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Generative Models

¾ Given a set of training data, generate 
samples that are likely under the 
distribution
¾ E.g. images, sentences

¾ Likelihood of training data

𝑝 𝑥 =$
!"#

$

𝑝 (𝑥!|𝑥#, 𝑥%, … , 𝑥!&#)

¾ Model conditional distribution of a point 
given its context
¾ charRNN (Sutskever et al., 2011)
¾ LSTM (Graves, 2014)
¾ PixelCNN (van den Oord et al., 2016)

𝑥! 𝑥"…

𝑥#
Language generation with RNN Image generation with PixelCNN

(van den Oord et al., 2016)
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Generative Models
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¾ Given a set of training data, generate 
samples that are likely under the 
distribution
¾ E.g. images, sentences

¾ Likelihood of training data

𝑝 𝑥 =$
!"#

$

𝑝 (𝑥!|𝑥#, 𝑥%, … , 𝑥!&#)

¾ Model conditional distribution of a point 
given its context
¾ charRNN (Sutskever et al., 2011)
¾ LSTM (Graves, 2014)
¾ PixelCNN (van den Oord et al., 2016)

¾ Pros
¾ Easy to optimize
¾ Stable

¾ Cons
¾ Sensitive to the choice of context
¾ Do not provide rich code of the samples



hhu.de

Latent variable as 
structure in a generative process
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¾ Generation process could benefit from structure and hierarchy
¾ When we write a digit, we decide beforehand which number to write
¾ When we say something, we have an intent in mind to begin with

¾ Variational autoencoder (VAE) does this via the latent variable 𝑧 in the model
¾ Latent: unobserved
¾ Tries to capture underlying structure of data
¾ Makes a decision before performing the generation
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Primer: Autoencoders

¾ Unsupervisedly learn condensed representation of data through 
autoencoding task
¾ Encode the input into lower-dimensional latent features
¾ These features should allow reconstruction of the input
¾ Optimize model to minimize reconstruction loss, e.g.

𝐿(𝑥, %𝑥) = 𝑥 − %𝑥 !

¾ AE gives features for reconstructing the data
¾ The bottleneck forces the model to learn rich important features of 

the input by ignoring noise in the data
¾ However, mapping between input and

features are deterministic
¾ Feature extraction

¾ Can we modify the model such that we
can generate more data from it?

Encoder

Decoder

features

𝑥

%𝑥
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Variational Autoencoders

¾ Instead of deterministic mapping, VAE models the  
distribution of the latent variables

Encoder

Decoder

𝑧

𝑥

%𝑥

𝜇 𝜎
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Variational Autoencoders

Encoder

Decoder

𝑧

𝑥

%𝑥

𝜇 𝜎
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¾ Encoder maps input 𝑥 to a distribution 𝑞'(𝑧|𝑥)
¾ In case of gaussian, the encoder outputs vectors of means and std. 

dev from which we sample 𝑧
¾ a.k.a recognition network or inference network

¾ Decoder generates new data conditioned on 𝑧,  i.e. 𝑝( 𝑥 𝑧 , 
such that the new data resembles our training data

¾ a.k.a generation network

¾ Distribution of latent variable 𝑧
¾ True posterior: 𝑝" 𝑧 𝑥 not known 
¾ Prior: 𝑝"(𝑧), initial assumption about how 𝑧 is distributed 
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Kullback-Leibler divergence
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¾ A measure of distance between two 
probability distribution
¾ Cross entropy minus entropy
¾ 𝐷!" 𝑄 𝑥 ∥ 𝑃 𝑥 = 𝐻 𝑄, 𝑃 −𝐻 𝑄

¾ 𝐻 𝑄, 𝑃 = 𝐸$~& − log𝑃(𝑥)

¾ 𝐻 𝑄 = 𝐸$~& − log 𝑄 𝑥

𝑫𝑲𝑳 𝑸 𝒙 ∥ 𝑷 𝒙 = 𝑬𝒙~𝑸 𝐥𝐨𝐠
𝑸(𝒙)
𝑷(𝒙)

Source: https://wiseodd.github.io/techblog/2016/12/21/forward-reverse-kl/

https://wiseodd.github.io/techblog/2016/12/21/forward-reverse-kl/
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VAE loss function: ELBO

log 𝑝 𝑥 # = Ε$~&!($|)) log 𝑝" 𝑥 #

Ε$ log
+" ) # |$ +" $

+" $|) #

Ε$ log
+" ) # |$ +" $

+" $|) #
&!($|) # )
&!($|) # )

