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ABSTRACT

This paper describes how Bayesian updates of dialogue state
can be used to build a bus information spoken dialogue sys-
tem. The resulting system was deployed as part of the 2010
Spoken Dialogue Challenge. The purpose of this paper is
to describe the system, and provide both simulated and hu-
man evaluations of its performance. In control tests by human
users, the success rate of the system was 24.5% higher than
the baseline Lets Go! system.

Index Terms— POMDP, dialogue management, Let’s Go

1. INTRODUCTION

The partially observable Markov decision process (POMDP)
provides a statistical model for building spoken dialogue
managers. Past researchers have used this model to build
complete systems for tourist information [1], router trou-
bleshooting [2] and voice dialling [3]. This paper describes a
POMDP-based system built for the 2010 Let’s Go spoken dia-
logue challenge, where the task is to provide bus information.
This system is called BUDSLETSGO.

The key attributes of the system are:

• A universal statistical language model is used for
speech recognition.

• The dialogue manager maintains a full probability dis-
tribution over all possible user goals at all times.

• At any stage, the user may provide any information. In
this sense, the dialogue is mixed-initiative.

The paper is structured as follows. The POMDP dia-
logue model and its application to the Let’s Go domain is
described in section 2. The core components of the system
are then described in the order that they are used in a turn
of the dialogue. Section 3 describes the spoken language
understanding component of the system, which converts the
speech waveform into a collection of hypothesised semantic
representations. These semantic representations are called di-
alogue acts. Next, the dialogue manager is described, which
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Fig. 1. Dependencies in the BUDS dialogue system.

decides what the system should say in its turn. This is passed
to the output generator, described in section 5, which converts
the system output, first to text and then to a speech waveform.
Section 6 describes an initial simulated evaluation of the sys-
tem and section 7 concludes the paper.

2. THE DIALOGUE MODEL

The POMDP model of dialogue assumes that a dialogue con-
sists of a sequence of turns, t. In each turn, the dialogue state,
st, is hidden and depends on the previous state, st−1, and the
system’s previous action, at−1. The system’s beliefs about the
dialogue state, bt, is a probability distribution over st. These
beliefs are updated based on observations the system receives
about the user, ot, where ot depends on st and at−1. In this
paper, the observation is represented as an N -best list of user
dialogue acts with associated confidence scores.

This paper makes use of a special case of the POMDP
model, called the Bayesian update of dialogue state (BUDS)
model [4]. In the BUDS model, the dialogue state is fac-
torized into a user goal, gt, the user’s true dialogue act, ut,
and a history of the dialogue ht. The user goal and dia-
logue history are further factorized into a series of concepts,
c, with concept-level goals (called sub-goals) labelled gt,c
and concept-level histories denoted ht,c. Conditional inde-
pendence assumptions are taken such that the gt,c depend on
at−1 and gt−1,c and optionally a parent goal, gt,pa(c). ut de-
pends on at−1 and the gt,c and ht,c depend on ht−1,c and
ut. The dependencies between the unfactorized variables are
shown in Figure 1.



2.1. The BUDSLETSGO system

The task for the BUDSLETSGO system is to provide informa-
tion on bus timetables in Pittsburgh, PA. In each dialogue, the
user will need to provide a place of departure, a destination
and a time. To model this, the BUDSLETSGO system makes
use of 16 concepts. A list of the concepts and their values is
given in table 1.

Four of the concepts are used to model where the user is
leaving from. The from concept models the type of place of
departure, which can be a monument, neighborhood or stop.
The other three concepts describe the exact location within
the given type, and take the value “N/A” if the type is not ap-
plicable. These concepts are fstop, for when the departure
point is a pair of road names, fmon, when the departure point
is a monument, and fneigh, when the departure point is a
neighborhood. Any pair of road names is allowed for fstop,
including pairs which do not exist. The user is also allowed to
specify that they would like to leave from “ANYWHERE” on
a given road. The four concepts used for modelling the place
of arrival are similar.

Six concepts are used for describing the user’s required
time of travel. The first of these is the time concept which
is either “NEXT”, for the next bus, or “time specific”, for
a specific requested time. The remaining five concepts only
apply when the time value is “time specific”. These are the
day, hour, minute (min) and period of day (pd) of travel
as well as the time reference (tref), which denotes whether
the user wants to arrive before or after or leave before or after
the given time.

The final two concepts used in the system are meth and
disc. The meth node describes whether the user is asking
for a bus with some constraints, is finished or wants to restart.
disc models how the user issues “discourse” actions, which
relate to only one turn in a dialogue. Example discourse ac-
tions are when the user asks for the following or previous bus.
Figure 2 gives a Bayesian network of the dependencies be-
tween all the concepts. Each variable is applicable only if its
parent’s values are appropriately set.

