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D Great sources to get started hhu

® Embracing Change: Continual Learning in Deep Neural Networks'
Hadsell et. al. 2020

® Continual Lifelong Learning with Neural Networks: A Review
Parisi et. al. 2019

B Towards Continual Reinforcement Learning: A Review and Perspectives
Khetarpal et. al. 2020

® Continual Lifelong Learning in Natural Language Processing: A Survey
Biesialska et. Al. 2020

1 https://www.youtube.com/watch?v=ES1CA9Fi5uc



B Examples of Human Learning hhu
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® | learned how to jump for the first time
| will reuse that skill to jump over everything | can find!

® | move to a new city
| quickly adapt to my new environment!

B | earning a new programming language
| could learn the second programming language much faster than the first!

| still know how to program in the other language!




B Machine Learning hhu
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® Deep Learning is optimised for static, large-scale datasets
Supervised learning: learn on fixed dataset with fixed number of classes
Reinforcement learning: learn in stationary, self-contained environments

B Gradient-based optimisation assumes that dataset is balanced (i.i.d.)

® Humans dont learn well from randomly sampled data




D Defining Continual Learning hhu
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® The world is highly non-stationary!
Household robot for cleaning needs to learn how to wash dishes
Suddenly many news articles about Covid-19 (new vocabulary needed)
No one booking a hotel anymore, but many more ordering food in a restaurant

® Continual learning: learning environment is non-stationary, divided into a set of tasks
that need to be completed sequentially

Compared to multi-task learning, do not see all tasks at once
Compared to curriculum learning, learner has no control over task ordering
Compared to transfer learning, also previous tasks are important



B Desiderata of Continual Learning hhu
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Continual learning methods involve balancing competing objectives:

® Minimal access to previous tasks
The model does not have infinity storage for previous experience

® Minimal increase in model capacity and computation
Must be scalable: Should not add a new model for each task

B Fast adaptation and recovery
Fast adaptation to novel tasks or domain shifts and of fast recovery




B Desiderata of Continual Learning hhu
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® Minimizing catrastophic forgetting (CF) and interference
Training on new task should not significantly reduce performance of previously learned tasks

-——— ——————— - Sw—— -

Performance

Hadsell et. al. 2020



B Desiderata of Continual Learning hhu
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® Maintaining plasticity
Model should be able to keep learning effectively as new tasks are observed

Hadsell et. al. 2020



B Desiderata of Continual Learning hhu
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B Maximizing forward and backward transfer
Learning a task should improve related tasks, both past and future

] (E)

Performance

Hadsell et. al. 2020




B Desiderata of Continual Learning hhu
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B These points are competing against each other

® Maintaining perfect recall in a fixed-capacity model is impossible

B Fast adaptation competes with stabilisation (stability-plasticity dilemma in the brain)




B How about ..? hhu
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® Obvious idea: Use an independent model for every task

® Downsides:
Requires significant storage

®m -> Share parts of the network structure across tasks
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Hadsell et. al. 2020



D Tug-of-war dynamics hhu

Heinrich Heine
Universitat Dusseldorf .

B Sharing parts of the network creates a new challenge: Catastrophic forgetting
Straightforwardly learning the new task results in forgetting how to solve old tasks
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B Taxonomy of Continual RL Approaches hhu
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® Regularisation-based

® Architectural

® Memory-based

B |earning to learn/Meta-learning
B | earning to explore

m Skill learning



D Regularization based hhu
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®m Approach to deal with catastrophic forgetting

B Regularizes the updates on the current task through
Regularising the gradient
Regularising the loss
Using knowledge distillation




D [opez-Paz et. al. 2017 hhu
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Maintains a memory M, for every task t

Updates on new observed sample are constrained to not increase loss on previous tasks for M
Derive equations for gradient-based optimization

Allows for backward-transfer

Propose metrics to measure forward and backward transfer

minimizeg f(fg(a:,t),y)
subjectto  £(fg, My) < L(fi™', M) forall k < ¢t

1 Gradient Episodic Memory for Continual Learning



Kirkpatrick et. al. 20177 hhu
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®m Elastic Weight Consolidation
Inspired by synaptic consolidation in the brain that reduces plasticity of specific synapses

Regularizes the loss to
Remember old tasks by selectively slowing down learning on weights important for those tasks

