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Great sources to get started

1 https://www.youtube.com/watch?v=ES1CA9Fi5uc

¾ Embracing Change: Continual Learning in Deep Neural Networks1
¾ Hadsell et. al. 2020

¾ Continual Lifelong Learning with Neural Networks: A Review 
¾ Parisi et. al. 2019

¾ Towards Continual Reinforcement Learning: A Review and Perspectives
¾ Khetarpal et. al. 2020

¾ Continual Lifelong Learning in Natural Language Processing: A Survey
¾ Biesialska et. Al. 2020
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Examples of Human Learning

¾ I learned how to jump for the first time
¾ I will reuse that skill to jump over everything I can find!

¾ I move to a new city
¾ I quickly adapt to my new environment!

¾ Learning a new programming language
¾ I could learn the second programming language much faster than the first!
¾ I still know how to program in the other language!
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¾ Deep Learning is optimised for static, large-scale datasets
¾ Supervised learning: learn on fixed dataset with fixed number of classes
¾ Reinforcement learning: learn in stationary, self-contained environments

¾ Gradient-based optimisation assumes that dataset is balanced (i.i.d.)

¾ Humans dont learn well from randomly sampled data

Machine Learning
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Defining Continual Learning

¾ The world is highly non-stationary!
¾ Household robot for cleaning needs to learn how to wash dishes
¾ Suddenly many news articles about Covid-19 (new vocabulary needed)
¾ No one booking a hotel anymore, but many more ordering food in a restaurant

¾ Continual learning: learning environment is non-stationary, divided into a set of tasks
that need to be completed sequentially
¾ Compared to multi-task learning, do not see all tasks at once
¾ Compared to curriculum learning, learner has no control over task ordering
¾ Compared to transfer learning, also previous tasks are important
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Desiderata of Continual Learning

¾ Minimal access to previous tasks
¾ The model does not have infinity storage for previous experience

¾ Minimal increase in model capacity and computation
¾ Must be scalable: Should not add a new model for each task

¾ Fast adaptation and recovery
¾ Fast adaptation to novel tasks or domain shifts and of fast recovery

Continual learning methods involve balancing competing objectives:
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Desiderata of Continual Learning

¾ Minimizing catrastophic forgetting (CF) and interference
¾ Training on new task should not significantly reduce performance of previously learned tasks

Hadsell et. al. 2020
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Desiderata of Continual Learning

¾ Maintaining plasticity
¾ Model should be able to keep learning effectively as new tasks are observed

Hadsell et. al. 2020
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Desiderata of Continual Learning

¾ Maximizing forward and backward transfer
¾ Learning a task should improve related tasks, both past and future

Hadsell et. al. 2020
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Desiderata of Continual Learning

¾ These points are competing against each other

¾ Maintaining perfect recall in a fixed-capacity model is impossible

¾ Fast adaptation competes with stabilisation (stability-plasticity dilemma in the brain)
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¾ Obvious idea: Use an independent model for every task
¾ Downsides:

¾ Requires significant storage

¾ -> Share parts of the network structure across tasks

How about ..?

Hadsell et. al. 2020
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Tug-of-war dynamics

¾ Sharing parts of the network creates a new challenge: Catastrophic forgetting
¾ Straightforwardly learning the new task results in forgetting how to solve old tasks

Training on task 1 Training on task 2 Training on task 1 and 2
simultaneously

Hadsell et. al. 2020
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Taxonomy of Continual RL Approaches
¾ Regularisation-based

¾ Architectural

¾ Memory-based

¾ Learning to learn/Meta-learning

¾ Learning to explore

¾ Skill learning

¾ …
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Regularization based

¾ Approach to deal with catastrophic forgetting

¾ Regularizes the updates on the current task through
¾ Regularising the gradient
¾ Regularising the loss
¾ Using knowledge distillation
¾ …
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Lopez-Paz et. al. 20171

1 Gradient Episodic Memory for Continual Learning

¾ Maintains a memory ℳ! for every task 𝑡
¾ Updates on new observed sample are constrained to not increase loss on previous tasks for ℳ!