3. SPOKEN LANGUAGE UNDERSTANDING

The BUDSLETSGO speech recogniser uses the ATK/HTK
speech recognition toolkit [5]. As part of the 2010 spoken
dialogue challenge, a corpus of live dialogues with the Olym-
pus Let’s Go system was released for all dialogues in the
years 2003, 2005, 2008 and 2009 [6]. The BUDSLETSGO
system uses a tri-gram statistical language model trained on
this corpus along with pseudo-data generated from all pos-
sible concept values and simple Let’s Go sentence patterns.
The total number of words in the language modelling training
corpus was 6.44M words. The size of the dictionary is 1700
words.

The acoustic model is a narrow-band model trained on

Concept Size Example Values
from 3 ftstop, ftmonument, ftneigh

fstop 328 455
“FORBES&MURRAY”,
“ANYWHERE&FORBES”

fmon 52
“AIRPORT”,
“CENTURY SQUARE”

fneigh 220
“DOWNTOWN”,
“SQUIRREL HILL”

to 3 ttstop, ttmonument, ttneigh

tstop 328 455
“FORBES&MURRAY”,
“ANYWHERE&FORBES”

tmon 52
“AIRPORT”,
“CENTURY SQUARE”

tneigh 220
“DOWNTOWN”,
“SQUIRREL HILL”

time 2 “NEXT”, time specific
hour 12 “ONE”, “TWELVE”

min 60
“ZERO”, “TEN”,
“THIRTY FIVE”

pd 2 “AM”, “PM”

day 10
“TODAY”, “WEDNEDAY”,
“DAY AFTER TOMORROW”

tref 4
“ARRIVE BEFORE”,
“LEAVE AFTER”

meth 4
“RESTART”, “FINISHED”,
constraints,

disc 9
“REPEAT”, “FOLLOWING”,
“PREVIOUS”, none

Table 1. Table of concepts in the extended BUDSLETSGO
system. Values in lower case represent internal values, which
the user cannot directly inform. The size column presents the
number of applicable values for the concept. All concepts
also include a “N/A” value for when the concept is not appli-
cable.
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Fig. 2. Sub-goals in the BUDSLETSGO system.



127.5 hours of data, of which around 40 hours of data are
from the Wall Street Journal and tourist information domains
and the remaining 87.5 hours of data are from the Let’s Go
corpus. The front-end uses perceptual linear predictor (PLP)
features with energy and its first, second and third derivatives.
A heteroscedastic linear discriminant analysis (HLDA) trans-
form is used to project these features down to 39 dimensions.
When tested on a held-out data set within the Let’s Go do-
main (constructed from the 2005 data), the word error rate of
the top hypothesis was 27.96%. In live operation, the system
produces a 10-best of list of recognition hypotheses.

After converting the audio signal to words, the system
must analyse the semantics of each utterance. This is im-
plemented using a hand-crafted Phoenix parser, based on the
one built for the Olympus Let’s Go system [6]. Various mi-
nor modifications of the original system were made to con-
vert the output of this parser into the Cambridge dialogue act
format of [1]. For example, the original parser produced dif-
ferent semantic forms for the user saying “Going to Forbes”
and “Going to Forbes Avenue”. After transformation, both
of these were represented as “inform(tstop=FORBES)”. The
Cambridge dialogue format structures the semantic represen-
tation as an act type followed by a sequence of items, where
each item contains a concept and a value (both of which are
optional). The concepts and their possible values are given in
table 1, but are restricted to the values given in capital letters
in the table.

4. THE DIALOGUE MANAGER

The dialogue manager bases all its decisions on the belief dis-
tribution over the possible user goals described in section 2.
The mechanism used for updating is described in section 4.1,
section 4.2 describes the belief state summary used for policy
decision and a hand-crafted policy is described in section 4.3.

4.1. Belief updating

Belief updating is implemented using a grouped form of be-
lief propagation [4]. Within each goal node, one enumerates
only the values which have appeared in the output of the se-
mantic decoder. All remaining values are grouped together
and updated simultaneously. Full details of the general pur-
pose updating algorithm are given elsewhere [4, 7].

The one special case that occurs in the BUDSLETSGO
system is the updating of the fstop and tstop nodes.
These two nodes represent stops as pairs of street names,
where any pair of names is possible. The groups for the
values for this node will be more complex than a simple list
of values that have been observed in the user acts. Instead,
the values are partitioned into groups including the given
road name, and groups not including the road name. This
partitioning is essentially the same as the partitioning of the
hidden information state model [1], but is done at a node-

level instead of for the entire dialogue state. As an example,
when the user says that they would like to go to “Forbes
Avenue and Murray”, the partitions for the tstop goal will
be “FORBES&MURRAY”, “FORBES&OTHER”, “MUR-
RAY&OTHER”, and “OTHER”. The probability updates for
these goals are the same as with the general case of grouped
belief propagation discussed in previous work [4].

