

Towards Ontology-Independent Dialogue State Tracking

Michael Heck

Dialog Systems and Machine Learning

Düsseldorf, Germany, 24th April 2020

INTRODUCTION

- Task-oriented dialogue systems (DS) virtual assistants gained increased popularity and acceptance over the years
 - Accomplish tasks such as bookings, searches, management, ...
- DS need to support a wide variety of domains
 - Recent work focused on scalable multi-domain DS
- Data-driven deep learning based approaches improved system quality considerably
 - Shift from discrete to continuous representations of concepts

Statistical dialogue systems 101 Domains Slots Values Italian food restaurant "I'm looking Chinese for a restaurant" inform(type=restaurant) centre restaurant area north User Semantic State tracker price cheap restaurant decoding input depart station taxi Semantic dict. hotel arrive Dialogue taxi management ••• ••• ••• System Answer generation response Ontology request(food) "What kind of food do you have in mind?"

www.hhu.de

Dialogue state tracking

- Dialogue state: Summary of the conversation till current turn
 - Set of constraints, for example slot-value pairs
- Dialogue state tracking: Update dialogue state at each turn
 - Required to determine next system action

Statistical dialogue systems 101 **Domains** Slots Values Italian restaurant food "I'm looking Chinese for a restaurant" inform(type=restaurant) centre restaurant area north User Semantic State tracker price cheap restaurant decoding input station taxi depart Semantic dict. arrive hotel taxi Dialogue ••• ••• ••• management System Answer generation response Ontology request(food) "What kind of food do you have in mind?"

Discrete representation of concepts limits capacities

Vector representations mitigate semantic decoding problem

Similarity measures replace exact matching

Mrksic et al., 2017, Neural Belief Tracker - Data-Driven Dialogue State Tracking

Ontology-independent DS

"What kind of food do you have in mind?"

- Conditioning with natural language replaces fixed ontology
 - Measure semantic similarity between input and concepts

DEEP LEARNING BASED DST

Deep learning based DST

- Achieves state-of-the-art performance in DST evaluations
 - Utilization of semantic representations is driving force
 - Leverages semantic similarity of concepts (slots, values, etc.)
 - Representation of previously unseen concepts is possible
 - Tighter integration of DS components
- Picklist based
 - DS as distribution over all possible slot-values
 - Individual scoring of all slot-value pairs

Henderson et al., 2014, Word-based dialog state tracking with recurrent neural networks Wen et al., 2017, A network-based end-to-end trainable task-oriented dialogue system Mrksic et al., 2017, Neural Belief Tracker - Data-Driven Dialogue State Tracking Ramadan et al., 2018, Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing

Deep learning based DST

Picklist-based DST

Domains Slots Values Italian restaurant food Thai centre restaurant area north price cheap restaurant depart station arrive hotel ••• •••

Input encoders produce vector representations

- Robustness due to semantic representations
- Knowledge sharing across domains
- X Limited scalability

Ramadan et al., 2018, Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing

Picklist based

- DS as distribution over all possible slot-values
- Individual scoring of all slot-value pairs

Span based

Find values through span matching in dialogue context

Gao et al., 2019, Dialog state tracking: A neural reading comprehension approach Chao and Lane, 2019, BERT-DST: Scalable end-to-end dialogue state tracking with bidirectional encoder representations from transformer Kim et al., 2019, Efficient dialogue state tracking by selectively overwriting memory

Deep learning based DST

Span-based DST

- Transformer produces contextual representations of input
 - Sentence representation used to determine presence of value
 - Token representations used to determine value span
- Limited to extractive values

Chao and Lane, 2019, BERT-DST: Scalable end-to-end dialogue state tracking with bidirectional encoder representations from transformer

Picklist based

- DS as distribution over all possible slot-values
- Individual scoring of all slot-value pairs
- Span based
 - Find values through span matching in dialogue context
- Hybrid
 - Combine picklists with span prediction

Zhang et al., 2019, Find or classify? dual strategy for slot-value predictions on multi-domain dialog state tracking

Deep learning based DST

Hybrid approaches

Similarity matching with candidates in picklist, or span pred.