¾ Derive equations for gradient-based optimization
¾ Allows for backward-transfer
¾ Propose metrics to measure forward and backward transfer
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Kirkpatrick et. al. 20171

1 Overcoming catastrophic forgetting in neural networks (Elastic weight consolidation)

¾ Elastic Weight Consolidation
¾ Inspired by synaptic consolidation in the brain that reduces plasticity of specific synapses
¾ Regularizes the loss to

¾ Remember old tasks by selectively slowing down learning on weights important for those tasks

¾ Relies on Fisher information matrix to measure sensitivity of parameters to each task
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Li et. al. 20171

1 Learning without Forgetting

¾ Output probabilities for each new image should be close to recorded output from original network
¾ Use knowledge distillation
¾ No memory needed
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Architectural methods

¾ Prevent forgetting by applying modular changes to the network architecture

¾ Typically previous task parameters are kept fixed

¾ Main drawback: Substantially growing number of parameters
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Rusu et. al. 20161

1 Progressive neural networks

¾ Immune to forgetting by design (new network for each task)
¾ Leverage prior knowledge through lateral connections
¾ Substantial growth of network parameters
¾ Actually only a fraction of the new capacity is utilized
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Xu et. al. 20181

1 Reinforced continual learning

¾ Deciding optimal number of nodes to add is posed as a reinforcement learning problem
¾ Reward encodes validation accuracy and network complexity
¾ Only new parameters are trained
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Complementary Learning Systems theory1

1 adapted from Parisi et. al. 2019

¾ Brain learns and memorizes
¾ Episodic memory stores specific events

from the past
¾ Neocortex for long-term retention

¾ Slow learning rate
¾ Builds overlapping representations of learned knowledge

¾ Hippocampal system exhibits short-term
adaptation and rapid learning of novel information
¾ Encodes sparse representation of events
¾ Rapid learning rate
¾ Used for replaying memories (also reactived during sleep)
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Memory-based methods

¾ Rehearsal methods against catastrophic forgetting
¾ Store and replay past experiences

¾ Episodic memory for inference
¾ Encoding, storing and recalling knowledge or experience

¾ Memory grows with number of tasks
¾ Use generative memory methods to generate rehearsal data as needed
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Rolnick et. al. 20191

1 Experience Replay for Continual Learning 

¾ Off-policy learning and behaviour cloning for enhanced stability
¾ On-policy learning to preserve plasticity (50-50 ratio of on- and off-policy data used)
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d‘Autume et. al. 20191

1 Episodic Memory in Lifelong Language Learning 

¾ Episodic memory is a key-value memory block
¾ Key representation of 𝑥 obtained using pretrained BERT model
¾ Values given by x, y

¾ During trainig: Use sparse experience replay to seldomly update network
¾ Together with training on freshly observed samples

¾ During testing: Retrieve K nearest neighbors 𝑥" , 𝑦" "#$
% through key matching and perform local

adaptation with it
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d‘Autume et. al. 20191

1 Episodic Memory in Lifelong Language Learning 

¾ Evaluated on text classification and question answering
¾ Evaluated on different datasets but having the same task
¾ Question answering: SQuAD 1.1, TriviaQA and QuAC
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Learning to learn/Meta-learning

¾ Solutions described so far prescribe hand-engineered mechanisms or architectures
¾ Strikes different trade-offs between desiderata

¾ Can we find better trade-offs by learning a solution from data rather than designing it?

