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D Foreword hhu
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® |ntroduction into the offline RL topic
B Focus on the intuition on the problem and existing solutions
Some details on a few approaches

B Many references to 2020 NeurlPS tutorial on Offline RL by Levine and Kumar
Highly useful resource for more details on the methods mentioned here

Nurul Lubis | Offline Reinforcement Learning



B Success in Machine Learning hhu
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© NVIDIA

Huge models that generalize well, trained with huge amount of data
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B Success in Machine Learning hhu
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Supervised learning...

B | arge amounts of data

B Deep NNs

B Generalizes to open world settings

In contrast, reinforcement learning...
B | earning through interactions
B | earn on specific tasks and small domains

. L .
Lacking in terms of generalization What price range do you want?

I’'m looking for a hotel in the south
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B The Need for Data-driven RL hhu
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B Some environments are high-risk
Factory monitoring, self-driving cars, ..

B Some behavior we want to learn are highly complex
Medical field, education, ...

B [earning from online interaction can be expensive
and time consuming

Dialogue systems
® Simulators?

Has its own challenges and limitations
Unnecessary in other learning paradigms

Can we leverage offline data to learn a policy?
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m Nurul Lubis | Offline Reinforcement Learning hhu.de



B RL Primer: Notations

State s;
| |
Y é ) Reward r; 6
(o o o
Ag|ent Action a, EnwroTnment

« Through interactions with the
environment, the agent try to find the
best policy based on some measure of
reward.

» Huge amount of interactions are
needed
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Trajectory t
Sequence of state, action, reward tuples from a sequence
of time steps (we assume a finite horizon case)

Return R;
Discounted cumulative reward

R; = 2 Vn_trn

nzt

Policy n(als)
Probability distribution over actions in a given state

Value functions

* VV™(s) expected return of being in state s and following
policy m afterwards

* Q™ (s,a) expected return of being in state s, taking
action a, and following policy  afterwards



B RL Primer: Learning Methods hhu
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® Value-based: Learn the optimal Q-function Q* ® Policy-based: Directly parametrise the

and act greedily policy g (als) using 6
Starting with an arbitrary value function Q(s, a), Fof':[i”Stance USing_g‘l ”eui_a' that_OUtPUtSt a
update at each time step to enforce the Bellman Softmax over possible actions given a state
equation REINFORCE (Williams, 1992): Update
_ ;L paramater to encourage actions that
Q(s,a) =7(s,a) + YEg/ (o) Q" @) maximize return
For example with temporal difference (TD) target VoJ(0) = Eg[XT_o R Vg logpg(ac|sy)]
Policy is defined implicitly ® Actor-Critic: Learn both an actor 4 (als)
n(s) = argmax, Q*(s,a’) and a critic Qy (s, @)

Critic tries to approximate Q™ (s, a)

Improves on policy-based methods by trying
Value Function  Policy to reduce variance

Actor
Critic

Value-Based

Policy-Based

Slide adapted from Chris’ talk on RL in 2020
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D RL Primer: Set Ups hhu
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(a) online reinforcement learning  (b) off-policy reinforcement learning (c) offline reinforcement learning
rollout data {(s;, a;,s;,ri)} rollout data {(si,a;,s;,7i)} {(Si,ai,sg,ri)}:- - T _I
I . [
a ™ e N — ~ NI, [/ N\
7T]€ [ update ] 7Tk ; 7'('/8 I ; : 7"'
a | Tk +1 a I update | | learn a |
\_ rollout(s) ) \_ rollout(s) ) 7T/€-|-1 roIIout(s : T | \_ deployment )
t Tk+1 t MTk+1 | data collected once ————— I
with any policy training phase

Figure from (Levine et al., 2020)
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B \What makes offline RL challenging? hhu
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B Counterfactual decision making
Taking a different action than shown in data
A necessity in offline RL

B Distributional shift

' |
4 ) 4 )
State distribution L | ,: NEE
a

(c) offline reinforcement learning
{(Siaa’i,sgari)} I

F____

m has different state distribution than 7z @ ﬂ-,B | v I 70
Even though we get high value on data, policy still could I{ e }L p o a |
I

be bad during deployment \_ rollout(s) : \_  deployment )

Sampling and estimation error data collected ONCE w= == == == l
with any policy training phase