Slot name (and domain name) as part of input

Zhang et al., 2019, Find or classify? dual strategy for slot-value predictions on multi-domain dialog state tracking

SCHEMA-GUIDED PARADIGM

Reality check

- Current evaluations don't fully capture reality of scenarios
 - Few domains, one service per domain, static ontologies

VS.

- Many domains, many services (defined by APIs)
 - Mismatch of training and testing conditions

www.hhu.de

Shortcomings of recent systems

- Recent systems parse dialogues in terms of fixed concepts
 - Lack understanding of the semantics of concepts
- Example: "I want to buy tickets for a movie."
 - Models predict "BuyMovieTickets" based on observed patterns
 - No association with real action of buying movie tickets
 - Similarity to action of buying concert tickets not captured
- Models not robust to changes
 - Need to be retrained as new slots or intents are added
 - Domain-specific parameters unsuitable for zero-shot application

Challenges of building large-scale systems

- Support of heterogenous services/APIs
 - Might overlap in functionality
- Robustness towards changes in API
 - Robustness towards new slots and intents
 - Generalization to new slot values (with little or no retraining)
- Generalization to new APIs
 - Joint modelling across APIs
 - Zero-shot generalization

Approaches to related problems

- Adaptation and transfer learning for Slot-filling for DST
 - Parameter sharing for domain adaptation and joint training

Zhang et al., 2019, Find or classify? dual strategy for slot-value predictions on multi-domain dialog state tracking

Approaches to related problems

- Zero-shot learning for Slot-filling for DST
 - Infusing semantic slot representations into unified model

Bapna et al., 2017, Towards Zero-Shot Frame Semantic Parsing for Domain Scaling Shah et al., 2019, Robust Zero-Shot Cross-Domain Slot Filling with Example Values

Approaches to related problems

- Zero-shot learning for Slot-filling for DST
 - Infusing semantic slot representations into unified model

Bapna et al., 2017, Towards Zero-Shot Frame Semantic Parsing for Domain Scaling Shah et al., 2019, Robust Zero-Shot Cross-Domain Slot Filling with Example Values

Schema-guided paradigm for dialogue modeling

- Each service provides a schema
 - Lists supported slots and intents
 - Provides natural language descriptions for schema elements

service_name: "Payment"Servicedescription: "Digital wallet to make and request payments"	
name: "account_type" categorical: True Slots description: "Source of money to make payment" possible_values: ["in-app balance", "debit card", "bank"]	name: "MakePayment"Intentsdescription: "Send money to your contact"required_slots: ["amount", "contact_name"]
name: "amount" categorical: False description: "Amount of money to transfer or request"	optional_slots: ["account_type" = "in-app balance"] name: "RequestPayment"
name: "contact_name" categorical: False description: "Name of contact for transaction"	description: "Request money from a contact" required_slots: ["amount", "contact_name"]

Figure: Example schema for a service called "payment".

Rastogi et al., 2020, Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset

Schema-guided paradigm for dialogue modeling

- Advocates building a single unified dialogue model for all services and APIs using semantic conditioning
 - A model should not contain service specific components

<u>A service's schema serves as input to the model</u>

- Uses descriptions to obtain semantic representations of schema elements
- Predictions are conditioned on semantics of schema
- Predictions over dynamic sets of intents and slots
- A model should generalize to unseen services, APIs, concepts

Schema-guided paradigm for dialogue modeling

- Zero-shot learning by using semantic modeling
- Knowledge sharing by ...
 - ... relating semantically similar concepts
 - ... using single unified model
- Handling of unseen services and API changes by using
 - natural language input
 - semantic representations
 - to condition the model

