Towards Ontology-Independent Dialogue State Tracking

Michael Heck

Dialog Systems and Machine Learning
INTRODUCTION
Introduction

- Task-oriented dialogue systems (DS) – virtual assistants – gained increased popularity and acceptance over the years
 - Accomplish tasks such as bookings, searches, management, ...

- DS need to support a wide variety of domains
 - Recent work focused on scalable multi-domain DS

- Data-driven deep learning based approaches improved system quality considerably
 - Shift from discrete to continuous representations of concepts
Statistical dialogue systems 101

User input

„I’m looking for a restaurant“

Semantic decoding

State tracker

Dialogue management

System response

„What kind of food do you have in mind?“

Inform(type=restaurant)

Request(food)

Ontology

<table>
<thead>
<tr>
<th>Domains</th>
<th>Slots</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>restaurant</td>
<td>food</td>
<td>Italian</td>
</tr>
<tr>
<td>restaurant</td>
<td>area</td>
<td>centre</td>
</tr>
<tr>
<td>restaurant</td>
<td>price</td>
<td>cheap</td>
</tr>
<tr>
<td>taxi</td>
<td>depart</td>
<td>station</td>
</tr>
<tr>
<td>taxi</td>
<td>arrive</td>
<td>hotel</td>
</tr>
</tbody>
</table>

...
Introduction

Dialogue state tracking

- Dialogue state: Summary of the conversation till current turn
 - Set of constraints, for example **slot-value pairs**
- Dialogue state tracking: Update dialogue state at each turn
 - Required to determine next system action

Ontology

<table>
<thead>
<tr>
<th>Turn</th>
<th>Domain-slot pair</th>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>restaurant-pricerange</td>
<td>expensive</td>
<td>span</td>
</tr>
<tr>
<td>0</td>
<td>restaurant-area</td>
<td>center</td>
<td>span</td>
</tr>
<tr>
<td>1</td>
<td>restaurant-food</td>
<td><dontcare></td>
<td>(dontcare)</td>
</tr>
<tr>
<td>2</td>
<td>restaurant-name</td>
<td>fitzbillies</td>
<td>informed</td>
</tr>
<tr>
<td>3</td>
<td>restaurant-people</td>
<td>5</td>
<td>span</td>
</tr>
<tr>
<td>3</td>
<td>restaurant-book_time</td>
<td>11:30</td>
<td>span</td>
</tr>
<tr>
<td>3</td>
<td>restaurant-book_day</td>
<td>tuesday</td>
<td>span</td>
</tr>
<tr>
<td>4</td>
<td>restaurant-internet</td>
<td><true></td>
<td>(bool)</td>
</tr>
<tr>
<td>5</td>
<td>hotel-area</td>
<td>center</td>
<td>coreference</td>
</tr>
</tbody>
</table>
Introduction

Statistical dialogue systems 101

- Discrete representation of concepts limits capacities
Continuous representations in DS

Vector representations mitigate semantic decoding problem

- Similarity measures replace exact matching

Mrksic et al., 2017, Neural Belief Tracker - Data-Driven Dialogue State Tracking
Introduction

Ontology-independent DS

- "I’m looking for a restaurant"
- "Does the user look for a restaurant?"
- "Does the user look for a hotel?"

User input

System response

Answer generation

Dialogue management

Integrated decoder & State tracker

Semantic conditioning

- Conditioning with natural language replaces fixed ontology
 - Measure semantic similarity between input and concepts
DEEP LEARNING BASED DST
Deep learning based DST

- Achieves state-of-the-art performance in DST evaluations
 - Utilization of **semantic representations** is driving force
 - Leverages semantic similarity of concepts (slots, values, etc.)
 - Representation of previously unseen concepts is possible
 - Tighter integration of DS components

- Picklist based
 - DS as distribution over all possible slot-values
 - Individual scoring of all slot-value pairs

Henderson et al., 2014, Word-based dialog state tracking with recurrent neural networks
Wen et al., 2017, A network-based end-to-end trainable task-oriented dialogue system
Mrksic et al., 2017, Neural Belief Tracker - Data-Driven Dialogue State Tracking
Ramadan et al., 2018, Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing
Deep learning based DST