Ε$ log 𝑝" 𝑥 # |𝑧 − Ε$ log
&!($|) # )
+" $

+ Ε$ log
&!($|) # )
+" $|) #

Ε$ log 𝑝" 𝑥 # |𝑧 − 𝐷,- 𝑞. 𝑧 𝑥 # ∥ 𝑝" 𝑧 + 𝐷,- 𝑞. 𝑧 𝑥 # ∥ 𝑝" 𝑧|𝑥 #

¾ Taking 
expectation

¾ Bayes’ rule
¾ Multiply with 

constant
¾ Log rule

¾ KL terms

Nurul Lubis10



hhu.de

VAE loss function : ELBO

log 𝑝 𝑥 # = Ε$~&!($|)) log 𝑝" 𝑥 #

Ε$ log
+" ) # |$ +" $

+" $|) #

Ε$ log
+" ) # |$ +" $

+" $|) #
&!($|) # )
&!($|) # )

Ε$ log 𝑝" 𝑥 # |𝑧 − Ε$ log
&!($|) # )
+" $

+ Ε$ log
&!($|) # )
+" $|) #

Ε$ log 𝑝" 𝑥 # |𝑧 − 𝐷,- 𝑞. 𝑧 𝑥 # ∥ 𝑝" 𝑧 + 𝐷,- 𝑞. 𝑧 𝑥 # ∥ 𝑝" 𝑧|𝑥 #

¾ Taking 
expectation

¾ Bayes’ rule
¾ Multiply with 

constant
¾ Log rule

¾ KL terms

decoder encoder 𝑧 prior 𝑧 posterior, not known 
and intractable!

Nurul Lubis11

By definition, 𝐷,- ≥ 0
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VAE loss function: ELBO

log 𝑝 𝑥 # = Ε$~&!($|)) log 𝑝" 𝑥 #

Ε$ log
+" ) # |$ +" $

+" $|) #

Ε$ log
+" ) # |$ +" $

+" $|) #
&!($|) # )
&!($|) # )

Ε$ log 𝑝" 𝑥 # |𝑧 − Ε$ log
&!($|) # )
+" $

+ Ε$ log
&!($|) # )
+" $|) #

log 𝑝 𝑥 # ≥ Ε$ log 𝑝" 𝑥 # |𝑧 − 𝐷,- 𝑞. 𝑧 𝑥 # ∥ 𝑝" 𝑧

¾ Taking 
expectation

¾ Bayes’ rule
¾ Multiply with 

constant
¾ Log rule

¾ KL terms

Evidence lowerbound (ELBO)
ℒ(𝑥 # , 𝜃, 𝜙)

𝜃∗, 𝜙∗ = argmax=
#01

2

ℒ(𝑥 # , 𝜃, 𝜙)
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Prior
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¾ Prior: an assumption about
how the latent is distributed

¾ For Gaussian-distributed latent, 
typically isotropic normal Gaussian is 
used as prior
¾ Assumes that each latent variable is 

normally distributed
¾ Zero mean, i.e. 𝜇 = 0
¾ The identity matrix as diagonal 

covariance matrix, i.e. Σ = 𝜤
¾ The diagonal covariance pulls the 

encoded latent space 𝑞'(𝑧|𝑥) to have 
independent components

¾ 𝑞'(𝑧|𝑥) is penalized from diverging too far 
from this form
¾ A form of regularization

ℒ 𝑥 # , 𝜃, 𝜙 = Ε$ log 𝑝" 𝑥 # |𝑧 − 𝐷,- 𝑞. 𝑧 𝑥 # ∥ 𝒑𝜽 𝒛
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Optimizing VAEs

¾ VAE:
✔ Encoder
✔ Decoder
✔ Loss Function

¾ Problem: can not backpropagate through stochastic layer
¾ Not differentiable

¾ Solution: reparameterization trick

Encoder

Decoder

𝑧

𝑥

%𝑥

𝜇 𝜎

Nurul Lubis14
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Reparameterization trick

¾ Main idea: all Gaussian distributions are scaled and 
translated versions of the normal distribution

¾ To draw from 𝑁 𝜇, 𝜎% :
¾ Draw from 𝑁 0,1
¾ Scale with 𝜎 (multiplication)
¾ Translate with 𝜇 (addition)

¾ Shifting the stochasticity in 𝑧 to a parameter-
independent node
¾ We do not require any

backpropagation through 𝜀
¾ Now we can train with standard

NN optimization algorithms

𝜇 𝜎

𝑧 𝑧 = 𝜇 + 𝜎𝜀

𝜀
𝜀~𝑁(0,1)

𝜇 𝜎

𝑧
𝑧~𝑁(𝜇, 𝜎!)

