. The updated position in the string should be written
back.

11config parameter ECRAM_ENABLE_STATISTICS
12config parameter ECRAM_ENABLE_SKIP_VALIDATION
13config parameter ECRAM_ENABLE_WAIT
14config parameter ECRAM_ENABLE_NAMESERVICE
15config parameter ECRAM_ENABLE_DEBUG

4

ECRAM 0.3.0 Chapter 2. ECRAM Interface

2.6 Unstable Interface
Some functions in ECRAM are declared as unstable, because they do
not fit into the clean interface and might be dropped at some point in
the future.16 Examples for such functions are ecram_set_nodename,
ecram_is_initial_node and ecram_get_own_node_id. A well-
designed application should not rely on these functions to exist or to work as
expected.

16config parameter ECRAM_ENABLE_UNSTABLE

5

ECRAM 0.3.0 Chapter 3. Developing Applications

Chapter 3

Developing Applications

First, we describe the prerequisites to building and using ECRAM. Second, we
walk through the process of configuring, building and running an ECRAM ap-
plication step by step. Third, we introduce several example applications that can
serve as starting points for developing applications.

3.1 Prerequisites
Before you start with ECRAM, ensure that the following software packages are
installed on your system:

• GCC —gcc

• Make —make

• Libc —glibc-dev

• GLib with thread support —libglib-dev/libgthread-dev >=
2.14

• readline —libreadline-dev

• bfd —binutils-dev — only needed for the extended backtrace func-
tionality1

• fuse —libfuse-dev — only needed for building the FUSE module2

The prerequisites will not be a problem on any current Linux distribution. Some
distributions have slightly different names for the packages, such as xyz-devel
instead of xyz-dev for development packages.

1config parameter ECRAM_ENABLE_EXTENDED_BACKTRACE
2config parameter APPS_FUSE

6

ECRAM 0.3.0 Chapter 3. Developing Applications

3.2 Running ECRAM Applications
The following description helps you build and start up an ECRAM application for
the first time.

1. Get the ECRAM source code and change to its top-level directory:
cd ˜/ecram

2. Configure ECRAM to suit your needs:
make configure

3. Build the ECRAM library and the provided applications:
make

4. Start the first instance of an application:
LD_LIBRARY_PATH=build build/apps/basic/basic -a
127.0.0.1 Setting LD_LIBRARY_PATH enables your application to
find the ECRAM library without installing it system-wide.

5. On another console, start another instance of an application:
LD_LIBRARY_PATH=build build/apps/basic/basic -a
127.0.0.2 -b 127.0.0.1

As a convention, the -a parameter specifies the address to listen for incoming
connections, and the -b parameter specifies the address of the bootstrap node.
Type q <Enter> to quit the command shell. After having managed to start two
instances of an application on the localhost (127.0.0.x), try to start more instances
of the application on different computing nodes.

3.3 Understanding Distributed Objects
To get a first understanding of the distributed objects provided by ECRAM, try
several commands in the basic application’s interactive shell. First, look at the
command categories provided by the basic application, and at the commands for
object management. Enter the characters after the prompt, and press the Enter
key.

basic >?
basic >?o

Second, start a transaction, allocate an object of 20 bytes, register it in the name-
service, and end the transaction.

7

ECRAM 0.3.0 Chapter 3. Developing Applications

basic >tb
BoT
basic >oa20
allocate
allocated 20 bytes at 0x10000d000
basic >ns /hello 0x10000d000
set value for name
/hello <- 0x10000d000
basic >te
EoT

Third, switch to the console running the second node and print the name-service
entry, outside or inside a transaction.

basic >ng /hello
get value for name
/hello -> (nil)
basic >tb
BoT
basic >ng /hello
get value for name
/hello -> 0x10000d000
basic >te
EoT

Note that an access outside a transaction not necessarily retrieves the newest ver-
sion.

Experiment with waiting for an object condition with command
c=42,0x10000d000 and modifying an object with command
ow0x10000d000,42 (in a transaction). Then try to cause a conflict be-
tween concurrent transactions, e.g. start two transactions, write to the same object
and finish both transactions. You should observe the second transaction fails to
commit and is transparently restarted by ECRAM, i.e. all objects will be restored
to their initial state.

Map a file with fm README and retrieve file information on the other node
with fi 0x100010000, passing the ID of the file object. Finally, dump the
mapping with ddd 0x10000f000,607, where 0x10000f000 is the object
ID of the memory-mapped file data and 607 is the size of the mapping.

8

ECRAM 0.3.0 Chapter 3. Developing Applications

3.4 Example Applications
The src/apps subdirectory contains several example applications. The idle
application contains all code needed to start or join a distributed ECRAM appli-
cation. The key line in the source code is

int ret = ecram_startup(address, port,
bootstrap_address, bootstrap_port);

The simple application is an example for allocating objects, using transac-
tions and storing and retrieving entries in the name-service. Look at the function
test_transactional_consistency to understand how to allocate and
initialize an object, store it in the name-service, and busy-wait for another node to
modify the object. Once you have figured out how the code works, modify it to
use ecram_wait instead of busy-waiting.

For a more advanced example on using ECRAM, see the basic application.
The MapReduce applications such as wordcount and raytracer-mr are explained
in a dedicated chapter later in this document.

9

ECRAM 0.3.0 Chapter 4. Objects

Chapter 4

Objects

Object management comprises the distributed ID space, heaps of objects, object
allocation dispatcher, access management and MMU control.

4.1 Object Allocation
Objects are allocated using a layered approach. The distributed ID space is parti-
tioned into regions. Each region is assigned to one node. To create smaller objects
in regions, regions are handled as heaps.

4.1.1 Distributed ID Space
ECRAM partitions the distributed ID space using regions of objects. The ID
space management is implemented in space.c. For efficient object lookup,
the management will eventually use the key-based routing module kbr.c (not
implemented yet).

4.1.2 Heap Management
A heap is a region of allocatable objects that are bound to a specific node. The
heap module sub-allocates in memory regions obtained from the space module.

4.1.3 Object Allocation
Object allocation requests go to the object allocation dispatcher implemented in
object.c. The dispatcher decides from which heap to allocate the object. The
decision depends on the allocation attributes passed to ecram_alloc, but can
also be based on monitoring of allocation behaviour or heuristics.

