hhu,

Continual Learning

Christian Geishauser
Dialog Systems and Machine Learning Group
Heinrich-Heine University Düsseldorf

Great sources to get started

- Embracing Change: Continual Learning in Deep Neural Networks¹
 - Hadsell et. al. 2020
- Continual Lifelong Learning with Neural Networks: A Review
 - Parisi et. al. 2019
- Towards Continual Reinforcement Learning: A Review and Perspectives
 - Khetarpal et. al. 2020
- Continual Lifelong Learning in Natural Language Processing: A Survey
 - Biesialska et. Al. 2020

Examples of Human Learning

- I learned how to jump for the first time
 - I will reuse that skill to jump over everything I can find!
- I move to a new city
 - I quickly adapt to my new environment!
- Learning a new programming language
 - I could learn the second programming language much faster than the first!
 - I still know how to program in the other language!

Machine Learning

- Deep Learning is optimised for static, large-scale datasets
 - Supervised learning: learn on fixed dataset with fixed number of classes
 - Reinforcement learning: learn in stationary, self-contained environments
- Gradient-based optimisation assumes that dataset is balanced (i.i.d.)
- Humans dont learn well from randomly sampled data

Defining Continual Learning

- The world is highly non-stationary!
 - Household robot for cleaning needs to learn how to wash dishes
 - Suddenly many news articles about Covid-19 (new vocabulary needed)
 - No one booking a hotel anymore, but many more ordering food in a restaurant

- Continual learning: learning environment is non-stationary, divided into a set of tasks that need to be completed sequentially
 - Compared to multi-task learning, do not see all tasks at once
 - Compared to curriculum learning, learner has no control over task ordering
 - Compared to transfer learning, also previous tasks are important

Continual learning methods involve balancing competing objectives:

- Minimal access to previous tasks
 - The model does not have infinity storage for previous experience
- Minimal increase in model capacity and computation
 - Must be scalable: Should not add a new model for each task
- Fast adaptation and recovery
 - Fast adaptation to novel tasks or domain shifts and of fast recovery

- Minimizing catrastophic forgetting (CF) and interference
 - Training on new task should not significantly reduce performance of previously learned tasks

Hadsell et. al. 2020

- Maintaining plasticity
 - Model should be able to keep learning effectively as new tasks are observed

Hadsell et. al. 2020

- Maximizing forward and backward transfer
 - Learning a task should improve related tasks, both past and future

Hadsell et. al. 2020

- These points are competing against each other
- Maintaining perfect recall in a fixed-capacity model is impossible
- Fast adaptation competes with stabilisation (stability-plasticity dilemma in the brain)

How about ..?

- Obvious idea: Use an independent model for every task
- Downsides:
 - Requires significant storage
- -> Share parts of the network structure across tasks

Hadsell et. al. 2020

Tug-of-war dynamics

Training on task 1

• Task 2 solution

- Sharing parts of the network creates a new challenge: Catastrophic forgetting
 - Straightforwardly learning the new task results in forgetting how to solve old tasks

Training on task 2

Taxonomy of Continual RL Approaches

- Regularisation-based
- Architectural
- Memory-based
- Learning to learn/Meta-learning
- Learning to explore
- Skill learning

. . .

Regularization based

- Approach to deal with catastrophic forgetting
- Regularizes the updates on the current task through
 - Regularising the gradient
 - Regularising the loss
 - Using knowledge distillation
 - ..

Lopez-Paz et. al. 2017¹

- Maintains a memory \mathcal{M}_t for every task t
- Updates on new observed sample are constrained to not increase loss on previous tasks for \mathcal{M}_t
- Derive equations for gradient-based optimization
- Allows for backward-transfer
- Propose metrics to measure forward and backward transfer

minimize_{\theta}
$$\ell(f_{\theta}(x,t),y)$$

subject to $\ell(f_{\theta},\mathcal{M}_k) \leq \ell(f_{\theta}^{t-1},\mathcal{M}_k)$ for all $k < t$