Without reparameterization trick L

With reparameterization trick J

Nurul Lubis15
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Relationship between 𝑧 and 𝑥
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¾ Each dimension of 𝑧 represent a meaningful 
characteristic of the data

¾ Example
¾ face rotation (x-axis)
¾ smile (y-axis)

(Kingma and Welling, 2014)
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Dimensionality of 𝑧

Nurul Lubis17

(Kingma and Welling, 2014)
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Disentangling the latent space

Nurul Lubis18

(Higgins et al., 2017)

¾ Ideally, we want each latent dimension to 
encode a single generative factor

¾ VAE tend to map multiple generative factors into 
one dimension

¾ Example: traversing latent dimension which 
controls smile causes other changes in the 
generated image
¾ Difficult to interpret each dimension
¾ Less generative control
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Disentangling the latent space
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¾ 𝛽-VAE (Higgins et al., 2017) disentangle the 
latent dimensions by modifying the objective
Ε' log 𝑝( 𝑥 ) |𝑧 − 𝛽𝐷*+ 𝑞, 𝑧 𝑥 ) ∥ 𝑝( 𝑧

¾ Proposal: set 𝛽 > 1

¾ Intuition: KL term can be viewed as the upper 
limit of the representation capacity of 𝑧
(Burgess et al., 2018)
¾ Setting 𝛽 > 1 means increasing the penalty, 

decreasing channel capacity
¾ Decreased capacity encourages condensed 

representation
¾ For some conditionally 

independent generative factor,
best strategy is to keep them
separate

(Higgins et al., 2017)
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Improving representation learning in VAEs
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¾ Active area of research!
¾ Disentanglement is one of 4 meta-priors (Bengio et al., 2012)

¾ A survey paper on representation learning with VAE (Tschannen et al., 2018)

Disentanglement Hierarchy Semi-supervised 
learning

Clustering 
structure
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Conditional VAE (CVAE)
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¾ During generative process with VAE, 𝑧 is sampled from the prior
¾ Not possible to specify what kind of sample to generate 

¾ CVAE models data and its latent conditioned on some random variables (Sohn et al., 
2015)

¾ VAE objective: 
ℒ 𝑥 ! , 𝜃, 𝜙 = Ε. log 𝑝( 𝑥 ! |𝑧 − 𝐷/0 𝑞' 𝑧 𝑥 ! ∥ 𝑝( 𝑧

¾ CVAE objective:
ℒ 𝑥 ! , 𝜃, 𝜙 = Ε. log 𝑝( 𝑥 ! |𝑧, 𝑐 ! − 𝐷/0 𝑞' 𝑧 𝑥 ! , 𝑐 ! ∥ 𝑝( 𝑧|𝑐 !

¾ The latent distribution is also conditioned on input observation, e.g. labels
¾ CVAE has an additional network, called prior network which models 𝑧

conditioned on 𝑐, i.e. 𝑝# 𝑧|𝑐 $
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¾ During training, minimize 
𝐷/0 𝑞' 𝑧 𝑥, 𝑐 ∥ 𝑝( 𝑧|𝑐
¾ The distance between recog. and prior 

network distributions

CVAE

Recognition network

Input encoder

Decoder

𝑧

𝑥

%𝑥

𝜇 𝜎

𝑐

Prior network

𝑧

𝜇 𝜎

𝑝"(𝑧|𝑐)𝑞.(𝑧|𝑥, 𝑐)

𝑝" 𝑥|𝑧, 𝑐

+

+

ℒ 𝑥 # , 𝜃, 𝜙 = Ε$ log 𝑝" 𝑥 # |𝑧, 𝑐 # − 𝐷,- 𝑞. 𝑧 𝑥 # , 𝑐 # ∥ 𝑝" 𝑧|𝑐 #
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¾ During training, minimize 
𝐷/0 𝑞' 𝑧 𝑥, 𝑐 ∥ 𝑝( 𝑧|𝑐
¾ The distance between recog. and prior 

network distributions

CVAE

Recognition network

Input encoder

Decoder

𝑧

𝑥

%𝑥

𝜇 𝜎

Context encoder

𝑐

Prior network

𝑧

𝜇 𝜎

𝑝"(𝑧|𝑐)𝑞.(𝑧|𝑥, 𝑐)