10

ECRAM 0.3.0 Chapter 4. Objects

Small objects can be allocated with low space overhead using the mspaces
allocator in malloc.c. The mspaces allocator allocates heaps using
object_mmap. Large objects can be allocated as one entrire heap using the
page allocator.

The object_free function should give back the object to the heap it has
been allocated from. The function is currently not implemented, because freeing
storage to a remote heap is difficult.

The function object_mmap allocates an entire heap and, if a file descriptor
is passed, copies the file data into the object. The munmap functions frees the
heap, it does not write back the file data.

4.2 Object Accesses
Object can be accessed by writing directly to the virtual address corresponding to
the object ID (for direct-mapped objects only), or by using read/write functions.
Accesses are broken down internally to object blocks.

4.2.1 Block Size
The developer can select the minimum size of an object block.1

• Object block size sz < 4KB is only possible for flexible objects. Direct-
mapped objects require object block size being a multiple of 4KB.

• Backing storage (physical memory mappings) for direct-mapped objects is
created on demand.

4.2.2 Backing Storage
The access.c module provides backing storage for direct-mapped objects.
These mappings merely cache data from the replication module. Only during
transactions that contain direct writes to memory, mappings may contain updated
(not yet committed) data. Therefore, we can discard mappings in case of memory
pressure.

Linux restricts the size and number of memory mappings (virtual memory
areas, VMAs) per process. To save mappings, we support allocating multiple
objects in one memory region.2 Mappings are periodically pruned to save virtual
memory using the function access_prune_mappings.3

1config parameter ECRAM_MINIMUM_LOG2_BLOCK_SIZE
2config parameter ECRAM_NUM_BLOCKS_PER_MMAP
3config parameter ECRAM_MAX_MAPPING_MEMORY

11

ECRAM 0.3.0 Chapter 4. Objects

4.2.3 Accesses Via Read and Write Functions
All accesses go through the call dispatcher dispatcher.c. For direct-mapped
objects, the functions dispatcher_read and dispatcher_write trans-
late OID and offset to block alignment in ECRAM, because OID or offset might
exceed ECRAM_BLOCK_SIZE. Flexible objects are not implemented yet here.

The functions read_aligned and write_aligned assume translated
OID, offset and size, i.e. OID aligned to ECRAM_BLOCK_SIZE and offset plus
size less than or equal to ECRAM_BLOCK_SIZE. First they retrieve the preferred
version of the accessed object from the consistency module. Second, they perform
the access by calling access_read or access_write. Third, they register
the access with the consistency module.

The access_read and access_write functions first prepare the access
with access_prepare and then transfer data from or to the replication mod-
ule with access_export or access_import if a buffer is supplied and the
version defined. For flexible objects, data must be transferred directly between
input/output buffer and replication module (not implemented yet).

For direct-mapped objects, preparing an access means creating a mapping,
loading the replica into the mapping and granting access using the MMU mod-
ule. Similarly, finishing an access with access_finish revokes the access
privilege using the MMU module. In case of write accesses, an object may be
modified between access_prepare and access_finish. The version of
modifiable objects is set to undefined_replica_version to ensure that
fresh data will be loaded when access_prepare is called again.

The access_reinit function is called after restructuring of region alloca-
tion. It resets the object to its default state, i.e. zero-filled content.

4.2.4 MMU-based Access Detection
The mmu.c module interfaces between MMU-based memory access detec-
tion and the dispatcher for read and write functions dispatcher_read
and dispatcher_write. It does not store any state by itself. To catch
page faults, the module installs the segfault_handler signal handler for
SIGSEGV. The functions mmu_prepare_read, mmu_prepare_write
and mmu_finish allow to change the access rights of the memory page specified
by the OID. They are typically invoked by the access module to allow accesses,
or by the rc module to request access detection.

12

ECRAM 0.3.0 Chapter 4. Objects

se
g
fa
u
lt
_h
a
n
d
le
r

d
is
p
a
tc
h
e
r_
re
a
d

d
is
p
a
tc
h
e
r_
w
ri
te

rc
_g
e
t_
p
re
fe
rr
e
d
_v
e
rs
io
n

a
cc
e
ss
_r
e
a
d

rc
_r
e
g
is
te
r_
re
a
d

a
cc
e
ss
_w
ri
te

rc
_r
e
g
is
te
r_
w
ri
te

e
cr
a
m
_r
e
a
d

e
cr
a
m
_w
ri
te

a
cc
e
ss
_p
re
p
a
re

a
cc
e
ss
_e
xp
o
rt

a
cc
e
ss
_i
m
p
o
rt

m
m
u
_p
re
p
a
re
_r
e
a
d

m
m
u
_p
re
p
a
re
_w
ri
te

re
p
lic
a
ti
o
n
_g
e
t_
ve
rs
io
n

Figure 4.1: Call graph for object accesses

13

ECRAM 0.3.0 Chapter 4. Objects

4.2.5 Inter-module Call Structure
Figure 4.1 presents the inter-module function call hierarchy for object accesses.
The library interface read/write functions as well as the segfault handler for
MMU-based accesses call the function call dispatcher. MMU-based accesses do
not call access_export or access_import, because there is no buffer to
transfer data.

4.3 Naming Objects
To enable a distributed application to anchor its data structures, the root module
defines a set of root objects. Using root_set, an application can register an
object ID under an application-defined index. A root object’s ID can be retrieved
using root_get. The module defines at least 256 entries for root objects. The
index ROOT_WORLD is already predefined, and ROOT_NAMESERVICE is the an-
chor of ECRAM’s built-in name-service.

The built-in name-service is implemented by the nameservice module. The
functions match their counterparts from the ECRAM interface. The name-service
has some predefined entries for the root objects described above, such as /world
and /nameservice. Nameservice entries are organized hierarchically, how-
ever, each entry stores at most his first child and one sibling for chaining entries
at the same level.

14

ECRAM 0.3.0 Chapter 5. Replication

Chapter 5

Replication

The replication module stores the permanent data content of objects. It is also
responsible for notification about object changes.

5.1 Versions and Replicas
Object versions are specified using the combination of OID and version number
(replica_version_t). The replication service is neutral to version num-
bers, except for undefined_replica_version, which acts as a negative
result or wildcard, and initial_replica_version, which can always be
reconstructed in a local operation. A higher version number is considered newer.
However, the consistency module defines version IDs and their compatibility.