Kirkpatrick et. al. 2017¹

- Elastic Weight Consolidation
 - Inspired by synaptic consolidation in the brain that reduces plasticity of specific synapses
 - Regularizes the loss to
 - Remember old tasks by selectively slowing down learning on weights important for those tasks
 - Relies on Fisher information matrix to measure sensitivity of parameters to each task

Li et. al. 2017¹

- Output probabilities for each new image should be close to recorded output from original network
- Use knowledge distillation
- No memory needed

(a) Original Model

(e) Learning without Forgetting

1 Learning without Forgetting hhu.de

Architectural methods

- Prevent forgetting by applying modular changes to the network architecture
- Typically previous task parameters are kept fixed
- Main drawback: Substantially growing number of parameters

Rusu et. al. 2016¹

- Immune to forgetting by design (new network for each task)
- Leverage prior knowledge through lateral connections
- Substantial growth of network parameters
- Actually only a fraction of the new capacity is utilized

1 Progressive neural networks hhu.de

Xu et. al. 2018¹

- Deciding optimal number of nodes to add is posed as a reinforcement learning problem
- Reward encodes validation accuracy and network complexity
- Only new parameters are trained

1 Reinforced continual learning hhu.de

Complementary Learning Systems theory¹

- Brain learns and memorizes
- Episodic memory stores specific events from the past
- Neocortex for long-term retention
 - Slow learning rate
 - Builds overlapping representations of learned knowledge
- Hippocampal system exhibits short-term adaptation and rapid learning of novel information
 - Encodes sparse representation of events
 - Rapid learning rate
 - Used for replaying memories (also reactived during sleep)

Complementary Learning Systems (CLS) theory

Memory-based methods

- Rehearsal methods against catastrophic forgetting
 - Store and replay past experiences
- Episodic memory for inference
 - Encoding, storing and recalling knowledge or experience
- Memory grows with number of tasks
 - Use generative memory methods to generate rehearsal data as needed

Rolnick et. al. 2019¹

- Off-policy learning and behaviour cloning for enhanced stability
- On-policy learning to preserve plasticity (50-50 ratio of on- and off-policy data used)

$$L_{ ext{policy-cloning}} := \sum_a \mu(a|h_s) \log rac{\mu(a|h_s)}{\pi_{ heta}(a|h_s)}, \quad L_{ ext{value-cloning}} := ||V_{ heta}(h_s) - V_{ ext{replay}}(h_s)||_2^2$$

d'Autume et. al. 2019¹

- Episodic memory is a key-value memory block
 - Key representation of x obtained using pretrained BERT model
 - Values given by x, y
- During trainig: Use sparse experience replay to seldomly update network
 - Together with training on freshly observed samples
- During testing: Retrieve K nearest neighbors $(x_i, y_i)_{i=1}^K$ through key matching and perform local adaptation with it

d'Autume et. al. 2019¹

- Evaluated on text classification and question answering
 - Evaluated on different datasets but having the same task
 - Question answering: SQuAD 1.1, TriviaQA and QuAC

Learning to learn/Meta-learning

- Solutions described so far prescribe hand-engineered mechanisms or architectures
 - Strikes different trade-offs between desiderata
- Can we find better trade-offs by learning a solution from data rather than designing it?
- Can we use meta-learning for rapid learning of new tasks?

Learning to learn/Meta-learning

- Meta-learning comprises of two timescales of optimization
 - Inner loop that optimizes specific tasks
 - Outer loop that optimizes performance over multiple inner loops
 - Most prominent example: MAML (Finn et. al. 2017)
 - MAML: Find parameters that can learn a new task quickly after only few update steps

Khetarpal et. al. 2020

Finn et. al. 2019¹

- Tackles the problem of fast adaptation, becoming faster the more tasks you observed
- Meta-learning usually learns on a set of training tasks in order to rapidly adapt to a new seen task
 - Distinct phases of meta-training and meta-testing/deployment
 - Assume sufficiently large set of tasks for meta-training
 - Tasks come from a fixed distribution.
 - In the real world, tasks are likely available only sequentially

