

Hotels Time Dialogue Belief Belief Cornan Cornan

Breaking open Belief Tracking

Carel van Niekerk

23 August 2019 Düsseldorf Germany

www.hhu.de

Dialogue System

Dialogue Systems without Belief Tracker

Dialogue System

Dialogue System with Belief tracking

Dialogue Belief Tracking

Belief State – Internal **Distribution** over states

- State Information the agents needs to make decisions
 - Capture user intentions
 - Capture history of dialogue

Aim: **Predict** Belief State

Datasets

- Two main comparative sets:
 - WOZ 2.0
 - MultiWOZ 2.1 (Most Challenging)
- Metrics
 - Slot accuracy Proportion of domain-slot-value triplets correctly identified.
 - Joint-goal accuracy Proportion of turn where all user goals correctly identified.

WOZ 2.0

- Single Domain Restaurants
- 1200 Dialogues

Model	Slot Accuracy	Joint-goal Accuracy
NBT	-	84.8%
MDBT	96.4%	85.5%
GLAD	97.1%	88.1%
StateNET	-	88.9%
GCE	97.4%	88.5%
GLAD + RC + FS	97.4%	89.2%

MultiWOZ 2.0

- Multiple Domain 7 domains
- 10000+ Dialogues
- Richer & Noisier Dialogues

Model	Slot Accuracy	Joint-goal Accuracy
MDBT	89.53%	15.57%
GCE	98.42%	36.57%
Neural Reading		41.10%
HYST		44.24%
SUMBT	96.44%	46.65%
TRADE	96.42%	48.62%

MultiWOZ 2.1

- Corrections:
 - Delayed annotation
 - Incorrect annotation
 - Missed annotations
 - Spelling errors in annotations

Model	2.0	2.1
Neural Reading	41.10%	36.40%
HYST	44.24%	38.10%
TRADE	48.62%	45.60%

Generative vs Discriminative

Generative

The future observations are generated by the current state.

Generative vs Discriminative

Discriminative

Discriminate between the possible **states** using **features** of the dialogue.

Generative vs Discriminative

Generative models:

Assumes turns are independent given the state.

- Discriminative models:
 - No assumptions about the independence.
 - **Outperforms** Generative models.

Models without a independent SLU

- Independent SLU Problems:
 - Accumulation of errors
 - Requires additional annotated training data.

Combining the SLU and Feature extractors into one.

Dialogue System

Single Unit SLU and DST

- Delexicalisation for single SLU and Belief Tracker model.
 - Requires large dictionaries of semantic lexicons.
- Word Embeddings and Feature Extractors
 - Convolutional Neural Networks
 - Recurrent cell NN
 - More scalable
 - Equivalent or better performance

Fully Statistical Trackers

- Statistical Dialogue Trackers:
 - Recurrent Cell
 - More adaptable
 - Superior performance

Statistical Discriminative Belief Tracking

Multi-Domain Belief Tracker

Overview:

Utterance Encoder

- Semantic similarity to identifies the presence of a state in a utterance.
- Slot-Value Features:
 - User confirm (System slot-value + User affirm)

System: So you want a *restaurant* near the *centre* of

town?

Restaurant-location-centre

User: Yes

User request (System slot + User value)

Multi-Domain Belief Tracker

System: Where would you like the <i>hotel to be?

User: Near the *Rhine* river.

User inform (User slot-value)

User: I need a *taxi* to the *airport* at 10.

Taxi-destination-airport

Hotel-location-?? Rhine

Multi-Domain Belief Tracker

Utterance Encoder

Multi-Domain Belief Tracker

Statistical Prediction Model

Statistical Prediction Model

- Two independent models. Share knowledge across domains.
- Shares parameters across all ontology terms -> Scalable
- Multi-class classification individual binary classification
 - Allows adaption to new domains

Multi-Domain Belief Tracker

Statistical Update Model

Statistical Update Model

Overview

Dataset	Slot Accuracy	Joint-goal Accuracy
WOZ 2.0	96.4%	85.5%
MultiWOZ 2.0	89.53%	15.57%

- Shortcomings Adapting
- Assumes Known Ontology Scalability Issues

Slot conditioned

- Global parameter sharing
- Self-Attention contextual embeddings

Overview:

Utterance Encoder

Bidirectional LSTM model -> Contextual token embeddings

Convolutional self-attention -> Contextual utterance embedding.

- Embeddings:
 - Current User Utterance
 - Previous j System acts
 - Value candidates

Utterance Encoder – Slot Conditioned token embeddings

Utterance Encoder – Bi-directional LSTM with Self-Attention

The Globally-Conditioned Encoder (GCE)

The Globally-Conditioned Encoder (GCE)

Statistical Prediction Model

- Utterance scoring model
 - User token embeddings + value embeddings
 - Degree to which the slot-value pair was mentioned by the user.

User: I want a **Italian** restaurant.

Statistical Prediction Model

- Action scoring model
 - System utterance embeddings + User utterance + value
 - Degree to which the slot-value was mentioned by the system.

System: Would you like the restaurant to be in the *east* of town?

Location not east

User: No.

Globally-Conditioned Encoder (GCE)

Statistical Prediction Model

Globally-Conditioned Encoder (GCE)

Overview

Dataset	Slot Accuracy	Joint-goal Accuracy
WOZ 2.0	97.38%	88.51%
MultiWOZ 2.0	98.42%	36.57%

Limitations:

- Past J system utterances used.
- Assumes Known Ontology Scalability Issues

Value generation models

Overview:

Utterance Encoder

- Bidirectional GRU model -> Contextual token embeddings
- Domain-slot conditioned GRU -> Contextual history embedding.