An object version that exists at a specific node is called a replica. Besides the
payload data and the version number, the replica structure can store the previous
version number, the version number which invalidated this version, the node who
produced this version, and the object’s size, which might vary between different
object versions. Fields in the structure that are unknown may remain undefined.
For example, if the data is currently not available locally, a replica placeholder
can be created with NULL data to store the from node and request the data later.

Initially, the whole ID space is zero-filled. Also, each allocation of a heap
restores the objects in the heap to their initial state. The content of zero-filled
versions is encoded as ZERO_FILLED.

5.2 Module Interface
The interface functions of the replication module consists of the functions
replication_create_version, replication_get_version and
replication_wait. The function replication_create_version to

15

ECRAM 0.3.0 Chapter 5. Replication

create or update a version created either by the node itself or by a peer node. The
complementary function replication_get_version writes the specified
replica’s data to a memory buffer.

5.3 Version Comparison
The module has two different comparator functions: The
replica_version_compare compares not only versions but also in-
validation versions. When searching for undefined_replica_version
with replica_version_compare, any replica that is still valid will do. In
contrast, the replica_version_compare_data is more exact: It does not
accept the undefined_replica_version wildcard, and it does not look at
invalidation versions.

5.4 Replica Access
The low-level function lookup_or_create retrieves or creates a replica.
The version parameter specifies which replica is requested. The constant
undefined_replica_version acts as a wildcard for the highest known
version number. Looking up undefined_replica_version may create
initial_replica_version if nothing else known about the version. The
fuzzy parameter specifies whether a replica with an older version that seems to
be valid through version may be returned.

The function create_or_update_version works at a higher level.
It invalidates any previous version, ensures the replica structure exists using
lookup_or_create and stores the payload data and other fields in the struc-
ture, potentially overwriting values that were undefined so far. Finally, the
function checks whether the local node was waiting for a state change for
this object. Replica updates during local commits are possible by specifying
undefined_replica_version.

The function get_version_from_remote creates a replica by retrieving
the version from a peer node. If the manager node for this version is unknown, it
asks the space module for the probable manager. If every other attempt fails, the
node contacts its bootstrap node.

16

ECRAM 0.3.0 Chapter 6. Consistency

Chapter 6

Consistency

All consistency related library calls go through the ecram module and the dis-
patcher module. Transactional consistency and different variations thereof are
implemented in the rc module.

6.1 Call Dispatcher
The consistency dispatcher forwards function calls from the ecram module to the
responsible module. It translates function call arguments such as object IDs and
attributes to the semantics required by the module.

For transaction management, the dispatcher implements flat nested transac-
tions, transactions may occur inside transactions, but all accesses are attributed to
the outermost transaction, which is the only transaction passed through to the rc
module. In the dispatcher_eot function, access_prune_mappings is
called allow the access module to save memory by removing old memory map-
pings.

For direct-mapped objects, the object ID, offset and size parameters to read
and write calls are adapted to the block alignment.

6.2 Speculative Execution
The remainder of this chapter is implemented in the rc module. During speculative
execution of a transaction, all accesses are recorded in the accessed_objects
structure. The information stored is the object ID, size, version accessed (previ-
ous), and the type of access. If the access is a write, the (current) version field
is set to undefined, because it will become defined after validation of the transac-
tion. For a read access, the version field equals the previous field. The rc module

17

ECRAM 0.3.0 Chapter 6. Consistency

also tracks allocations and frees in order to be able to revert them in case of a
transaction failure.

After entering the rc_eot function to end a transaction, the information gath-
ered during speculative execution is transformed into a transaction_t struc-
ture by build_transaction.

6.3 Transaction Information
To be able to validate transactions, the rc module stores each object’s top-most
version number in the versions hash-table. It also keeps a history of recent
transactions, which serves to update the object version numbers in sequence with-
out omitting or reverting an object. The updating of object versions is done by
update_versions. The function insert_transaction function imports
a transaction to the history and object versions.

6.4 Transaction Validation
Transaction validation is currently implemented via a central validator node.
A non-validator node offloads transaction validation to the validator by call-
ing remote_validate_and_commit, which sends the transaction as a
rc_validate message to the validator. If the validator finds the transaction
to be valid, the originating node receives a defined version number for the trans-
action, which it stores in the transaction structure.

If the validator node receives a rc_validate request, it calls
validate_and_commit and replies with either the valid transaction’s defined
version or with undefined_replica_version.

Nodes that are not involved in a specific transaction will be notified of it by
means of a rc_commit_notification message. The notification handler
creates replicas or placeholders for the objects modified by the transaction. It also
inserts the transaction into the transaction history.

The low-level validation is implemented in the validate function. Val-
idation can only run if all transactions are known and contained in the his-
tory. Therefore, the validation function waits for the global transaction version
top_version to equal the version until which the transaction history is com-
plete (complete_version). Then the function checks for each object in the
transaction’s read and write set whether the previous version still equals the cur-
rent version known for the object from the versions table. Any object that has
been updated during speculative execution causes the transaction to be invalid.

18

ECRAM 0.3.0 Chapter 6. Consistency

The optimizations for read-only transactions are optional.1

6.5 Local Commits
Local commits can update an object without global validation. They can take
place only if all objects accessed by the validating transaction have not been repli-
cated. Therefore, the validate_and_commit function needs to ensure that
no replicas are handed out during local validation and commit (local_commit)
using replication_disable and replication_enable. This is severe
inter-module locking and may be considered bad.

1config parameter ECRAM_ENABLE_READONLY_TRANSACTIONS

19

ECRAM 0.3.0 Chapter 7. Messaging

Chapter 7

Messaging

ECRAM’s communication subsystem consists of TCP-based networking, node
management and messaging. Furthermore, a node_info_block_t represents
each node as an object. The key-based routing module for sending messages in a
DHT-like manner over the network is not yet functional.

7.1 Networking
The networking module net.c stores connections in two hash tables, one in-
dexed with Node-IDs, the other indexed with socket numbers.

Data is sent over the network with the net_send function. Its message_t
parameter contains all information needed: to which node to send the message,
the payload data, the length of the payload etc.

To receive messages from other peers, the module starts a network han-
dler thread. The thread runs an endless loop, blocking on epoll_wait until
the epoll mechanism signals pending events. For an incoming connection re-
quest, the event‘s socket is the myself.socket, which results in a call to
epoll_accept_connection to identify this node by sending a hello mes-
sage. The EPOLLOUT flag signals that a connection has been established, in
which case epoll_established_connection is called. If a message has
been received, the EPOLLIN flag has been set, and epoll_receive is called.