Picklist-based DST

What food would you like? I'd like Thai food

System Utterance User Utterance Ontology

Input encoders produce vector representations

- ✓ Robustness due to semantic representations
- ✓ Knowledge sharing across domains
- X Limited scalability

Ramadan et al., 2018, Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing
Deep learning based DST

- Picklist based
 - DS as distribution over all possible slot-values
 - Individual scoring of all slot-value pairs

- Span based
 - Find values through span matching in dialogue context

Gao et al., 2019, Dialog state tracking: A neural reading comprehension approach
Chao and Lane, 2019, BERT-DST: Scalable end-to-end dialogue state tracking with bidirectional encoder representations from transformer
Kim et al., 2019, Efficient dialogue state tracking by selectively overwriting memory
Deep learning based DST

Span-based DST

- Transformer produces contextual representations of input
 - Sentence representation used to determine presence of value
 - Token representations used to determine value span
- \(\times \) Limited to extractive values

Chao and Lane, 2019, BERT-DST: Scalable end-to-end dialogue state tracking with bidirectional encoder representations from transformer
Deep learning based DST

- **Picklist based**
 - DS as distribution over all possible slot-values
 - Individual scoring of all slot-value pairs

- **Span based**
 - Find values through span matching in dialogue context

- **Hybrid**
 - Combine picklists with span prediction

Zhang et al., 2019, Find or classify? dual strategy for slot-value predictions on multi-domain dialog state tracking
Deep learning based DST

Hybrid approaches

- Similarity matching with candidates in picklist, or span pred.
- Slot name (and domain name) as part of input

Zhang et al., 2019, Find or classify? dual strategy for slot-value predictions on multi-domain dialog state tracking
SCHEMA-GUIDED PARADIGM
Schema-guided paradigm

Reality check

- Current evaluations don’t fully capture reality of scenarios
 - Few domains, one service per domain, static ontologies

- Many domains, many services (defined by APIs)
 - Mismatch of training and testing conditions

User

Find direct round trip flights from Baltimore to Seattle.

Sure, what dates are you looking for?

Flying out May 16 and returning May 20.

OK, I found a Delta flight for 302 dollars.

System

FindFlight:
- depart = Baltimore
- arrive = Seattle
- direct_only = True

Flight Service A

SearchFlight:
- origin = Baltimore
- destination = Seattle
- num_stops = 0

Intents:
- SearchFlight,
- ReserveFlight

Slots:
- origin, destination, num_stops, depart, return, ...

Flight Service B

SearchFlight:
- origin = Baltimore
- destination = Seattle
- num_stops = 0
- depart = May 16
- return = May 20

Intents:
- FindFlight,
- ReserveFlight

Slots:
- depart, arrive, depart_date, return_date, direct_only, ...
Shortcomings of recent systems

- Recent systems parse dialogues in terms of **fixed concepts**
 - Lack understanding of the **semantics** of concepts
- Example: “I want to buy tickets for a movie.”
 - Models predict “BuyMovieTickets” based on observed patterns
 - No association with real action of buying movie tickets
 - Similarity to action of buying concert tickets not captured
- Models not robust to changes
 - Need to be retrained as new slots or intents are added
 - Domain-specific parameters unsuitable for zero-shot application
Schema-guided paradigm

Challenges of building large-scale systems

- Support of heterogenous services/APIs
 - Might overlap in functionality

- Robustness towards changes in API
 - Robustness towards new slots and intents
 - Generalization to new slot values (with little or no retraining)

- Generalization to new APIs
 - Joint modelling across APIs
 - Zero-shot generalization
Schema-guided paradigm

Approaches to related problems

- Adaptation and transfer learning for Slot-filling for DST
- Parameter sharing for domain adaptation and joint training

Zhang et al., 2019, Find or classify? dual strategy for slot-value predictions on multi-domain dialog state tracking
Approaches to related problems

- Zero-shot learning for Slot-filling for DST
 - Infusing semantic slot representations into unified model

Bidirectional LSTM

Book a table at Heinemann on Tuesday ...