SCHEMA-GUIDED DST

TOTAL

22825

20

45

test

4201

18

21

70%

77%

Schema-guided DST track at DSTC8

SGD Dataset

Benchmark highlighting challenges for large-scale systems

	DSTC2	WOZ2.0	FRAMES	M2M	MultiWOZ	SGD
Domains	1	1	3	2	7	16
Slots	8	4	61	13	30	214
Values	212	99	3,871	138	4,510	14,139
Dialogues	1,612	600	1,369	1,500	8,438	16,142
Avg. turns per dialogue	14.49	7.45	14.60	9.86	13.46	20.44

Table: Statistics of training portions of datasets

Domain	Services	Domain	Services
Alarm	1	Movies	3
Banks	2	Music	3
Buses	3	Payment	1
Calendar	1	RentalCars	3
Events	3	Restaurants	2
Flights	4	RideSharing	2
Homes	1	Services	4
Hotels	4	Train	1
Media	3	Travel	1
Messaging	1	Weather	1

Table: Domains and services in SGD dataset

Slot types:

Non-catecorical: set of possible values is unrestricted

Dialogs w/ unseen APIs

Turns w/ unseen APIs

Eval sets contains unseen values

Dialogs

Domains

Services

• **Categorical**: possible values are pre-defined and fixed

Rastogi et al., 2020, Schema-Guided Dialogue State Tracking Task at DSTC8

Table: Split of SGD dataset

train

16

26

-

-

16,142 2,482

dev

16

17

42%

45%

Baseline: Zero-shot dialogue state tracking

- Model is shared among all services and domains
- Uses 2 contextual encoders:
 - Finetuned BERT encodes context
 - Fixed pre-trained BERT encoding schema element descriptions
 - Intents, slots, categorical slot values
- Schema element-wise classification
 - Concat. context representation and schema element represent
 - Do for each turn and for each schema element

Rastogi et al., 2020, Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset

Baseline: Zero-shot dialogue state tracking

Dialogue Context Encoding Component

Schema Encoding Component

Evaluation metrics

Joint goal accuracy

- Average accuracy of predicting all slot assignments correctly
- Average goal accuracy
 - Average accuracy of predicting a slot value correctly
- Active intent accuracy
 - Fraction of user turns for which intent was predicted correctly

Requested slot F1

Average F1 score for requested slots

Evaluation results

		All se	ervices			Seen s	ervices			Unseen	services	
	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1
Baseline	0,25	0,56	0,91	0,97	0,41	0,68	0,95	1	0,2	0,52	0,89	0,95

X Drawbacks

- No history (only single turn) in context
 - Many slot values appear multiple turns earlier
- Separate models for context and schema
 - Interaction only after encoding
 - No finetuning of schema encoder

Unified span detection framework for SG-DST

- **Single** BERT to encode context and schema elements
 - To facilitate more interaction and utilize attention mechanism
 - Multiple passes per turn and slot, one for each prediction task
 - Intent, categorical slot, non-categorical slot
- Adds (truncated) dialogue history to input
- Render all predictions a span prediction problem
 - To utilize same model architecture for multitask learning effect

Shi et al., 2020, A BERT-based Unified Span Detection Framework for Schema-Guided Dialogue State Tracking

Unified span detection framework for SG-DST

	Sequence 1	Sequence 2
Intent	turn _{t-k} [SEP1] turn _t	[INTENT] Service Name [SEP2] Intent Name Intent Description
Categorical Slot	$\begin{array}{c} turn_{t\text{-k}} \left[\text{SEP1} \right] \ turn_t \left[\text{CSEP} \right] \text{value}_1 \left[\text{CSEP} \right] \\ \text{value}_2 \ \left[\text{CSEP} \right] \text{value}_n \end{array}$	[C_SLOT] Slot Name [SEP2] Slot Name Slot Description
Non Categorical Slot	turn _{t-k} [SEP1] turn _t	[NC_SLOT] Slot Name [SEP2] Slot Name Slot Description