¾ Can we use meta-learning for rapid learning of new tasks?
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Learning to learn/Meta-learning

¾ Meta-learning comprises of two timescales of optimization
¾ Inner loop that optimizes specific tasks
¾ Outer loop that optimizes performance over multiple inner loops
¾ Most prominent example: MAML (Finn et. al. 2017)
¾ MAML: Find parameters that can learn a new task quickly

after only few update steps

Khetarpal et. al. 2020
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Finn et. al. 20191

1 Online Meta-Learning 

¾ Tackles the problem of fast adaptation, becoming faster the more tasks you observed

¾ Meta-learning usually learns on a set of training tasks
in order to rapidly adapt to a new seen task
¾ Distinct phases of meta-training and meta-testing/deployment
¾ Assume sufficiently large set of tasks for meta-training
¾ Tasks come from a fixed distribution
¾ In the real world, tasks are likely available only sequentially
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Finn et. al. 20191

1 Online Meta-Learning 

¾ Online Meta-Learning (Finn et. al. 2019)
¾ Extends MAML to the sequential learning setting
¾ Meta-update uses data for all previously seen tasks
¾ Inner-loop update only uses current task data
¾ Computationally demanding
¾ Only focuses on efficient forward transfer, not tackling catastrophic forgetting
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Finn et. al. 20191

1 Online Meta-Learning 

¾ In particular evaluated on MNIST
¾ Tasks created through different backgrounds, rotations, different scaling
¾ Evaluated against

¾ TOE: Train on everything, i.e. multi-task-learning on all data seen so far
¾ FTL: Joint training with fine-tuning, first train on all 𝑡 − 1 previous tasks and fine-tune for task 𝑡
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Javed et. al. 20191

1 Meta-Learning Representations for Continual Learning

¾ Learn useful representations for online continual learning
¾ Inner loop learns on correlated sequences of input, which could lead to catastrophic forgetting
¾ Outer loop optimises input representations to reduce forgetting and improve generalization
¾ Optimisation leads to sparse input representations even though it was not explicitly trained for it
¾ Sparse representations reduce forgetting because each update changes only a small number of

weights



hhu.de

Evaluation of CL algorithms

¾ No established consensus on benchmark datasets/environments and metrics so far
¾ Popular datasets for images: Permuted MNIST, splitted CIFAR
¾ In RL: ATARI games

¾ Not clear how knowledge can be transferred from one to the other

¾ Lacking well-suited environments
¾ Often designing tasks suitable for a specific question

¾ Might result in inherent bias
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Evaluation of CL algorithms

¾ Let 𝑎%,' be the performance of task 𝑡' after training on task 𝑡%
¾ Average accuracy:

¾ Forgetting measure:

¾ Forward Transfer:

¾ 𝑏" = test accuracy for task 𝑖 at random initialization
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Evaluation of CL algorithms

¾ Are skills reused?
¾ Type of representation or behaviour learned
¾ Is the agent learning underlying rules of the

environment?
¾ What happens if agent faces situations not

in the training distribution?

Khetarpal et. al. 2020
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Summary

¾ Continual learning is faced with learning task sequentially
¾ In contrast to being exposed to all tasks simulatenously, e.g. multi-task learning

¾ Creates issues/questions such as
¾ Catastropic forgetting
¾ How can we leverage past knowledge to learn new tasks quicker
¾ How to deal with memory capacity or parameter size
¾ Need to focus on multiple objectives of continual learning

¾ Requires suited datasets and evaluation metrics
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Summary

¾ Regularization methods
¾ Gradient episodic memory (GEM)

¾ Regularizes the gradients
¾ Overcoming catastrophic forgetting in neural networks (EWC)

¾ Regularize the loss
¾ Learning without forgetting (LwF)

¾ Uses knowledge distillation
¾ …

¾ Architectural methods
¾ Progressive neural networks (PNN)
¾ Reinforced continual learning
¾ …
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Summary

¾ Memory-based approaches
¾ Experience replay for continual learning
¾ Episodic memory in lifelong language learning
¾ …

¾ Meta learning
¾ Online meta-learning
¾ Meta-learning representations for continual learning
¾ …
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Thanks!