Bapna et al., 2017, Towards Zero-Shot Frame Semantic Parsing for Domain Scaling
Shah et al., 2019, Robust Zero-Shot Cross-Domain Slot Filling with Example Values
Approaches to related problems

- Zero-shot learning for Slot-filling for DST
 - Infusing semantic slot representations into unified model

Bapna et al., 2017, Towards Zero-Shot Frame Semantic Parsing for Domain Scaling
Shah et al., 2019, Robust Zero-Shot Cross-Domain Slot Filling with Example Values
Schema-guided paradigm for dialogue modeling

- Each **service** provides a **schema**
 - Lists supported slots and intents
 - Provides natural language descriptions for schema elements

Figure: Example schema for a service called "payment".

Rastogi et al., 2020, Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset
Advocates building a single **unified** dialogue model for all services and APIs using **semantic conditioning**

- A model should not contain service specific components

A service’s schema serves as input to the model

- Uses descriptions to obtain **semantic representations** of schema elements
- Predictions are **conditioned** on semantics of schema
- Predictions over dynamic sets of intents and slots

- A model should generalize to unseen services, APIs, concepts
Schema-guided paradigm for dialogue modeling

- Zero-shot learning by using semantic modeling
 - Knowledge sharing by ...
 - ... relating semantically similar concepts
 - ... using single unified model
 - Handling of unseen services and API changes by using
 - natural language input
 - semantic representations to condition the model
SCHEMA-GUIDED DST
Schema-guided DST track at DSTC8

SGD Dataset

Benchmark highlighting challenges for large-scale systems

<table>
<thead>
<tr>
<th>Domains</th>
<th>Slots</th>
<th>Values</th>
<th>Dialogues</th>
<th>Avg. turns per dialogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSTC2</td>
<td>WOZ2.0</td>
<td>FRAMES</td>
<td>M2M</td>
<td>MultiWOZ</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>61</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>212</td>
<td>99</td>
<td>3,871</td>
<td>138</td>
<td>4,510</td>
</tr>
<tr>
<td>1,612</td>
<td>600</td>
<td>1,369</td>
<td>1,500</td>
<td>8,438</td>
</tr>
<tr>
<td>14.49</td>
<td>7.45</td>
<td>14.60</td>
<td>9.86</td>
<td>13.46</td>
</tr>
</tbody>
</table>

Table: Statistics of training portions of datasets

<table>
<thead>
<tr>
<th>Domain</th>
<th>Services</th>
<th>Domain</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>1</td>
<td>Movies</td>
<td>3</td>
</tr>
<tr>
<td>Banks</td>
<td>2</td>
<td>Music</td>
<td>3</td>
</tr>
<tr>
<td>Buses</td>
<td>3</td>
<td>Payment</td>
<td>1</td>
</tr>
<tr>
<td>Calendar</td>
<td>1</td>
<td>RentalCars</td>
<td>3</td>
</tr>
<tr>
<td>Events</td>
<td>3</td>
<td>Restaurants</td>
<td>2</td>
</tr>
<tr>
<td>Flights</td>
<td>4</td>
<td>RideSharing</td>
<td>2</td>
</tr>
<tr>
<td>Homes</td>
<td>1</td>
<td>Services</td>
<td>4</td>
</tr>
<tr>
<td>Hotels</td>
<td>4</td>
<td>Train</td>
<td>1</td>
</tr>
<tr>
<td>Media</td>
<td>3</td>
<td>Travel</td>
<td>1</td>
</tr>
<tr>
<td>Messaging</td>
<td>1</td>
<td>Weather</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: Domains and services in SGD dataset

Slot types:

- **Non-categorical**: set of possible values is unrestricted
 - Eval sets contains unseen values
- **Categorical**: possible values are pre-defined and fixed
Schema-guided DST