Evaluation results

		All se	ervices			Seen s	ervices			Unseen	services	
	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1
Baseline	0,25	0,56	0,91	0,97	0,41	0,68	0,95	1	0,2	0,52	0,89	0,95
Shi	0,54	0,8	0,91	0,87	0,53	0,75	0,96	0,85	0,55	0,82	0,9	0,88

Important details

- Uses BERT-large instead of BERT-base
- Post-submission tests showed advantage of even longer history

Observations

- Very good generalization to new services
 - Authors attribute this to joint encoding of context and schema
- Keq. slot F1 significantly lower, reason unclear (not discussed)

Goal-oriented multi-task BERT-based DST

- Single BERT to encode context and schema elements
 - Single pass per turn and slot, all predictions are done at once
 - Intent + Slot (request, categorical, non-categorical)
 - Special classification heads work in parallel
- Adds (truncated) dialogue history to input
- Strict input format
 - Special tokens and padding for partitioning

Gulyaev et al., 2020, Goal-Oriented Multi-Task BERT-Based Dialogue State Tracker

Goal-oriented multi-task BERT-based DST

	Input sequence
Question	Slot and service description
Context	Dialogue history
Possible intents	Descriptions of intents supported by the service
Possible values	Possible slot values (for categorical slots only)

Evaluation results

		All se	ervices			Seen s	ervices		Unseen services				
	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	
Baseline	0,25	0,56	0,91	0,97	0,41	0,68	0,95	1	0,2	0,52	0,89	0,95	
Gulyaev	0,46	0,75	0,75	0,97	0,53	0,74	0,87	0,97	0,44	0,75	0,71	0,97	
Shi	0,54	0,8	0,91	0,87	0,53	0,75	0,96	0,85	0,55	0,82	0,9	0,88	

- Uses BERT-large (finetuned on Squad) instead of BERT-base
- Observations
 - Categorical slots as span prediction task boosts performance
 - Similarly, intent classification as span prediction boosts performance
 - Similar performance to (Shi), but lacks behind for intent acc.
 - Relies on token representations and span prediction
 - Struggles with domain switches, slot value transfers

Fine-tuning BERT for schema-guided zero-shot DST

- 6 BERT fine-tuned models for prediction
 - Intent prediction
 - Slot prediction (Categorical, Free-form, Requested)
 - Slot transfer prediction (In-domain, Cross-domain)
 - Multiple passes: First Intent & Slot, then transfer prediction
- Adds (truncated) dialogue history to input
- Adds auxiliary context features to BERT input
 - Indicate if a value/intent was predicted in turn t-1
 - Indicate if a value was mentioned by the system

Fine-tuning BERT for schema-guided zero-shot DST

									• • •	4				• .						
					[CLS]	utt	erance	[SEP]	intent	_1	[SEP]		[SEP]	inten	t_n <mark>[SEP]</mark>					
								con	ntext fea	ture	embedc	ling								
					se	egment	embeddin	g 0			segn	nent en	nbedd	edding 1						
	position embedding																			
	Input for intent prediction model																			
	input for intent prediction model																			
[CLS] uttera	ance [SEP]	slot	[SEP]	null [S	EP] value	_1 <mark>[SEP</mark>]] [SEP]	value_	n <mark>[SEP</mark>	']	[CLS]	utterance+n	ull [S	SEP]	slot	[SEP]	
					conte	xt featu	re embedd	ling						context feature embedding						
	segr	nent en	nbedd	ing 0			S	egment e	embeddi	ing 1				segment embedding 0 segment embedding				nbedding 1		
					рс	osition e	mbedding							position embedding						
			Inp	out foi	r categ	orical	slot prec	diction	model				Input for free-form slot prediction model Input for requested slot prediction model							
	[CLS]	servic	e [Si	EP] u	tterance	[SEP]	slot	t [SEP]		[CLS]	utteran	ce [S	EP] 1	target slot	[SEP]	sc	ource slot	[SEP]	
			(context	t feature	embed	ding			- 1				contex	t feature eml	beddin	a			
		segr	nent e	mbedc	ding 0		segment	embeddi	ng 1			se	gmen	t embed			5	ment embeo	dding 1	
	position embedding									position embedding										
	Input for in-domain slot transfer model									Input for cross-domain slot transfer model										