Relies on Fisher information matrix to measure sensitivity of parameters to each task

) Low error for task B == EWC
= Low error for task A = L2

&, N Q == NOo penalty

1 Overcoming catastrophic forgetting in neural networks (Elastic weight consolidation)



D et al. 2017 hhu
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Output probabilities for each new image should be close to recorded output from original network
Use knowledge distillation
No memory needed

(a) Original Model (e) Learning without Forgetting

Input: Target:
J” (old task 1) model (a)’s
test - . response for

s lmage)ﬁ g K newrlask old tasks

(old task m) Image

new task

S 0 ground truth
- 1 Learning without Forgetting hhu.de




D Architectural methods hhu
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® Prevent forgetting by applying modular changes to the network architecture

m Typically previous task parameters are kept fixed

® Main drawback: Substantially growing number of parameters




B Rusu et. al. 2016 hhu
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Immune to forgetting by design (new network for each task)
Leverage prior knowledge through lateral connections
Substantial growth of network parameters

Actually only a fraction of the new capacity is utilized

hhu.de

1 Progressive neural networks




D Xu et. al. 2018

1 Reinforced continual learning

hhu
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Deciding optimal number of nodes to add is posed as a reinforcement learning problem
Reward encodes validation accuracy and network complexity
Only new parameters are trained
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) Complementary Learning Systems theory’ hhu
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® Brain learns and memorizes b) Complementary Learning Systems (CLS) theory
® Episodic memory stores specific events
from the past Hippocampus Neocortex
® Neocortex for long-term retention —
Episodic o
Slow learning rate Memory Generalization
Builds overlapping representations of learned knowledge ~_Storage,
. _ ~ retrieval,
u Hlppocampal system eXh'b“S Short'term _ Fast learning replay Slow learning
adaptation and rapid learning of novel information of arbitrary of structured
Encodes sparse representation of events et pWiesas
Rapid learning rate

Used for replaying memories (also reactived during sleep)

- 1 adapted from Parisi et. al. 2019 hhu.de



B Memory-based methods hhu
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B Rehearsal methods against catastrophic forgetting
Store and replay past experiences

® Episodic memory for inference
Encoding, storing and recalling knowledge or experience

® Memory grows with number of tasks
Use generative memory methods to generate rehearsal data as needed




D Rolnick et. al. 20191 hhu
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Off-policy learning and behaviour cloning for enhanced stability
On-policy learning to preserve plasticity (50-50 ratio of on- and off-policy data used)
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- 1 Experience Replay for Continual Learning hhu.de



D d'Autume et. al. 2019 hhu
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Episodic memory is a key-value memory block
Key representation of x obtained using pretrained BERT model
Values given by x, y

During trainig: Use sparse experience replay to seldomly update network
Together with training on freshly observed samples

During testing: Retrieve K nearest neighbors (x;, y;)% , through key matching and perform local
adaptation with it
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- 1 Episodic Memory in Lifelong Language Learning hhu.de




D d'Autume et. al. 2019 hhu
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® Evaluated on text classification and question answering
Evaluated on different datasets but having the same task
Question answering: SQUAD 1.1, TriviaQA and QUAC
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1 Episodic Memory in Lifelong Language Learning




D [ carning to learn/Meta-learning hhu
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B Solutions described so far prescribe hand-engineered mechanisms or architectures
Strikes different trade-offs between desiderata

® Can we find better trade-offs by learning a solution from data rather than designing it?

® Can we use meta-learning for rapid learning of new tasks?




D [ carning to learn/Meta-learning hhu
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® Meta-learning comprises of two timescales of optimization

Inner loop that optimizes specific tasks “Slow” Learning About Learning
Outer loop that optimizes performance over multiple inner loops & N
Most prominent example: MAML (Finn et. al. 2017)
. . Outer Loop
MAML.: Find parameters that can learn a new task quickly
ft ly f date st
after only few update steps
()
Inner Loop
N

“Fast” Learning

Khetarpal et. al. 2020



D Finn et. al. 2019 hhu
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®m Tackles the problem of fast adaptation, becoming faster the more tasks you observed

B Meta-learning usually learns on a set of training tasks
in order to rapidly adapt to a new seen task

Distinct phases of meta-training and meta-testing/deployment
Assume sufficiently large set of tasks for meta-training