𝑝" 𝑥|𝑧, 𝑐

+

+

ℒ 𝑥 # , 𝜃, 𝜙 = Ε$ log 𝑝" 𝑥 # |𝑧, 𝑐 # − 𝐷,- 𝑞. 𝑧 𝑥 # , 𝑐 # ∥ 𝑝" 𝑧|𝑐 #
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¾ During training, minimize 
𝐷/0 𝑞' 𝑧 𝑥, 𝑐 ∥ 𝑝( 𝑧|𝑐
¾ The distance between recog. and prior 

network distributions
¾ During generation, sample 𝑧 via 𝑝( 𝑧|𝑐

CVAE

Recognition network

Input encoder

Decoder

𝑧

𝑥

%𝑥

𝜇 𝜎

Context encoder

𝑐

Prior network

𝑧

𝜇 𝜎

𝑝"(𝑧|𝑐)𝑞.(𝑧|𝑥, 𝑐)

𝑝" 𝑥|𝑧, 𝑐

+

+

+

ℒ 𝑥 # , 𝜃, 𝜙 = Ε$ log 𝑝" 𝑥 # |𝑧, 𝑐 # − 𝐷,- 𝑞. 𝑧 𝑥 # , 𝑐 # ∥ 𝑝" 𝑧|𝑐 #
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Application in NLP
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¾ Sentence generation from continuous 
latent space (Bowman et al., 2015)
¾ Sequential generation does not capture 

higher level concept e.g. topic and intent
¾ Latent variables provide this concept

¾ Unlike images, decoder outputs discrete 
tokens

¾ Challenges
¾ The model tends to favor “low hanging fruit” of 

behaving as a vanilla RNNLM and ignoring 
the latent variable

¾ Training strategies
¾ KL annealing to encourage the model to 

pass information through 𝑧
¾ Gradate the KL term weight through training 

¾ Word dropout to encourage
the decoder to rely on 𝑧
¾ Randomly replace words 

during decoding to <UNK>

Make this zeroSimply work on this

VAE

AE

Ε$ log 𝑝" 𝑥 # |𝑧 − 𝐷,- 𝑞. 𝑧 𝑥 # ∥ 𝑝" 𝑧
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Application in dialogue
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¾ Hierarchical Latent Variable Encoder-Decoder 
(Serban et al., 2017)

¾ Two hierarchy of sequence:
¾ Dialogue as sequence of turns
¾ Each turn is a sequence of words

¾ Maximize likelihood of next turn given dialogue 
context

¾ ELBO is modified to include dialogue context

log 𝑃" 𝑤1, …𝑤2 ≥ =
401

2

−𝐷56 𝑄7 𝑧4 𝑤1, … , 𝑤4 ∥ 𝑃" 𝑧4 𝑤84 + 𝐸9$ 𝑧4 𝑤1, … , 𝑤4 log 𝑃"(𝑤4|𝑧4, 𝑤84)

Latent is conditioned on 
previous turns

Generation is conditioned 
on latent and previous turns
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Application in dialogue
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¾ Latent action reinforcement learning (Zhao et al., 2019)
¾ Train a CVAE for dialogue, and perform RL on the latent space

¾ Shortening the trajectory when performing RL in dialogue
¾ Instead of propagating reward to sequence of words [ 𝑤%, 𝑤&, 𝑤' , (𝑤(, 𝑤), 𝑤*)], use the latent 

variable 𝑧
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Conclusion
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¾ Pros
¾ Can generate new data
¾ Provides structure in generation
¾ Representation learning in latent space

¾ Cons
¾ Requires an assumption about the 

underlying structure (expressed in the 
prior)

¾ Can not be directly optimized
¾ Other generative methods?

¾ GANs circumvent the explicit definition 
of density while keeping the ability to 
sample
¾ Trade-off between some pros and cons

¾ Potentials
¾ Analysis and visualization

¾ Extract and plot latent structure of data
¾ Semi-supervised learning

¾ Use unsupervisedly learned representation to support 
supervised learning (Kingma et al., 2014)

¾ Transfer learning
¾ Use representation learned from a rich-resource task 

to complete low-resource tasks (Belhaj et al., 2018)

¾ Reinforcement learning
¾ Use representation learning for state space 

abstraction (Higgins et al., 2017)
¾ ...and more
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Thank you

Nurul Lubis29



hhu.de

References

¾ Kingma, D. P. and Welling, M. (2013). Auto-encoding variational Bayes. Proceedings of the 2nd International Conference on Learning 
Representations.