Evaluation results

		All se	ervices			Seen s	ervices		Unseen services				
	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	
Baseline	0,25	0,56	0,91	0,97	0,41	0,68	0,95	1	0,2	0,52	0,89	0,95	
Gulyaev	0,46	0,75	0,75	0,97	0,53	0,74	0,87	0,97	0,44	0,75	0,71	0,97	
Shi	0,54	. 0,8	0,91	0,87	0,53	0,75	0,96	0,85	0,55	0,82	0,9	0,88	
Ruan	0,74	0,92	0,92	0,99	0,88	0,96	0,96	1	0,69	0,91	0,91	0,99	

Observations

- Slot transfers significantly improve performance
 - In-domain transfers constitute value references across multiple turns
 - Cross-domain transfers rely on reference resolution mechanism
- X Joint GA drops considerably for unseen services
- ✓ / X Adding dev set data to training has some positive effect

Reading comprehension and wide & deep DST

- Reading comprehension model for non-categorical slots
 - Unrestricted input size
 - Adds entire dialogue history to input
- Wide & deep model for categorical slots
 - Transformer model output + hand-crafted features
- Data augmentation to vary schema element descriptions
 - Automatic generation via back-translations
- Joint model for intent and requested slot prediction
 - Classify dialogue context + intent/slot description

Ma et al., 2020, An End-to-End Dialogue State Tracking System with Machine Reading Comprehension and Wide & Deep Classification

Reading comprehension and wide & deep DST

a. MRC model for span-based slot and numerical slot

b. Wide & Deep model for boolean and text-based slot

Evaluation results

		All se	ervices			Seen s	ervices		Unseen services				
	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	
Baseline	0,25	0,56	0,91	0,97	0,41	0,68	0,95	1	0,2	0,52	0,89	0,95	
Gulyaev	0,46	0,75	0,75	0,97	0,53	0,74	0,87	0,97	0,44	0,75	0,71	0,97	
Shi	0,54	0,8	0,91	0,87	0,53	0,75	0,96	0,85	0,55	0,82	0,9	0,88	
Ruan	0,74	0,92	0,92	0,99	0,88	0,96	0,96	1	0,69	0,91	0,91	0,99	
Ma	0,87	0,97	0,95	0,98	0,92	0,98	0,96	0,99	0,85	0,97	0,95	0,98	

Important details:

- Hand-crafted features are rule and heuristic based (+10% JGA)
- Data augmentation by back-translation from Chinese (+6% JGA)
- Numerical slots are rendered non-categorical
- Partial delexicalization (phone numbers)
- Dev set used as additional training data

Summary & Analysis

		All se	ervices			Seen s	ervices		Unseen services				
	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	
Baseline	0,25	0,56	0,91	0,97	0,41	0,68	0,95	1	0,2	0,52	0,89	0,95	
Gulyaev	0,46	0,75	0,75	0,97	0,53	0,74	0,87	0,97	0,44	0,75	0,71	0,97	
Shi	0,54	0,8	0,91	0,87	0,53	0,75	0,96	0,85	0,55	0,82	0,9	0,88	
Ruan	0,74	0,92	0,92	0,99	0,88	0,96	0,96	1	0,69	0,91	0,91	0,99	
Ma	0,87	0,97	0,95	0,98	0,92	0,98	0,96	0,99	0,85	0,97	0,95	0,98	

What worked?