The epoll_receive function prepares the peer‘s receive buffer and
reads data from the TCP stream into the buffer with receive_data in non-
blocking mode. If everything went well until now, decode_message extracts
ECRAM messages from the buffer. This function will in turn transfer control to
message_handle in the message module. Finally, compactify_buffer
is called to ensure that subsequent receive operations will not exceed the buffer‘s
capacity despite partial messages remaining in the buffer.

20

ECRAM 0.3.0 Chapter 7. Messaging

During bootstrap, the function net_update_id enables changing the ID of
oneself and of the bootstrap node.

7.2 Node Management
The node.c module contains the functionality to join the network by request-
ing a node ID from a bootstrap node. It also allows to request connection
information about third-party nodes. While bootstrapping, a node uses the
undefined_node_id, such that the reply to a bootstrap request must iden-
tify the joining node by the socket it is connected to.

7.3 Sending and Receiving Messages
Messages are classified using a type and a subtype. Typically the type corresponds
to the module that sends the message, and the subtype is internally defined by the
module.

7.3.1 Receiving
The message module handles incoming messages in the network thread in func-
tion message_handle. This function looks up the module that will handle the
message. A return value of 0 means that the message structure can be deleted
by the caller, a return value of 1 means that another thread will free the message,
because the message is a reply that has been attached to the corresponding request
message, which is identified using the in-reply-to field.

A reply message is passed to process_reply and in turn to the specified
module‘s reply handler. The reply handler is called with the original message as
argument, such that the reply can be found in the message‘s reply field.

7.3.2 Sending
There are several slightly different functions for sending messages:

• The message_send function sends an asynchronous, i.e. one-way and
non-blocking, message.

• The message_send_sync function send a synchronous message, which
blocks until the corresponding reply has been received. To deal with node
failures, the function should be extended with a timeout mechanism and
error handling.

21

ECRAM 0.3.0 Chapter 7. Messaging

• The message_reply function sends a reply to a specified request mes-
sage. Sending a reply is non-blocking.

• The message_multicast function sends a message to a list of peers.
The current implementation assumes that multicast messages are one-way.
Otherwise, the reply processing needs to be extended to work with multiple
replies to one message.

22

ECRAM 0.3.0 Chapter 8. Debugging and Monitoring

Chapter 8

Debugging and Monitoring

The facilities described in this chapter assist the developers in improving
ECRAM.

8.1 Debugging
ECRAM’s debug output depends on the global debug level1 and on the
per-module debug levels, whatever value is higher. The default debug
level is zero, which disables most debug output, but keeps the code com-
piled in. The debug level can be changed during run-time by calling
set_debug_level_<modulename> which is an assembler alias to the
set_debug_level function. Severe errors are output unless the debug level is
set to -1.

Debug output is produced using the dbg_printf, dbg_warn, TODO,
dbg_perror and PANIC macros. The first macro takes the minimum debug
level when to print the output, the other macros print the output unconditionally.

ECRAM developers should catch all potential error cases by placing asser-
tions in the code. The ASSERT(expr) macro evaluates the argument and, if
non-zero, prints on the debug output that the assertion does not hold.

The function debug_dump_config prints the config data which is embed-
ded in the ecram library’s binary. The function debug_dump_memory prints
the content of the specified memory in hexadecimal and string format.

1config parameter GLOBAL_DEBUG_LEVEL

23

ECRAM 0.3.0 Chapter 8. Debugging and Monitoring

8.2 Monitoring
The monitoring service is designed to be minimally intrusive: It can be turned off
completely.2 The monitor.h header file avoids naming collisions by prefixing
all symbols with monitor_.

Monitoring in ECRAM works by marking entities in the source code. Every
time the code reaches the entity, a monitoring event is generated, which causes a
handler function to be called. For each entity to be monitored, the monitoring sub-
system adds control information to a module’s data (monitor_control_t).

To monitor an entity, declare it using
MONITOR_DECLARE_EVENT(entity, handler) or using
MONITOR(entity) if the ECRAM_MONITOR_entity has been de-
clared in the configuration. Use monitor_trace_event(entity,
user_data) etc. to weave monitoring events in the source code. Al-
ternatively, monitor_begin_event and monitor_end_event al-
low to record the entry and exit into a piece of code. The function
monitor_dump_all causes all monitor entities to be printed by their specific
handlers. The developer can modify handler functions during run-time by calling
monitor_set_handler(char *control, char *handler). The
file handler.c defines various handler functions for immediate output, time
measurements, collecting user-supplied data and printing call backtraces.

8.3 Wireshark Packet Dissector
The Wireshark network protocol analyzer provides a graphical frontend to record,
sort and filter network traffic. As described above, ECRAM messages have a
fixed-size PDU header that contains the overall length of the packet. ECRAM
network traffic usually comes from or goes to ECRAM’s default IP port 2001.

Starting up the ECRAM dissector in plugin_register regis-
ters two structures: The hf_register_info hf registered using
proto_register_field_array describes the primitive data fields
in the ECRAM protocol. The gint *ett[] array registered using
proto_register_subtree_array holds the expansion states of the
subtrees.

The dissection of ECRAM packets starts in the function dissect_ecram,
which reassembles message fragments from the TCP data stream, because data
chunks received from sockets need not correspond to ECRAM messages. On
each ECRAM message found in the TCP stream, Wireshark calls the function
dissect_ecram_message, which takes as arguments the tvbuff_t *tvb

2config parameter ECRAM_ENABLE_MONITORING

24

ECRAM 0.3.0 Chapter 8. Debugging and Monitoring

containing the message data, the packet_info *pinfo describing what to
display, and the root proto_tree *tree of the protocol tree to build. First,
the dissector function extracts the elements of the message header and inserts them
into the tree. Then it extracts and inserts the specific payload data depending on
the message’s type and subtype.

25

ECRAM 0.3.0 Chapter 9. DTK – Job Management

Chapter 9

DTK – Job Management

The job management can be used to let nodes execute custom job functions. The
node that assigns the jobs is the master, and the other nodes take the role of work-
ers. The communication between the master and the workers is based on job
queues. Depending on the preprocessor definitions there may be one global job
queue or many private job queues, one for each worker. In general, the master just
needs to add a job to a job queue (global or private) to make sure, that it is taken
care of. As long as there are jobs in the job queue a worker continues to get jobs
from the queue and executes them. Once the job queue is empty, the worker re-
mains in a standby state, waiting for new jobs to arrive by using an ecram_wait
call on the number of jobs in the job queue. Depending on the preprocessor def-
initions, a worker may try to steal a job from another job queue before he enters
the standby state.