¾ Van den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016, June). Pixel Recurrent Neural Networks. In International Conference 
on Machine Learning (pp. 1747-1756).

¾ Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., & Graves, A. (2016). Conditional image generation with pixelcnn
decoders. In Advances in neural information processing systems (pp. 4790-4798).

¾ Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.
¾ Sutskever, I., Martens, J., & Hinton, G. E. (2011). Generating text with recurrent neural networks. In Proceedings of the 28th 

international conference on machine learning (ICML-11) (pp. 1017-1024).
¾ Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep conditional generative models. 

In Advances in neural information processing systems (pp. 3483-3491).
¾ Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., & Lerchner, A. (2018). Understanding disentangling in 

$\beta $-VAE. arXiv preprint arXiv:1804.03599.
¾ Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., ... & Lerchner, A. (2017). beta-VAE: Learning Basic Visual 

Concepts with a Constrained Variational Framework. Iclr, 2(5), 6.
¾ Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern 

analysis and machine intelligence, 35(8), 1798-1828.

Nurul Lubis30



hhu.de

References

Nurul Lubis31

¾ Tschannen, M., Bachem, O., & Lucic, M. (2018). Recent advances in autoencoder-based representation learning. arXiv preprint 
arXiv:1812.05069.

¾ Bowman, S., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., & Bengio, S. (2016, August). Generating Sentences from a Continuous 
Space. In Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning (pp. 10-21).

¾ Serban, I. V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., & Bengio, Y. (2017, February). A hierarchical latent variable 
encoder-decoder model for generating dialogues. In Thirty-First AAAI Conference on Artificial Intelligence.

¾ Zhao, T., Zhao, R., & Eskenazi, M. (2017, July). Learning Discourse-level Diversity for Neural Dialog Models using Conditional 
Variational Autoencoders. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: 
Long Papers) (pp. 654-664).

¾ Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semi-supervised learning with deep generative models. 
In Advances in neural information processing systems (pp. 3581-3589).

¾ Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C., Pritzel, A., ... & Lerchner, A. (2017, August). Darla: Improving zero-shot 
transfer in reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp. 1480-
1490). JMLR. org.

¾ Belhaj, M., Protopapas, P., & Pan, W. (2018). Deep variational transfer: Transfer learning through semi-supervised deep generative 
models. arXiv preprint arXiv:1812.03123



hhu.de

Intractability

¾ Data likelihood

𝑝 𝑥 = A𝑝 𝑥 𝑧 𝑝(𝑧)dz

¾ Posterior density

𝑝 𝑧|𝑥 =
𝑝(𝑥|𝑧)𝑝 𝑧

𝑝(𝑥)
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Kullback-Leibler divergence
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¾ A measure of distance between two 
probability distribution
¾ Cross entropy minus entropy
¾ 𝐷!" 𝑄 𝑥 ∥ 𝑃 𝑥 = 𝐻 𝑄, 𝑃 −𝐻 𝑄

¾ 𝐻 𝑄, 𝑃 = 𝐸$~& − log𝑃(𝑥)

¾ 𝐻 𝑄 = 𝐸$~& − log 𝑄 𝑥

𝑫𝑲𝑳 𝑸 𝒙 ∥ 𝑷 𝒙 = 𝑬𝒙~𝑸 𝐥𝐨𝐠
𝑸(𝒙)
𝑷(𝒙)

¾ Asymmetric!
¾ 𝐷!" 𝑄 𝑥 ∥ 𝑃 𝑥 ≠ 𝐷!" 𝑃 𝑥 ∥ 𝑄 𝑥
¾ The first distribution act as “weight”
¾ Typical notation: 𝑃 𝑥 for true distribution 

and 𝑄 𝑥 for approximation

Reverse KL yields 
closer distance
- Accepts smaller 
coverage in favor of 
good approximation

Forward KL yields 
closer distance
- “zero avoiding”

𝐷56 𝑄 𝑥 ∥ 𝑃 𝑥

𝐷56 𝑃 𝑥 ∥ 𝑄 𝑥

Source: https://wiseodd.github.io/techblog/2016/12/21/forward-reverse-kl/

https://wiseodd.github.io/techblog/2016/12/21/forward-reverse-kl/