- Approach: Reading comprehension + classification
 - Few submissions use a Baseline-style approach using similarity scoring
- Most systems exploit synergy effects from multitasking
- Maximizing context
 - Slot value reference resolution necessary across multiple turns
- Using hand-crafted features and additional data

Summary & Analysis

		All se	ervices			Seen s	ervices		Unseen services				
	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	Joint GA	Avg GA	Intent Acc	Req Slot F1	
Baseline	0,25	0,56	0,91	0,97	0,41	0,68	0,95	1	0,2	0,52	0,89	0,95	
Gulyaev	0,46	0,75	0,75	0,97	0,53	0,74	0,87	0,97	0,44	0,75	0,71	0,97	
Shi	0,54	0,8	0,91	0,87	0,53	0,75	0,96	0,85	0,55	0,82	0,9	0,88	
Ruan	0,74	0,92	0,92	0,99	0,88	0,96	0,96	1	0,69	0,91	0,91	0,99	
Ma	0,87	0,97	0,95	0,98	0,92	0,98	0,96	0,99	0,85	0,97	0,95	0,98	

- What worked maybe?
 - Specialized tags, input formatting, input processing
 - Benefits not investigated enough
 - Compartmentalizing: Specialized models for sub-tasks
 - Best systems employ multiple specialized encoders
 - Unified models are among most robust

DISCUSSION & CONCLUSION

Discussion

Mission accomplished?

- Multiple specialized models vs. unified models
 - What is the best use of semantic encoding?
 - Specialized representations for subtasks vs. generalized representations
 - Impact on architectures' generalization capacities? Trade-off observable
- Engineering, heuristics, augmentation
 - Potence of auxiliary features demonstrates insufficiencies in semantic encoding. How to overcome limitations of encoders?
- Role of similarity measures
 - No exploration of spaces of contextual representations
 - Post-encoding similarity scoring not sufficiently explored

- Semantic conditioning of complex models is promising
 - Huge performance gain within single challenge iteration:
 25% Joint GA -> 87% Joint GA!
 - Seemingly a convergence towards a "universal" approach
 - What next?
 - Zero-shot performance still not satisfactory
 - Reliance on tweaks to minimize gap
 - What if information about active service is not provided?
 - What if user does out-of-service requests?
 - DSTC9: Incorporating external non-dialogue knowledge sources

Thank you!

Select references

- Mrksic et al., 2017, Neural Belief Tracker Data-Driven Dialogue State Tracking
- Henderson et al., 2014, Word-based dialog state tracking with recurrent neural networks
- Wen et al., 2017, A network-based end-to-end trainable task-oriented dialogue system
- Ramadan et al., 2018, Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing
- Gao et al., 2019, Dialog state tracking: A neural reading comprehension approach
- Chao and Lane, 2019, BERT-DST: Scalable end-to-end dialogue state tracking with bidirectional encoder representations from transformer
- Kim et al., 2019, Efficient dialogue state tracking by selectively overwriting memory
- Zhang et al., 2019, Find or classify? dual strategy for slot-value predictions on multi-domain dialog state tracking
- Bapna et al., 2017, Towards Zero-Shot Frame Semantic Parsing for Domain Scaling
- Shah et al., 2019, Robust Zero-Shot Cross-Domain Slot Filling with Example Values
- Rastogi et al., 2017, Scalable Multi-Domain Dialogue State Tracking
- Rastogi et al., 2020, Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset
- Rastogi et al., 2020, Schema-Guided Dialogue State Tracking Task at DSTC8
- Shi et al., 2020, A BERT-based Unified Span Detection Framework for Schema-Guided Dialogue State Tracking
- Gulyaev et al., 2020, Goal-Oriented Multi-Task BERT-Based Dialogue State Tracker
- Ruan et al., 2020, Fine-Tuning BERT for Schema-Guided Zero-Shot Dialogue State Tracking
- Ma et al., 2020, An End-to-End Dialogue State Tracking System with Machine Reading Comprehension and Wide & Deep Classification