9.1 Preprocessor definitions
It is possible to run mapreduce jobs from private queues for each worker instead
of a global queue.1 If this option is enabled, it is also possible to enable job
stealing from local job queues.2

9.2 Interface functions

9.2.1 job_startup function
The job_startup function initializes the job module. Both the master node
and the worker nodes have to call this function at the beginning. The first node

1config parameter MAPREDUCE_RUN_LOCAL
2config parameter MAPREDUCE_JOB_STEALING

26

ECRAM 0.3.0 Chapter 9. DTK – Job Management

that calls this function creates the global worker queue and the global job queue.
Then it registers both with the nameservice. All other nodes retrieve these queues
from the nameservice.

9.2.2 job_wait_for_workers function
This function can be used by the master to wait for a certain number of workers
to be online before submitting job functions.

9.2.3 job_submit function
The purpose of this function is to assign a job to the workers. If no job queue
is specified the job queue gets choosen internal. In case of a global job queue
all jobs are added to this queue and the FCFS policy is used, to assign the jobs
to the workers. In case of private job queues, a round robin scheduling is used
to distribute the jobs evenly among the workers. The job object can be set over
the parameters of the function. The movable variable determins if the job may
be stolen by another worker. The completion variable can be used by the master
to check, if the job has finished. So it is possible to assign a group of jobs with
the same completion variable and then check for the whole group of jobs, if it has
finished (see code example).

9.2.4 job_run function
This function is the entry point for the workers. First, the worker registers him-
self in the global worker queue with help of the register_worker function.
Then the worker fetches the job queue (get_job_queue function). Next the
worker begins with the execution of the job functions (job_loop function).
If the job queue is empty, the worker waits until a job is added to the queue
(wait_for_job function). The worker continues executing and waiting for
jobs until he receives a “terminate” function from the job queue. Then the worker
unregisters himself (unregister_worker function).

9.2.5 job_terminate function
This function adds a ”terminate” function to the job queue.

9.2.6 job_terminate_all function
This function calls the job_terminate function n times, where n is the number
of registered workers.

27

ECRAM 0.3.0 Chapter 9. DTK – Job Management

9.2.7 job_get_workers function
This function returns the number of registered workers.

9.3 Internal functions

9.3.1 register_worker function
The worker allocates and sets a worker_node_t object and adds it to the global
worker queue.

9.3.2 get_job_queue function
This function returns the global or the local job queue, depending on the prepro-
cessor definition.

9.3.3 job_loop function
This is the main function of the job module, where workers loop waiting for jobs
and running them until the terminate variable in the worker_node_t object is
set to 1. Basically, in one iteration, the functions wait_for_job, get_job,
run_job and finish_job are called, but there is also some logic for the job
stealing at the begin of the function: The function idle_nexttime gets called
to check if there are jobs left in the current job queue which wait for execution.
If there aren’t any jobs left, the function steal_work gets called to steal jobs
from other job queues.

9.3.4 wait_for_job function
The function makes an ecram_wait call with the condition
jobs->nwaiting != 0, which means that there are jobs in the queue
waiting for execution.

9.3.5 get_job function
This function moves a job from the inner job waiting queue to the inner job pro-
cessing queue of a job queue and sets the process flag of the job to a given worker.
There is also some logic for the job stealing in this function: The steal_work
function calls the get_job function to steal a job from another worker. There

28

ECRAM 0.3.0 Chapter 9. DTK – Job Management

are some jobs that may not be stolen, e.g. a finish job. These jobs have the “mov-
able” flag set to 0. If a worker tries to steal such a job with help of the get_job
function, the function will return undefined_object_id.

9.3.6 run_job function
The run_job function runs a job by calling one of the custom job functions.
These functions need to be declared in a job function object. In case of a terminate
function the terminate flag of the worker is set to 1 and the function returns.

9.3.7 finish_job function
This function removes a finished job from the inner job procssing queue of the job
queue.

9.3.8 idle_nexttime function
This function checks whether there are jobs left in a given job queue. If there
are’nt any jobs left there are two options: If job stealing is disabled, the worker
gets blocked until new jobs have arrived. Elsewise the steal_work function
gets called to steal a job from another job queue.

9.3.9 steal_work function
First, the function checks if there are jobs in the global job queue. If this is the
case the get_job function gets called for the global job queue. If there is no
job in the global job queue the function randomly determins a worker and checks
his job queue for waiting jobs. If there are no jobs waiting, the function repeats
the last to steps for a maximum of n times, where n is the number of registered
workers. If a non-empty job queue was found, the get_job function for this job
queue gets called.

9.4 Data structures

9.4.1 job struct
The job struct contains all information of a job:

• the name of the function to execute

• the input of the job

29

ECRAM 0.3.0 Chapter 9. DTK – Job Management

• the output of the job

• the variable movable which specifies if the job may be stolen by another
worker

• the variable completion which is set after the job has finished

• the worker, which executes the job

• the timestamp of the start of the execution

9.4.2 job_queue struct
Depending on the preprocessor definition there is a global job queue for all jobs
or each worker has it’s own job queue. A job_queue stores the following infor-
mation:

• the total number of jobs in the queue

• a queue for the jobs, which wait for execution

• a queue for the jobs, which are executed at the moment

• the number of the jobs, which are waiting

• the number of the jobs, which are executed at the moment

9.4.3 worker_node struct
The worker_node struct contains the following information of a worker:

• the variable terminate, which is set if the worker should terminate

• a pointer to the local job queue of the worker

• the id of the worker

• the variable starting which is set to 1 during the starting phase

• the variable is thief, which is set to 1 while the worker is stealing jobs from
other workers

• a pointer to the other node’s queue, where jobs get stolen from

30

ECRAM 0.3.0 Chapter 9. DTK – Job Management

9.4.4 worker_queue struct
The worker_queue contains the following information:

• the number of workers in the queue

• the variable starting_phase, which also contains the number of work-
ers in the queue and is used for the distribution of jobs to the job queues
in the starting phase, if private_queues are enabled (see preprocessor
definitions).