Erroneous estimates for unseen state and action pairs
are not corrected

Exacerbated by choosing action to maximize the value
function

Figure from (Levine et al., 2020)
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D Offline RL methods hhu
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B [mportance sampling
B Policy constraints

B Value regularization
M
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Importance sampling
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D Off-policy evaluation for offline RL hhu
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® Importance sampling (Rubinstein, 1981) can be used to
derive and unbiased estimator of /(ir) based on trajectories
sampled from the behavior policy (Precup, 2000)

How can we _E g (7) tr(s, q ]

estimate the (o) = Bramp (o) [ﬂ (T)Zt 0V'7 (St ar)

return of our ng(t) 1 Telatlse)

gtiJvr;?]nt policy, 75(T) — 1lt=0 75 (aclse)

trajectories ® Drawbacks: very high variance and potentially unbounded
from another

policy?
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D Off-policy evaluation for offline RL hhu
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B Some solutions to reduce variance (in tradeoff with some
bias) (Precup, 2000)

Self-normalizing: divide with the sum of weights

How can we Per-decision importance sampling estimator: drop the weights from
estimate the future time steps

gitﬁ;nnffpgﬁéy B We can also use an estimate of the value Q(s,, a,) in place
given ’ of the reward (Jiang and Li, 2015; Thomas and Brunskill
trajectories 2016)

fror_n another Reduces variance while keeping the estimate unbiased if g is known or
polizys Q(s;, a;) is correct
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D Off-policy evaluation for offline RL hhu
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B |Importance sampling can also be used to directly estimate policy
gradients using trajectories from 7

REINFORCE:
T
_ 1 (T) ¢
Can we use Vol (110) = Eroryn) 175 (0) z Y Vg logmg(aclse) r(se az)
this to estimate t=0
a policy B The objective can also be derived for per-decision importance
gradient, and weight (Precup, 2000), or with value estimate instead of the return
use that for (Gu et al., 2017; Cheng et al., 2019; ...)

policy update?
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B Challenges and open problems hhu
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®m Typically used in off-policy setting, where we assume that we can collect additional
data from interaction

® Application in offline RL has been limited

In practice, the variance is too high to work well in problems of interest

In sequential problems (with long horizon), exponential blowup could happen
m |f g is too far from gy, the weights quickly become degenerate
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Constraint methods
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D Policy constraints hhu
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® Constraining the action distribution of 7 (a|s) to match the density of m;(als)

Make sure that the actions taken by the learned policy is close enough to the action density of
the behavior policy

D (ﬂ(CLlS), g (a|S)) <€ ® Constraints can be solved explicitly

ﬁ
me be used for

KL-Divergence (Jacques et al., 2019;
Wu et al., 2019a)

F-Divergence (Wu et al., 2019b)

backups

Q(s.a) =\ P Q(s,a)| L
¢ / . ¢ B Orimplicitly
4 | Add distance minimization into the
g , objective, and express in closed form
(Pang et al., 2019; Seigel et al., 2019;

a a Wang et al., 2020; Nair et al. 2020)

Figures from NeurlPS 2020 tutorial on Offline RL
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B Support constraints hhu
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® Consider only actions that are within the support of the behavior policy g
Support: a set of action that are likely under the behavior policy
B Instead of matching the density of m;(als) as in policy constraints, here we compare

the samples ) i
. . . | Support constraint;
Results in a more spiked density ke l
Q(s,a)] >y |
N\
/ 3
w \
5 5

a

argmax,e p[s)Q (s, a) (Fujimoto et al., 2019; Ghasemipour et al., 2020; ...)

Figures from NeurlPS 2020 tutorial on Offline RL
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B \Which one works better? hhu
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® /n theory, support constraints

i " Support constraint;
. T I -m h of
Can choose actions deterministically e s e | yolow poliies.
More flexibility in choosing a policy Q(s,a)| ’ Q(s,a)| A
. . . . . ' ; N\
® With distribution matching, we always AN
match the distribution even in . ’

suboptimal cases
May be too conservative a a

® Support constraints can outperform behavior cloning, but do not work well yet in more
complex environments (Fu et al., 2020; Wu et al., 2020)

One major shortcoming is the need to estimate behavior policy g
If 5 is wrongly estimated, the learned policy will fail

as is the case in more complex environments

Figures from NeurlPS 2020 tutorial on Offline RL
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Value regularization methods
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amount of data

HallChectah-v¥ AverageReturn

T T A

------

DOK 02K 04K 06K 08K  LOK

rainSteps

how well it does

a4 = n OO

B Overconfidence in Q-value estimation

log scale (massive overestimation)

B Huge discrepancy between its estimation

HalfCheetah-v2: log(Q)

w— = 1N
e L0
- e LOOOO0

/

TrainSteps

how well it thinks
it does (Q-values)
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and real return
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Not something that larger amount of data

can fix

® \alue estimation on OOD actions can be

unpredictable

B \We expect good estimation when

ng(als) = w(als)

However, that is rarely the case, and may
even be an undesirable case.