Baseline: Zero-shot dialogue state tracking

- Model is shared among all services and domains

- Uses 2 contextual encoders:
 - Finetuned BERT encodes context
 - Fixed pre-trained BERT encoding schema element descriptions
 - Intents, slots, categorical slot values

- Schema element-wise classification
 - Concat. context representation and schema element represent
 - Do for each turn and for each schema element

Rastogi et al., 2020, Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset
Schema-guided DST

Baseline: Zero-shot dialogue state tracking

<table>
<thead>
<tr>
<th>Dialogue Context Encoding Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence 1</td>
</tr>
<tr>
<td>System Utterance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schema Encoding Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence 1</td>
</tr>
<tr>
<td>Intent</td>
</tr>
<tr>
<td>Slot</td>
</tr>
<tr>
<td>Value</td>
</tr>
</tbody>
</table>
Schema-guided DST

Evaluation metrics

- **Joint goal accuracy**
 - Average accuracy of predicting all slot assignments correctly

- **Average goal accuracy**
 - Average accuracy of predicting a slot value correctly

- **Active intent accuracy**
 - Fraction of user turns for which intent was predicted correctly

- **Requested slot F1**
 - Average F1 score for requested slots
Schema-guided DST

Evaluation results

<table>
<thead>
<tr>
<th>All services</th>
<th>Seen services</th>
<th>Unseen services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint GA</td>
<td>Avg GA</td>
<td>Intent Acc</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.25</td>
<td>0.56</td>
</tr>
</tbody>
</table>

- **Drawbacks**
 - No history (only single turn) in context
 - Many slot values appear multiple turns earlier
 - Separate models for context and schema
 - Interaction only after encoding
 - No finetuning of schema encoder
Schema-guided DST

Unified span detection framework for SG-DST

- **Single** BERT to encode context and schema elements
 - To facilitate more interaction and utilize attention mechanism
 - Multiple passes per turn and slot, one for each prediction task
 - Intent, categorical slot, non-categorical slot

- Adds (truncated) dialogue history to input

- Render all predictions a span prediction problem
 - To utilize same model architecture for multitask learning effect

Shi et al., 2020, A BERT-based Unified Span Detection Framework for Schema-Guided Dialogue State Tracking
Schema-guided DST

Unified span detection framework for SG-DST

<table>
<thead>
<tr>
<th>Intent</th>
<th>Sequence 1</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical Slot</td>
<td>(\text{turn}_{t-k} \ [\text{SEP1}] \ldots \text{turn}_t)</td>
<td>[\text{INTENT}] Service Name [\text{SEP2}] Intent Name Intent Description</td>
</tr>
<tr>
<td>Non Categorical Slot</td>
<td>(\text{turn}_{t-k} \ [\text{SEP1}] \ldots \text{turn}_t)</td>
<td>[\text{NC_SLOT}] Slot Name [\text{SEP2}] Slot Name Slot Description</td>
</tr>
</tbody>
</table>
Schema-guided DST

Evaluation results

<table>
<thead>
<tr>
<th></th>
<th>All services</th>
<th>Seen services</th>
<th>Unseen services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Joint GA</td>
<td>Avg GA</td>
<td>Intent Acc</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.25</td>
<td>0.56</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.52</td>
<td>0.89</td>
</tr>
<tr>
<td>Shi</td>
<td>0.54</td>
<td>0.8</td>
<td>0.91</td>
</tr>
</tbody>
</table>

- **Important details**
 - Uses BERT-large instead of BERT-base
 - Post-submission tests showed advantage of even longer history

- **Observations**
 - ✓ Very good generalization to new services
 - Authors attribute this to joint encoding of context and schema
 - ❌ Req. slot F1 significantly lower, reason unclear (not discussed)
Schema-guided DST

Goal-oriented multi-task BERT-based DST

- **Single** BERT to encode context and schema elements
 - **Single pass** per turn and slot, all predictions are done at once
 - Intent + Slot (request, categorical, non-categorical)
 - Special classification heads work in parallel