• the queue of the workers

9.4.5 job_function struct
The job_function object contains the following information:

• the name of the function

• a function pointer to a custom job function

9.5 Debug functions
With help of the debug functions it is possible to print information
about a job (job_debug_job function), to print information about a job
queue (job_debug_queue function), to print information about a worker
(job_debug_worker function) or to print all these information (job_info
function).

9.6 Code example

/∗ t h e j o b f u n c t i o n o b j e c t ∗ /

j o b f u n c t i o n t e x a m p l e f u n c t i o n s [] =
{

{ ” example map ” , example map } ,
{ ” e x a m p l e r e d u c e ” , e x a m p l e r e d u c e } ,
JOB END OF FUNCTIONS

} ;

j o b s t a r t u p (e c r a m i s i n i t i a l n o d e ()) ;

31

ECRAM 0.3.0 Chapter 9. DTK – Job Management

i f (e c r a m i s i n i t i a l n o d e ())
{

. . .

/∗ w a i t f o r nworke r s t o be o n l i n e ∗ /

j o b w a i t f o r w o r k e r s (nworke r s) ;

. . .

/∗ su bmi t a group of j o b s wi th t h e same s p e c i f i c custom
j o b f u n c t i o n (app−>m a p f u n c t i o n =” example map ” ,
queue= e c r a m u n d e f i n e d o b j e c t i d) ∗ /

f o r (j o b = 0 ; j o b < nmaps ; j o b ++)
{

j o b s u b m i t (queue , i n p u t s p l i t , app−>m a p f u n c t i o n ,
i n t e r m e d i a t e , &app−>ncomple ted maps , 1) ;

}

/∗ w a i t f o r t h i s group of j o b s t o be f i n i s h e d ∗ /

e c r a m w a i t (&app−>ncomple ted maps , 0 , e c r a m w a i t e q u a l ,
nmaps) ;

. . .

/∗ su bmi t a n o t h e r group of j o b s wi th t h e same s p e c i f i c
custom j o b f u n c t i o n
app−>r e d u c e f u n c t i o n =” e x a m p l e r e d u c e ” ,
queue= e c r a m u n d e f i n e d o b j e c t i d ∗ /

f o r (j o b = 0 ; j o b < n r e d u c e s ; j o b ++)
{

j o b s u b m i t (queue , r e d u c e i n p u t , app−>r e d u c e f u n c t i o n ,
f i n a l r e s u l t , &app−>n c o m p l e t e d r e d u c e s , 1) ;

}

/∗ w a i t f o r t h i s group of j o b s t o be f i n i s h e d ∗ /

e c r a m w a i t (&app−>n c o m p l e t e d r e d u c e s , 0 ,
e c r a m w a i t e q u a l , n r e d u c e s) ;

32

ECRAM 0.3.0 Chapter 9. DTK – Job Management

/∗ t e r m i n a t e ∗ /

j o b t e r m i n a t e a l l () ;

}
e l s e
{

/∗ e n t r y p o i n t f o r worke r s ∗ /

j o b r u n (j o b f u n c t i o n s , 0) ; / / 0 : use l o c a l queues , 1 : use
t h e g l o b a l queue

}

33

ECRAM 0.3.0 Chapter 10. DTK – MapReduce

Chapter 10

DTK – MapReduce

10.1 MapReduce
MapReduce is a computing model which has been suggested by the Google em-
ployees Dean and Ghemawat in 2004. MapReduce restricts the execution flow
and data access of applications to achieve a high degree of parallelism. An ap-
plication that adheres to the MapReduce model consists of two phases: The map
phase splits input data such that several worker nodes can compute intermediate
results in parallel. The reduce phase transforms the intermediate results into the
final result, again in parallel. A dedicated master node splits, shuffles and merges
data and assigns jobs to worker nodes. In the original MapReduce model, data de-
pendencies occur only between input and intermediate data respectively between
intermediate and output data, such that both phases are embarassingly parallel,
which means that in the map and the reduce phase there is nearly no communica-
tion between workers necessary. Thus, MapReduce simplifies synchronization at
the expense of restraining data dependencies and control flow.

10.2 ECRAMMapReduce Framework
The ECRAM MapReduce Framework is an in-memory, extended MapReduce
framework. The framework stores shared input, output and intermediate data in
ECRAM. This enables data orientated communication. Also the framework itself
stores data in ECRAM. The framework also supports iterative and on-line data
processing.

34

ECRAM 0.3.0 Chapter 10. DTK – MapReduce

10.3 Framework

10.3.1 Interface
The interface is defined in lib/dtk/ecram.h. The mapreduce_run func-
tion is the entry point of the mapreduce framework. As parameters it takes the
name of the application, the master function and a pointer to the job functions. It
acts as an dispatcher. The master function is assigned to the initial node, which
takes the roll of the master. All other nodes become workers and take care of the
job functions. After configurating the mapreduce framework, the master function
calls the mapreduce function and the application starts.

10.3.2 User Defined Functions
Only the master function is obligatory. All other functions are optional. The mas-
ter, pre, post, shuffle functions are executed on the master. All other functions are
executed by workers. Depending on the number of iterations, all functions with
the exeption of the master function are repeated several times. The chronological
order of the functions is equivalent to the order in this document.

master function

All of the configuration takes place in the master function with help of
the mapreduce_application_t app object. Also parsing of user-
defined input data can be implemented in the master function. Therefore the
mapreduce_storage_t app->input object can be used.

pre function

The pre function takes place after preparing the input data and before splitting it.
It has access to the app->config object, the input->data object and the
variables input->length and iteration. Pre-processing of the input data
before each iteration is the purpose of this function.

prepare map functions

After splitting the input and preparing storage for the intermediate results (re-
sults of the map functions), the prepare map functions are called. The number of
prepare map functions is identical to the number of map functions. These func-
tions have also access to the same objects as the map functions. These are a
mapreduce_storage_t object and an intermediate result. The first contains

35

ECRAM 0.3.0 Chapter 10. DTK – MapReduce

several information of the input data and also some meta information to split the
input and the latter is a pointer to a block of allocated memory.

map functions

The map functions usually process the input data and save the intermediate results,
so that the reduce functions can use these results to get the final results. Before
the map functions are called, the input data gets splitted into equal pieces, one
for each map function. Therefore offset and length are calculated, stored in an
mapreduce_storage_t object, which contains also a reference where to find
the input data, and then passed to the map functions. Because there are no depen-
dencies, each map function can process its input split independently. However,
the results need to be merged by the reduce functions to gain the final results. To
save the intermediate results from the map functions, a block of allocated memory
is divided into equal pieces, one for each map function. A pointer to this block is
passed to the reduce functions, so that they have access to all intermediate results.