4.2. Summary state

All policy decisions are based on a summary of the full belief
state. This summary is split into three parts: concept-level in-
formation, discourse information and informing information.

The concept-level information is formed as a sequence
of summary vectors for each concept, c. For a particular
concept, the system forms a tuple of the probability of the
most likely value for that concept, pc1, and the probability of
the second most likely value for the concept, pc2. This tu-
ple is then mapped into a region number from 0 to 7, where
the regions are the index of the closest point to (p1, p2) in
the set {(0.9, 0), (0.7, 0.2), (0.7, 0.0), (0.5, 0.4),, (0.5, 0.2),
(0.5, 0.1), (0.35, 0.35), (0.1, 0.0)}. This is then joined with a
binary feature to denote whether the probability that the con-
cept is applicable given its parents is greater than 0.5.

The discourse information stores the probability of four
goal values which are particularly important for handling the
discourse. These are the probabilities that: meth=constraints,
meth=“FINISHED”, disc=“RESTART”, and
disc=“REPEAT”.

The informing information is represented as a six dimen-
sional vector. The first value is the number of concepts where
pc1 > 0.8. The second and third values are the probabili-
ties for the most likely value of the from and to goals. In
the case of the stops, the highest marginal probability for any
road name is computed. The fourth, fifth and sixth values
in the vector are binary flags denoting whether the departure
point, arrival point and route exist in the database.

4.3. The hand-crafted policy

The initial BUDSLETSGO system uses a hand-crafted policy
for deciding how to respond in the dialogue. All policy deci-
sions are based on the summary state described above. First,
the policy checks the discourse summary information and de-
cides if it should repeat, restart or say goodbye. If the proba-
bility of the relevant node is above a threshold (0.8 for restart
or goodbye, 0.5 for repeat) for each of these, then the relevant
action is taken. If the probability for the restart value is above
0.5 then the system will confirm whether the user wants to
restart.

If no discourse actions are taken then the system will
check if further information is needed. The system will con-
firm the most likely value of any concepts where the closest
point to the tuple (pc1, pc2) is one of (0.7, 0.2), (0.7, 0.0),



(0.5, 0.4),, (0.5, 0.2), (0.5, 0.1), (0.35, 0.35),. Otherwise the
system will request, in order, where the user wants to leave
from, where they want to go to, and what time they would
like to leave.

5. OUTPUT GENERATION

The BUDSLETSGO system uses template-based rules to con-
vert dialogue acts into word sequences. Each dialogue act
can have multiple associated templates, and the system will
choose randomly between them. These templates were based
on the templates used in the Olympus-based system. Text-to-
speech is implemented using the Baratinoo expressive speech
synthesiser. Baratinoo is the industrial speech synthesiser de-
veloped at France Telecom, using state-of-the-art unit selec-
tion technology [8].

6. EVALUATION

6.1. Simulated evaluation

In order to evaluate the system during development, an
agenda-based user simulator [9] was built for the Let’s Go
domain. The simulator models the user as having a goal
and an agenda of planned user dialogue acts to perform in
response to the system. The rules for adding and removing
from the stack are probabilistic but hand-crafted.

Along with the user simulator, an error simulator was also
built. The error simulator depends on an error rate parameter,
r, an N-best list size (in these experiments N = 3), and a
variability parameter, V (here V = 32). A confidence score
parameter vector, α, of size N + 1 is defined by

αr
> =

(
V r,

V (1− r − r2)

N − 1
, . . . ,

V (1− r − r2)

N − 1
, V r2

)
.

For each turn, a vector of confidence scores is drawn from the
Dirichlet distribution with parameters αr. These confidence
scores are used as probabilities to draw a position between
1 and N + 1. The true user act is placed at this position in
an N + 1-best list and all remaining positions are assigned
a confused user act, using hand-crafted rules to alter it. The
item at position N + 1 is dropped and the list is passed to the
dialogue manager.

Figure 3 shows the results of the simulated evaluation. As
expected, the performance decreases as errors increase. At
low error rates, the system achieves close to 100% success, as
one would hope. The reward is computed in turns of the num-
ber of turns until completion, T . For successful dialogues, the
reward is computed as 20−T and for unsuccessful dialogues
the reward is 0− T .

6.2. Human evaluation

A human evaluation of the system was performed as part of
the control tests for the Lets Go! spoken dialogue challenge.

Fig. 3. The effect of errors on simulated performance for the
BUDSLETSGO system.

A complete description of the challenge and the control tests
is given in [10]. During the control tests, each site taking part
in the challenge was asked to find test volunteers. These sub-
jects were then asked to log on to on a web-site, and complete
the tasks given to them there. In each task, the subject was
given a place of departure, a place of arrival, a time of depar-
ture / arrival, and sometimes a bus route. Each subject was
asked to complete two tasks with each of the four systems
entered into the challenge.