- Adds (truncated) dialogue history to input

- Strict input format
 - Special tokens and padding for partitioning

Gulyaev et al., 2020, Goal-Oriented Multi-Task BERT-Based Dialogue State Tracker
Schema-guided DST

Goal-oriented multi-task BERT-based DST

<table>
<thead>
<tr>
<th>Question</th>
<th>Input sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>Slot and service description</td>
</tr>
<tr>
<td>Possible intents</td>
<td>Dialogue history</td>
</tr>
<tr>
<td>Possible values</td>
<td>Descriptions of intents supported by the service</td>
</tr>
<tr>
<td></td>
<td>Possible slot values (for categorical slots only)</td>
</tr>
</tbody>
</table>
Schema-guided DST

Evaluation results

<table>
<thead>
<tr>
<th></th>
<th>All services</th>
<th></th>
<th>Seen services</th>
<th></th>
<th>Unseen services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Joint GA</td>
<td>Avg GA</td>
<td>Intent Acc</td>
<td>Req Slot F1</td>
<td>Joint GA</td>
</tr>
<tr>
<td>Baseline</td>
<td>0,25</td>
<td>0,56</td>
<td>0,91</td>
<td>0,97</td>
<td>0,41</td>
</tr>
<tr>
<td>Gulyaev</td>
<td>0,46</td>
<td>0,75</td>
<td>0,75</td>
<td>0,97</td>
<td>0,53</td>
</tr>
<tr>
<td>Shi</td>
<td>0,54</td>
<td>0,80</td>
<td>0,91</td>
<td>0,87</td>
<td>0,53</td>
</tr>
</tbody>
</table>

- Uses BERT-large (finetuned on Squad) instead of BERT-base

- Observations
 - ✅ Categorical slots as span prediction task boosts performance
 - Similarly, intent classification as span prediction boosts performance
 - ❌ Similar performance to (Shi), but lacks behind for intent acc.
 - Relies on token representations and span prediction
 - ❌ Struggles with domain switches, slot value transfers
Schema-guided DST

Fine-tuning BERT for schema-guided zero-shot DST

- 6 BERT fine-tuned models for prediction
 - Intent prediction
 - Slot prediction (Categorical, Free-form, Requested)
 - Slot transfer prediction (In-domain, Cross-domain)
 - Multiple passes: First Intent & Slot, then transfer prediction
- Adds (truncated) dialogue history to input
- Adds auxiliary context features to BERT input
 - Indicate if a value/intent was predicted in turn t-1
 - Indicate if a value was mentioned by the system

Ruan et al., 2020, Fine-Tuning BERT for Schema-Guided Zero-Shot Dialogue State Tracking
Schema-guided DST

Fine-tuning BERT for schema-guided zero-shot DST

Input for intent prediction model

Input for categorical slot prediction model

Input for free-form slot prediction model

Input for requested slot prediction model

Input for in-domain slot transfer model

Input for cross-domain slot transfer model
Evaluation results

<table>
<thead>
<tr>
<th></th>
<th>All services</th>
<th></th>
<th>Seen services</th>
<th></th>
<th>Unseen services</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Joint GA</td>
<td>Avg GA</td>
<td>Intent Acc</td>
<td>Req Slot F1</td>
<td>Joint GA</td>
<td>Avg GA</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.25</td>
<td>0.56</td>
<td>0.91</td>
<td>0.97</td>
<td>0.41</td>
<td>0.68</td>
</tr>
<tr>
<td>Gulyaev</td>
<td>0.46</td>
<td>0.75</td>
<td>0.75</td>
<td>0.97</td>
<td>0.53</td>
<td>0.74</td>
</tr>
<tr>
<td>Shi</td>
<td>0.54</td>
<td>0.8</td>
<td>0.91</td>
<td>0.87</td>
<td>0.53</td>
<td>0.75</td>
</tr>
<tr>
<td>Ruan</td>
<td>0.74</td>
<td>0.92</td>
<td>0.92</td>
<td>0.99</td>
<td>0.88</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Observations