shuffle function

The shuffle function can be used to prepare the intermediate results for the prepare
reduce and reduce functions after the map jobs have finished. It therefore has
access to all intermediate results.

prepare reduce functions

After preparing the final results, the prepare reduce functions are called. Like the
prepare map functions the number of prepare reduce functions equals the number
of reduce functions. They also have access to the same objects than the reduce
functions, which are a mapreduce_reduce_input_t object which contains
a reference to all intermediate results and a pointer to the final results. The func-
tions are used for prefetching, preparing statistics etc..

reduce functions

The reduce functions process the intermediate results to gain the final results.
Each reduce function usually processes only a part from each intermediate result.
The mapreduce_reduce_input t object contains a reference to all inter-
mediate results and also some meta information to determine which part of the
intermediate results is of interest. The functions also have access to a pointer to
the final results.

36

ECRAM 0.3.0 Chapter 10. DTK – MapReduce

post function

After the reduce phase has finished, the post function is called, which has access
to the app->config object and also the final results, so that it can post-process
them after each iteration.

10.3.3 Objects
mapreduce_application_t app object

The mapreduce_application_t app object represents a map reduce ap-
plication. In the master function all of the configuration can be done using the
app object. In general the configuration settings are optional. If a configuration
parameter is not specified the default value is used instead. As a result of this the
developer needs only to take care of the configuration parameters which are in his
interest.

functions The functions can be set with the variables
app->pre_function, app->prepare_map_function,
app->map_function, app->shuffle_function,
app->prepare_reduce_function, app->reduce_function
and app->post_function. Note that the functions which are executed by
workers need to be defined in an job_function_t object which is a parameter
of the mapreduce_run function. Only the name of these functions is then
assigned to the app object. The other function variables in the app->object
are direct function pointers. Only the functions which are defined in the app
object are executed.

number of iterations There are three variables which control the num-
ber of iterations: app->max_iterations, app->iteration
and app->iterate. Usually the number of iterations is set in
app->max_iterations, after each iteration the app->iteration
variable is increased and as long as app->max_iterations >
app->iteration the iteration continues. A second condition for continuing
the iteration is app->iterate != 0, but if the app->max_iterations
is set to a value greater than 0, app->iterate is automatically overwritten
with 1, even if another value is defined in the master function. A local variable
in the pre function ist set to the value of app->iteration, so that the
actual number of iterations can be seen. However, in the reduce functions
there is acces to the app->iteration and app->iterate variable, so
that the usual behaviour of the iterations can be influenced. If for example the

37

ECRAM 0.3.0 Chapter 10. DTK – MapReduce

app->iterate variable is set to 0, the iteration stops. Figure 10.1 presents the
flowchart for MapReduce iterations.

input The preparation of the input data depends on the app->input object
and the app->input_descriptor variable. An input file can be mapped
automatically with the map reduce framework, if the app->input object is
null and an input descriptor is specified in app->input_descriptor. The
prepare_map and map functions then have access to the input data with the
ecram_file_t mapping, ecram_object_id_t data and size_t
length variables within the maprecuce_storage_t object. For a user-
defined input the mapreduce_storage_t app->input object can be set
and no automatic mapping will occur. The access to the user-defined input in
the prepare map and map functions remains the same. In case of an au-
tomatic mapping of the input data the internal variable input->length is
set to the length of the file. In case no input descriptor is specified and the
app->input object is null, it is set to 0. In these cases it can be overwrit-
ten with the app->input_length variable. In case of a user-defined input
the variable is defined in the mapreduce_storage_t app->input object.
This may have some consequences for the later split phase.

splits (number of map jobs) The app->split_size variable determines
the size of one split and also the number of splits. If not defined, the number
of splits can be directly set with the app->nsplits variable and the split size
is calculated automatically by dividing the input->length variable by the
app->nsplits variable. Otherwise, the number of splits is calculated by the
formula (input->length + split size - 1)/ split size. For
each split an offset and a length are set. The length is for all other than the last
split the split size. The length of the last split may be shorter if the division of
the input length by the split size doesn’t come out even. Both values can be ac-
cessed in the map phase with the mapreduce_storage_t object. Also the
variables npartitions and id within the mapreduce_storage_t object
are set in the split phase. The first contains the number of splits and the second
the number of the map job. These variables can be used to determine offset and
length within the map phase, if for example a user defined input is used. If neither
app->nsplits nor app->split_size are specified, app->nsplits is
set to app->nworkers * MAPREDUCE_CHUNK_FACTOR. The default value
of app->nworkers is the number of worker nodes.

intermediate size (size of memory for the intermediate results of the
map phase) The calculation of the intermediate size depends on the vari-

38

ECRAM 0.3.0 Chapter 10. DTK – MapReduce

Figure 10.1: Flowchart for MapReduce iterations

39

ECRAM 0.3.0 Chapter 10. DTK – MapReduce

able app->total_intermediate_size. If specified, the intermedi-
ate size is calculated by dividing app->total_intermediate_size
by the number of map jobs. Otherwise, it can directly be
set in the app->intermediate_size variable. If neither
app->total_intermediate_size nor app->intermediate_size
are specified, app->intermediate_size is set to the default value
MAPREDUCE_INTERMEDIATE_SIZE.

number of reduce jobs The number of reduce jobs can be determined with the
variable app->nreduces. If not specified, there will be no reduce job.

number and size of final results The size of memory for the final results can
be determined with app->final_size. If not specified, the size is set to
app->nfinals * sizeof(ecram_object_id_t).

storing the output If the app->output_descriptor is specified, the final
results are written to a file after each iteration.

mapreduce_storage_t objects

The mapreduce_storage_t objects are the input objects for the map phase.
They contain the following information: The objects mapping and data which
are set during the preparation of the input and described in the earlier input para-
graph. The variables offset, length, id and npartitions which are
set in the split phase and described in the earlier split parapgraph. The config
object which can be set in the master function with the app->object parame-
ter. Each map job has its own offset, id and also the length may differ whereas the
mapping, data and config parameters are references to the same objects respec-
tively.

mapreduce_reduce_input_t objects

The mapreduce_reduce_input_t objects are the input objects for the
reduce phase. They contain the following information: All intermedi-
ate results can be accessed with the intermediate_results reference.
intermediate_size is a copy of app->intermediate_size as de-
scribed in the earlier intermediate size parapgraph. final_size is a copy of
app->final_size as described in the earlier number and size of final re-
sults paragraph. nintermediates and nreduces are identical and a copy
of app->nreduces which is specified in the master function. id is the number

40

ECRAM 0.3.0 Chapter 10. DTK – MapReduce

of the reduce job. The two pointers iteration and iterate are a reference
to app->iteration and app->iterate as described in the number of it-
erations paragraph and can influence the behaviour of the iterations. config is
a reference to the app->config object, which can be specified in the master
function. The last three variables are only accessible in the reduce functions and
not in the prepare reduce functions.