After the control tests, all dialogues were sent to the or-
ganisers of the challenge. The organisers then transcribed all
dialogues, attempted to match them against the web logs, and
tagged them according to whether the system provided an ac-
ceptable bus route to the user. When a dialogue could not be
matched to a web log it was ignored. If an acceptable bus
route was provided, the dialogue is said to be successful.

In order to compute comparable word error rates (WERs)
for the systems, all transcriptions were normalised. Three
normalisations were performed:

• All words joined together in the dictionary were sepa-
rated (e.g. A M was separated to A M),

• All numbers were converted to word form (e.g. 64 was
converted to “SIXTY FOUR”),

• Any utterances which were not in the transcriptions
were ignored.

Table 2 provides the results of the challenge. The table
shows that the success rate of the BUDSLETSGO system in
the control tests was around 24.5% higher than the BASELINE
system. Standard errors on the probability of success for the
BUDSLETSGO and BASELINE systems are 3.6% and 5.0%
respectively. This assumes a constant probability of success



System # Dia. # Suc. % Suc. WER
BASELINE 91 59 64.8± 5.0 42.38
SYSTEM2 61 23 37.7± 6.2 60.66
BUDSLETSGO 75 67 89.3± 3.6 32.65
SYSTEM4 83 62 74.7± 4.8 34.34

Table 2. Overall performance for the Lets Go! spoken dia-
logue challenge control tests. The columns show the system,
number of dialogues (# Dia.), number of successful dialogues
(# Suc), success rate (% Suc.) with one standard error, and
overall word error rate (WER).

and independent dialogues. Under this assumption the num-
ber of successful dialogues follows a binomial distribution,
and the difference in probability of success is statistically sig-
nificant. The WER of the BUDSLETSGO system is around
9.7% lower than the BASELINE system in absolute terms.

Although the overall results show a good improvement
in performance, it is difficult to establish how much of the
improvement is due to speech recognition accuracy and how
much is due to changes in the rest of the system. To differen-
tiate between the two, a logistic regression of the probability
of success against the word error rate for a particular dialogue
was computed1. The results of this analysis are given in fig-
ure 4. For clarity, only the BUDSLETSGO and BASELINE
systems are shown.

The figure gives an indication that the increase in perfor-
mance obtained by the BUDSLETSGO system is due both to
the improved word error rate and to increased dialogue man-
agement performance under high error rates. Most impor-
tantly, the rate of change in the success due to speech recogni-
tion errors is lower for the BUDSLETSGO system than for the
BASELINE system. This corroborates the claim that POMDP
systems are more effective at handling speech recognition er-
rors.

A similar result can be obtained by grouping the data into
WER bins. This alternative, however, is less sound theoreti-
cally as the performance for each bin will depend on the dis-
tribution of WERs within the bins. For this reason, only the
results of the logistic regression are presented here.

7. CONCLUSION

This paper has described a spoken dialogue system for
the Let’s Go 2010 spoken dialogue challenge, built using
Bayesian updates of dialogue state. The authors believe that
the semantic decoder and output generation are comparable
to the original Olympus system.

The first major difference between the BUDSLETSGO and
BASELINE systems is the dialogue manager, which is based
on the Bayesian updating framework instead of the agenda-
based framework [11]. The Bayesian approach has the ad-

1The logistic regression uses the canonical logit link function.
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sion model. Unfilled markers depict successful dialogues,
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ted lines show one standard error on each side of the predicted
probability of success.



vantage that information from throughout the dialogue can be
used to estimate the likelihood of any possible user goal.

The speech recogniser uses a universal language model,
which is the other significant departure from the state-based
approach used in the BASELINE system. The statistical lan-
guage model has the potential for better modelling all possible
user utterances as the model is trained from data. This is par-
ticularly true when the user strays from answering questions
asked by the system. However, the use of a universal statisti-
cal language model does also enable the system to recognise
words which may be unreasonable in a given context. If the
N-best list of hypotheses is not long enough to include the true
utterance, the POMDP user model will not be able to take it
in to account.

Initial evaluations of the system indicate that the BUD-
SLETSGO system does outperform the BASELINE, as well
as the other systems entered into the challenge [10]. Com-
pared to the BASELINE system, the BUDSLETSGO system
improves the dialogue success rate by 24.5% and the word
error rate by 9.7%. A logistic regression of success against
dialogue word error rate indicates that the improvement in
success is due to both the speech recognition and the dia-
logue management. Note that these results are from the con-
trol tests. Live testing for the spoken dialogue challenge is
currently under way.

In future work, the authors plan to investigate the effects
of using a policy learned from reinforcement learning. A
hand-crafted policy was used throughout the 2010 Lets Go!
challenge. It is hoped that a learned policy will be able to
further increase performance.
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