- ✓ Slot transfers significantly improve performance
 - In-domain transfers constitute value references across multiple turns
 - Cross-domain transfers rely on reference resolution mechanism
- ✗ Joint GA drops considerably for unseen services
- ✓/✗ Adding dev set data to training has some positive effect
Schema-guided DST

Reading comprehension and wide & deep DST

- Reading comprehension model for non-categorical slots
 - Unrestricted input size
 - Adds entire dialogue history to input
- Wide & deep model for categorical slots
 - Transformer model output + hand-crafted features
- Data augmentation to vary schema element descriptions
 - Automatic generation via back-translations
- Joint model for intent and requested slot prediction
 - Classify dialogue context + intent/slot description

Ma et al., 2020, An End-to-End Dialogue State Tracking System with Machine Reading Comprehension and Wide & Deep Classification
Schema-guided DST

Reading comprehension and wide & deep DST

a. MRC model for span-based slot and numerical slot

b. Wide & Deep model for boolean and text-based slot
Evaluation results

<table>
<thead>
<tr>
<th></th>
<th>All services</th>
<th>Seen services</th>
<th>Unseen services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Joint GA</td>
<td>Avg GA</td>
<td>Intent Acc</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.25</td>
<td>0.56</td>
<td>0.91</td>
</tr>
<tr>
<td>Gulyaev</td>
<td>0.46</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Shi</td>
<td>0.54</td>
<td>0.8</td>
<td>0.91</td>
</tr>
<tr>
<td>Ruan</td>
<td>0.74</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Ma</td>
<td>0.87</td>
<td>0.97</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Important details:
- Hand-crafted features are rule and heuristic based (+10% JGA)
- Data augmentation by back-translation from Chinese (+6% JGA)
- Numerical slots are rendered non-categorical
- Partial delexicalization (phone numbers)
- Dev set used as additional training data
Summary & Analysis

<table>
<thead>
<tr>
<th></th>
<th>All services</th>
<th>Seen services</th>
<th>Unseen services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Joint GA</td>
<td>Avg GA</td>
<td>Intent Acc</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.25</td>
<td>0.56</td>
<td>0.91</td>
</tr>
<tr>
<td>Gulyaev</td>
<td>0.46</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Shi</td>
<td>0.54</td>
<td>0.8</td>
<td>0.91</td>
</tr>
<tr>
<td>Ruan</td>
<td>0.74</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Ma</td>
<td>0.87</td>
<td>0.97</td>
<td>0.95</td>
</tr>
</tbody>
</table>

What worked?

- Approach: Reading comprehension + classification
 - Few submissions use a Baseline-style approach using similarity scoring
- Most systems exploit synergy effects from multitasking
- Maximizing context
 - Slot value reference resolution necessary across multiple turns
- Using hand-crafted features and additional data
Summary & Analysis

<table>
<thead>
<tr>
<th></th>
<th>All services</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Seen services</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Unseen services</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Joint GA</td>
<td>Avg GA</td>
<td>Intent Acc</td>
<td>Req Slot F1</td>
<td>Intent Acc</td>
<td>Req Slot F1</td>
<td>Joint GA</td>
<td>Avg GA</td>
<td>Intent Acc</td>
<td>Req Slot F1</td>
<td>Joint GA</td>
<td>Avg GA</td>
<td>Intent Acc</td>
<td>Req Slot F1</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.25</td>
<td>0.56</td>
<td>0.91</td>
<td>0.97</td>
<td></td>
<td>0.41</td>
<td>0.68</td>
<td>0.95</td>
<td>0.97</td>
<td></td>
<td>0.2</td>
<td>0.52</td>
<td>0.89</td>
<td>0.95</td>
</tr>
<tr>
<td>Gulyaev</td>
<td>0.46</td>
<td>0.75</td>
<td>0.75</td>
<td>0.97</td>
<td></td>
<td>0.53</td>
<td>0.74</td>
<td>0.87</td>
<td>0.97</td>
<td></td>
<td>0.44</td>
<td>0.75</td>
<td>0.71</td>
<td>0.97</td>
</tr>
<tr>
<td>Shi</td>
<td>0.54</td>
<td>0.8</td>
<td>0.91</td>
<td>0.87</td>
<td></td>
<td>0.53</td>
<td>0.75</td>
<td>0.96</td>
<td>0.85</td>
<td></td>
<td>0.55</td>
<td>0.82</td>
<td>0.9</td>
<td>0.88</td>
</tr>
<tr>
<td>Ruan</td>
<td>0.74</td>
<td>0.92</td>
<td>0.92</td>
<td>0.99</td>
<td></td>
<td>0.88</td>
<td>0.96</td>
<td>0.96</td>
<td>1</td>
<td></td>
<td>0.69</td>
<td>0.91</td>
<td>0.91</td>
<td>0.99</td>
</tr>
<tr>
<td>Ma</td>
<td>0.87</td>
<td>0.97</td>
<td>0.95</td>
<td>0.98</td>
<td></td>
<td>0.92</td>
<td>0.98</td>
<td>0.96</td>
<td>0.99</td>
<td></td>
<td>0.85</td>
<td>0.97</td>
<td>0.95</td>
<td>0.98</td>
</tr>
</tbody>
</table>