10.4 Preprocessor definitions
The size of the intermediate results can be specified in the config op-
tion size of intermediate data block in MapReduce1. However, if the
app->total_intermediate_size is specified, it has no influence at all.
If monitoring is enabled, it is possible to enable or disable monitoring of the job
functions with help of the config option enable monitoring of transactions and
conflicts in map and reduce functions2. There is the possability to run mapreduce
jobs from private queues for each worker instead of a global queue3. If this is
enabled it is possible to set the config option enable job stealing from local job
queues4. The config option: factor by which the number of workers is multiplied to
get the number of map/reduce jobs5 is only relevant, if neither app->nsplits
nor app->split_size are specified, as described earlier in the splits para-
graph. The number of map/prepare map jobs is then determined with the formula
app->nworkers * MAPREDUCE_CHUNK_FAKTOR.

1config parameter MAPREDUCE_INTERMEDIATE_SIZE
2config parameter MAPREDUCE_ENABLE_MONITORING
3config parameter MAPREDECE_RUN_LOCAL
4config parameter MAPREDUCE_JOB_STEALING
5config parameter MAPREDUCE_CHUNK_FACTOR

41

ECRAM 0.3.0 Chapter 10. DTK – MapReduce

10.5 Code example
The following code example is copied from the file
/apps/mapreduce/maprreduce.c. It can be used as a matrix for
developing MapReduce applications.

/∗∗
∗ example map f u n c t i o n
∗ @param i n p u t m a p r e d u c e s t o r a g e t i n p u t s p l i t
∗ @param o u t p u t r e f e r e n c e t o ?
∗ /

vo id example map (e c r a m o b j e c t i d t i n p u t ,
e c r a m o b j e c t i d t o u t p u t)

{
p r i n t f (”>> example map i n p u t ” PRIo ” o u t p u t

” PRIo ”\n ” , i n p u t , o u t p u t) ;
e c r a m b o t (0 , NULL) ;
m a p r e d u c e s t o r a g e t ∗ s t o r a g e =

(m a p r e d u c e s t o r a g e t ∗) i n p u t ;
e c r a m o b j e c t i d t ∗ i n t e r m e d i a t e =

(e c r a m o b j e c t i d t ∗) o u t p u t ;
/ / a l l o c a t e and r e g i s t e r i n t e r m e d i a t e d a t a

s t r u c t u r e
∗ i n t e r m e d i a t e = s t o r a g e ;
e c r a m e o t (0) ;
s l e e p (5) ;

}

/∗∗
∗ example r e d u c e f u n c t i o n
∗ @param i n p u t a r r a y o f i n t e r m e d i a t e r e s u l t s
∗ @param o u t p u t r e f e r e n c e t o ?
∗ /

vo id e x a m p l e r e d u c e (e c r a m o b j e c t i d t i n p u t ,
e c r a m o b j e c t i d t o u t p u t)

{
p r i n t f (”>> e x a m p l e r e d u c e i n p u t ” PRIo ” o u t p u t

” PRIo ”\n ” , i n p u t , o u t p u t) ;
s l e e p (5) ;

}

42

ECRAM 0.3.0 Chapter 10. DTK – MapReduce

This is the master function which configurates the MapReduce Framework using
the app object

/∗∗
∗ c o n f i g u r e and run mapreduce on m a s t e r
∗ /

vo id example (e c r a m o b j e c t i d t i n f i l e , e c r a m o b j e c t i d t
o u t f i l e)

{
a s s e r t (NULL != i n f i l e) ;
a s s e r t (NULL != o u t f i l e) ;
/ / c r e a t e and c o n f i g u r e a p p l i c a t i o n d e s c r i p t i o n
e c r a m b o t (0 , NULL) ;
m a p r e d u c e a p p l i c a t i o n t ∗ app =

e c r a m a l l o c (s i z e o f (m a p r e d u c e a p p l i c a t i o n t) ,
NULL) ;

memset (app , 0 , s i z e o f (m a p r e d u c e a p p l i c a t i o n t)) ;
s t r c p y (app−>a p p l i c a t i o n , ” wordcount ”) ;
app−>s h u f f l e f u n c t i o n = NULL;
app−>nworke r s = j o b g e t w o r k e r s () ; / / NOTE

i n i t i a l i z e wi th a p p r o x i m a t e / c u r r e n t number o f
worke r s

app−> s p l i t s i z e = 0 ; / / NOTE example v a l u e
s t r c p y (app−>m a p f u n c t i o n , ” example map ”) ;
s t r c p y (app−>r e d u c e f u n c t i o n , ” e x a m p l e r e d u c e ”) ;
app−>ncomple ted maps = 0 ;
app−>n c o m p l e t e d r e d u c e s = 0 ;
e c r a m e o t (0) ;
/ / run mapreduce
mapreduce (app) ;

}

43

ECRAM 0.3.0 Chapter 10. DTK – MapReduce

/∗∗
∗ d e c l a r e j o b f u n c t i o n s
∗ /

j o b f u n c t i o n t e x a m p l e f u n c t i o n s [] =
{

{ ” example map ” , example map } ,
{ ” e x a m p l e r e d u c e ” , e x a m p l e r e d u c e } ,
JOB END OF FUNCTIONS

} ;

c o n s t c h a r ∗appname = ” example ” ;

/∗∗
∗ main f u n c t i o n o f mapreduce a p p l i c a t i o n
∗ /

i n t main (i n t a rgc , c h a r ∗ a rgv [])
{

mapreduce run (argc , argv , appname , example ,
e x a m p l e f u n c t i o n s) ;

e x i t (EXIT SUCCESS) ;
}

44