Tasks come from a fixed distribution

In the real world, tasks are likely available only sequentially

- 1 Online Meta-Learning hhu.de



D Finn et. al. 2019 hhu
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® Online Meta-Learning (Finn et. al. 2019)
Extends MAML to the sequential learning setting
Meta-update uses data for all previously seen tasks
Inner-loop update only uses current task data
Computationally demanding
Only focuses on efficient forward transfer, not tackling catastrophic forgetting

g:(W) = Vy Egt L(D}Y, Uy (w)), where
Uy(w) =w — a V,, L(D;,w)

- 1 Online Meta-Learning hhu.de



D Finn et. al. 2019 hhu
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B |n particular evaluated on MNIST
Tasks created through different backgrounds, rotations, different scaling

Evaluated against
TOE: Train on everything, i.e. multi-task-learning on all data seen so far
FTL: Joint training with fine-tuning, first train on all t — 1 previous tasks and fine-tune for task t
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g —e— FTML (ows) & i = K
z 0 ok 2 2
: —&— From Scratch = ™ =
f FTL e 0% m : {
T 600 S -v B ¢
- = 25% = 25%
é 100 S 20 = o0 \v—v\v//\/k I~
] = 19% 2 15%
37 & % .
Z a0 \—'.—"\- _2 10% = w0% W
- < Z
2 —z 5% < 5%
S i . M - 5 0% - :
= 20 25 30 35 10 15 50 20 25 30 35 10 15 50 - 20 25 30 35 10 15 30
= task index task index task index
- 1 Online Meta-Learning hhu.de




D Javed et. al. 2019" hhu
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® [earn useful representations for online continual learning
Inner loop learns on correlated sequences of input, which could lead to catastrophic forgetting
Outer loop optimises input representations to reduce forgetting and improve generalization
Optimisation leads to sparse input representations even though it was not explicitly trained for it

Sparse representations reduce forgetting because each update changes only a small number of
weights
Meta-parameters Could be any differentiable Adaptation Parameters

(Only updated in the outer loop a (Updated in the inner looj
3 i yer e.g a conv layer + relu P p
during meta-training) Learned and at meta-testing)
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- 1 Meta-Learning Representations for Continual Learning hhu.de



B Evaluation of CL algorithms hhu
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® No established consensus on benchmark datasets/environments and metrics so far
Popular datasets for images: Permuted MNIST, splitted CIFAR
In RL: ATARI games
Not clear how knowledge can be transferred from one to the other
Lacking well-suited environments

Often designing tasks suitable for a specific question
Might result in inherent bias




B Evaluation of CL algorithms hhu
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m Leta;; be the performance of task ¢; after training on task ¢;
® Average accuracy: 1w
T = 72 ag,i

T _
fi = max ak’i — aj,i

® Forgetting measure: 1 < T
Fr =—— Z fi ke(1,..,j—1}

B Forward Transfer: T

FTT— zal 1,0

i=2

b; = test accuracy for task i at random initialization



B Evaluation of CL algorithms

Are skills reused?

Type of representation or behaviour learned

Is the agent learning underlying rules of the
environment?

What happens if agent faces situations not
in the training distribution?

hhu
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B) Metrics for Continual Reinforcement Learning
00D Cause-and-Effect
Reasoning

Generalization

Planning

Returns

Skill
Forward Composition
Transfer
Backward Interpretability

Transfer

Skill
Reusability

Random AgentA AgentB

Khetarpal et. al. 2020




B Summary hhu
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® Continual learning is faced with learning task sequentially
In contrast to being exposed to all tasks simulatenously, e.g. multi-task learning

®m Creates issues/questions such as
Catastropic forgetting
How can we leverage past knowledge to learn new tasks quicker
How to deal with memory capacity or parameter size
Need to focus on multiple objectives of continual learning

B Requires suited datasets and evaluation metrics




B Summary hhu
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B Regularization methods
Gradient episodic memory (GEM)
Regularizes the gradients
Overcoming catastrophic forgetting in neural networks (EWC)
Regularize the loss
Learning without forgetting (LwF)
Uses knowledge distillation

® Architectural methods
Progressive neural networks (PNN)
Reinforced continual learning



B Summary hhu
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® Memory-based approaches
Experience replay for continual learning
Episodic memory in lifelong language learning

B Meta learning
Online meta-learning
Meta-learning representations for continual learning
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Thanks!