Encodes past *l* turns jointly.

Utterance Encoder

Utterance Encoder

Statistical Prediction Model – The TRADEMARK!

Overview

Model	Slot Accuracy	Joint-goal Accuracy
GCE	98.42%	36.57%
TRADE	96.42%	48.62%

- Positives:
 - Generates values with great success.
 - Shows promise with few-shot learning.
- Limitation:
 - Zero-shot performance not great.
 - Past L turns used. (Inefficient)
 - Requires domain-slots to be defined

Transformer based contextual mappings

Truly statistical latent space belief tracker

Overview:

Utterance Encoder

- Two fine-tuned BERT models:
 - Utterance embedding
 - Domain-slot-value embedding
- Use of contextual embeddings

Utterance Encoder

[CLS] [User Utterance] [SEP] [System Utterance] [SEP]

 $\boldsymbol{h}_0 \ \boldsymbol{h}_1 \ \boldsymbol{h}_2 \dots \ \boldsymbol{h}_m$

 H_t

Multi-head Attention

- Input:
 - **Query** What is the encoder **asking**?
 - Key The state of the encoder. Key unlocks the answer.
 - Value How much attention should we give?
- Passed through multiple attention heads.
- Returns context embedding.

Statistical Update Model

- Query = System utterance
- Key = User utterance
- Value = Domain-slot
- The attention heads provides the context of the dialogue.
- RNN tracks context over dialogue.
- Provides a estimated contextual value embedding.

Statistical Update Model

Statistical Prediction Model

Overview

Model	Slot Accuracy	Joint-goal Accuracy
TRADE	96.42%	48.62%
SUBMT	96.44%	46.65%

- Positives:
 - True latent space fully statistical belief tracker.
- Limitation:
 - Very large model. Expensive to train.
 - Requires ontology to be defined.

Overview

- Turn 1, U: Hello, I'm looking for a restaurant, either Mediterranean or Indian, it must be reasonably priced though.
- Turn 2, S: Sorry, we don't have any matching restaurants.

U: How about Indian?

Turn 3, S: We have plenty of Indian restaurants. Is there a particular place you'd like to stay in?

U: I have no preference for the location, I just need an address and phone number.

Success stories

- Word embeddings
 - Improved performance
 - Better Scalability
 - Successes of contextual embeddings
- Recurrent models
 - Fully statistical
 - Learns cross-turn dependencies
 - No rules needed

Success stories

- Semantic similarity
 - Leveraged from word embeddings
 - Does the user/system mention a concept?
- Projecting dialogue history onto latent representation.
- Knowledge sharing
 - Parameter sharing
 - Domains share slots, Slots share values
 - Improved performance
 - Adaptability
 - Scalability

Success stories

- Value generation methods
 - More scalable
 - Improved performance
 - Adaptability
 - Ontology only needs domains and slots
- Joint Belief Tracking and Policy Learning
 - Promises to improve performance

Shortcomings

- Predefined ontology
 - Not scalable
 - Not possible new values can constantly be added (Restaurant names)
- Zero-shot adaption
 - Very little success
- Rare slot-value combinations
 - Difficulty accurately predicting these
 - Negatively impacts joint goal accuracy
 - Limits adaptability

Shortcomings

- Utilising non-dialogue data
 - Utilising non dialogue data through word embeddings.
- Representation of states
 - How to represent states
 - Is domain-slot-value sufficient
 - Could graph structures states be embedded
 - Efficient use of data for rare states
- Joint goal on rich and noisy datasets

Resources

- HyST: A Hybrid Approach for Flexible and Accurate Dialogue State Tracking R Goel, S Paul and D Hakkani-Tür, 2019
- Neural Belief Tracker: Data-Driven Dialogue State Tracking N Mrkšić, D Séaghdha, T Wen, B Thomson and S Young 2016
- <u>The Dialog State Tracking Challenge: A Review</u> JD Williams, A Raux, D Ramachandran, and A Black 2013
- <u>SUMBT: Slot-Utterance Matching for Universal and Scalable Belief Tracking</u> H Lee, J Lee and T Kim 2019
- Dialog State Tracking: A Neural Reading Comprehension Approach S Gao, A Sethi, S Aggarwal, T Chung and D Hakkani-Tür 2019
- Improving Dialogue State Tracking by Discerning the Relevant Context
 S Sharma, PK Choubey and R Huang 2019
- Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing

O Ramadan, P Budzianowski and M Gašić 2018

Resources

- Toward Scalable Neural Dialogue State Tracking Model E Nouri and E Hosseini-Asl 2018
- Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems

A Madotto, E Hosseini-Asl and C Xiong 2018

- Towards Universal Dialogue State Tracking
 - L Ren, K Xie, L Chen and K Yu 2019
- BERT-DST : Scalable End-to-End Dialogue State Tracking with Bidirectional Encoder Representations from Transformer

G Chao and I Lane 2019

Global-Locally Self-Attentive for Dialogue State Tracking

V Zhong, C Xiong and R Socher 2019

Fully Statistical Neural Belief Tracking

N Mrkšić Nikola and I Vulić 2018

Word-Based Dialog State Tracking with Recurrent Neural Networks

M Henderson, B Thomson and S Young 2015