- **What worked maybe?**
 - Specialized tags, input formatting, input processing
 - Benefits not investigated enough
 - Compartmentalizing: Specialized models for sub-tasks
 - Best systems employ multiple specialized encoders
 - Unified models are among most robust
DISCUSSION & CONCLUSION
Discussion

Mission accomplished?

- Multiple specialized models vs. unified models
 - What is the best use of semantic encoding?
 - Specialized representations for subtasks vs. generalized representations
 - Impact on architectures’ generalization capacities? Trade-off observable

- Engineering, heuristics, augmentation
 - Potence of auxiliary features demonstrates insufficiencies in semantic encoding. How to overcome limitations of encoders?

- Role of similarity measures
 - No exploration of spaces of contextual representations
 - Post-encoding similarity scoring not sufficiently explored
Conclusion

- Semantic conditioning of complex models is promising
 - Huge performance gain within single challenge iteration: 25% Joint GA -> 87% Joint GA!
 - Seemingly a convergence towards a „universal“ approach

- What next?
 - Zero-shot performance still not satisfactory
 - Reliance on tweaks to minimize gap
 - What if information about active service is not provided?
 - What if user does out-of-service requests?
 - DSTC9: Incorporating external non-dialogue knowledge sources
Select references

- Mrksic et al., 2017, Neural Belief Tracker - Data-Driven Dialogue State Tracking
- Henderson et al., 2014, Word-based dialog state tracking with recurrent neural networks
- Wen et al., 2017, A network-based end-to-end trainable task-oriented dialogue system
- Ramadan et al., 2018, Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing
- Gao et al., 2019, Dialog state tracking: A neural reading comprehension approach
- Chao and Lane, 2019, BERT-DST: Scalable end-to-end dialogue state tracking with bidirectional encoder representations from transformer
- Kim et al., 2019, Efficient dialogue state tracking by selectively overwriting memory
- Zhang et al., 2019, Find or classify? dual strategy for slot-value predictions on multi-domain dialog state tracking
- Bapna et al., 2017, Towards Zero-Shot Frame Semantic Parsing for Domain Scaling
- Shah et al., 2019, Robust Zero-Shot Cross-Domain Slot Filling with Example Values
- Rastogi et al., 2017, Scalable Multi-Domain Dialogue State Tracking
- Rastogi et al., 2020, Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset
- Rastogi et al., 2020, Schema-Guided Dialogue State Tracking Task at DSTC8
- Shi et al., 2020, A BERT-based Unified Span Detection Framework for Schema-Guided Dialogue State Tracking
- Gulyaev et al., 2020, Goal-Oriented Multi-Task BERT-Based Dialogue State Tracker
- Ruan et al., 2020, Fine-Tuning BERT for Schema-Guided Zero-Shot Dialogue State Tracking
- Ma et al., 2020, An End-to-End Dialogue State Tracking System with Machine Reading Comprehension and Wide & Deep Classification