1 Online Meta-Learning hhu.de

Finn et. al. 2019¹

- Online Meta-Learning (Finn et. al. 2019)
 - Extends MAML to the sequential learning setting
 - Meta-update uses data for all previously seen tasks
 - Inner-loop update only uses current task data
 - Computationally demanding
 - Only focuses on efficient forward transfer, not tackling catastrophic forgetting

$$\mathbf{g}_t(\mathbf{w}) =
abla_{\mathbf{w}} \mathbb{E}_{k \sim
u^t} \mathcal{L} ig(\mathcal{D}_k^{ ext{val}}, oldsymbol{U}_k(\mathbf{w}) ig), \; \; ext{where} \ oldsymbol{U}_k(\mathbf{w}) \equiv \mathbf{w} - lpha \;
abla_{\mathbf{w}} \, \mathcal{L} ig(\mathcal{D}_k^{ ext{tr}}, \mathbf{w} ig)$$

1 Online Meta-Learning hhu.de

Finn et. al. 2019¹

- In particular evaluated on MNIST
 - Tasks created through different backgrounds, rotations, different scaling
 - Evaluated against
 - TOE: Train on everything, i.e. multi-task-learning on all data seen so far
 - FTL: Joint training with fine-tuning, first train on all t-1 previous tasks and fine-tune for task t

1 Online Meta-Learning hhu.de

Javed et. al. 2019¹

- Learn useful representations for online continual learning
 - Inner loop learns on correlated sequences of input, which could lead to catastrophic forgetting
 - Outer loop optimises input representations to reduce forgetting and improve generalization
 - Optimisation leads to sparse input representations even though it was not explicitly trained for it
 - Sparse representations reduce forgetting because each update changes only a small number of weights

Evaluation of CL algorithms

- No established consensus on benchmark datasets/environments and metrics so far
 - Popular datasets for images: Permuted MNIST, splitted CIFAR
 - In RL: ATARI games
 - Not clear how knowledge can be transferred from one to the other
 - Lacking well-suited environments
 - Often designing tasks suitable for a specific question
 - Might result in inherent bias

Evaluation of CL algorithms

- Let $a_{j,i}$ be the performance of task t_i after training on task t_j
- Average accuracy: $A_{\mathcal{T}} = \frac{1}{\mathcal{T}} \sum_{i=1}^{\mathcal{T}} a_{\mathcal{T},i}$
- Forgetting measure: $F_T = \frac{1}{T-1} \sum_{i=1}^{T-1} f_i^T$, $f_i^T = \max_{k \in \{1, ..., j-1\}} a_{k,i} a_{j,i}$
- Forward Transfer: $FT_{\mathcal{T}} = \frac{1}{\mathcal{T} 1} \sum_{i=0}^{\mathcal{T}} a_{i-1,i} b_i$
 - $lacktriangleq b_i$ = test accuracy for task i at random initialization

Evaluation of CL algorithms

- Are skills reused?
- Type of representation or behaviour learned
- Is the agent learning underlying rules of the environment?
- What happens if agent faces situations not in the training distribution?

Khetarpal et. al. 2020

Summary

- Continual learning is faced with learning task sequentially
 - In contrast to being exposed to all tasks simulatenously, e.g. multi-task learning
- Creates issues/questions such as
 - Catastropic forgetting
 - How can we leverage past knowledge to learn new tasks quicker
 - How to deal with memory capacity or parameter size
 - Need to focus on multiple objectives of continual learning
- Requires suited datasets and evaluation metrics

Summary

- Regularization methods
 - Gradient episodic memory (GEM)
 - Regularizes the gradients
 - Overcoming catastrophic forgetting in neural networks (EWC)
 - Regularize the loss
 - Learning without forgetting (LwF)
 - Uses knowledge distillation
 - ...
- Architectural methods
 - Progressive neural networks (PNN)
 - Reinforced continual learning
 - ..

Summary

- Memory-based approaches
 - Experience replay for continual learning
 - Episodic memory in lifelong language learning
 - **...**
- Meta learning
 - Online meta-learning
 - Meta-learning representations for continual learning
 - ...

Thanks!