Figures from Kumar et al. (2019)




B Overconfidence in Q-value estimation hhu
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B Huge discrepancy between its estimation
and real return

Not something that larger amount of data
y A can fix
® Value estimation on OOD actions can be
unpredictable

) B \We expect good estimation when
Q(s, a) ng(als) = n(als)

However, that is rarely the case, and may
even be an undesirable case.

X Even worse, by choosing an action that
maximizes the Q-value, we essentially
choose actions where the estimate is most
overconfident

Figures from NeurlPS 2020 tutorial on Offline RL
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B Pessimistic value functions hhu
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® \We can add penalty to the value function based on
the distance between the policies

Learning a conservative Q- Q(s,a) «r(s,a) + y[Ea’~7t(a'|S')Q(S” a') — aD(mg, mp)
function to act as a
lowerbound of the true
value

® Avoid overestimation,
especially on OOD
state-action pairs, where
the estimation could be
erroneously high

For example, with KL-control (Jacques et al., 2018) or
BRAC-v (Wu et al., 2019)

Drawback: still needs to estimate g
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B Conservative Q-learning hhu
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® We can regularize the objective directly to make this behavior inherent (Kumar et al., 2020)
Big Q-values for actions that are likely under the current policy is minimized
Q-values for state action pairs in the data will still be pushed up by the TD error
Shown to learn a lowerbound of Q-values on state action pairs contained in the data

L Minimize the ablgn Q-values | l StandardiTD e}ror ObjectiVé ‘ y ‘
.. L | _—
mcgn max IESND]Ear\«,u(aIs) [Q(S, a)] + %Es,a,s’wD [(Q(Sa a) - y(57 a)) ]
7
y(s,a) = r(s,a) + YEa'r,(a's) [Q(s', )]
Target values ;X

The learned Q-function can then be used in a standard Q-learning or actor-critic algorithms
Shown to work on more complex simulation environments

® Drawback: the policy and the value function works in an adversarial manner, so training can

be unstable
Figures from NeurlPS 2020 tutorial on Offline RL
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B Open challenges hhu

Heinrich Heine
Universitat Disseldorf .

®m Conservative value estimation may underfit on small data, leading to
excessive pessimism

Value for undersampled actions may be estimated too low
How to balance the risk of overestimation while still exploring OOD actions?
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B Other approaches hhu
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B Model-based
Train an ensemble of dynamics model
Use their agreement as a measure of uncertainty to penalize the reward
B Other uncertainty-based methods
Train multiple Q-functions and use multiple predictions to estimate uncertainty
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D Applications

B Robotics

Object grasping is particularly interesting as it requires generalization.

Navigating a room using human demonstration
B Healthcare
Exclusively offline, due to high risk of online exploration
Works towards treatments for epilepsy, schizophrenia, and more
B Autonomous driving
More datasets containing human driving activity are being released
Offline RL hasn’t been successfully applied yet
B Advertising and recommender systems
Off policy evaluation is commonly used to perform A/B testing
Optimize visit and clicks based on user activity logs
B | anguage and Dialogue

hhu
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Learning from readily available human dialogue, e.g. dialogue data from customer service
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B Conclusion hhu
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®m Offline RL aims to learn a policy using previously collected data, without further
interaction with the deployment environment

Towards scalable RL towards solving more complex real-world problems
B Major challenges:
Counterfactual decision making
Distributional shift
B Some solutions:
Importance sampling to address the distribution mismatch
Constrained policy update, making sure the policy stays close to the behavior policy
Conservative value estimation, underestimate the value on OOD state-action pairs

® Have been applied in various fields, from robotics to dialogue
m Actively developing area of research
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Papers cited in this talk can be found on the bibliography
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