

Hsien-Chin Lin

29.05.2020

Outline

- Generative Adversarial Networks (GAN)
 - Introduction
 - Algorithm
 - Example
 - Problems
 - Comparison with variational autoencoder
- Conditional GAN (cGAN)
 - Image to Image or Text to Image Task
 - Text to Text (SeqGAN)
- Adversarial Learning in Dialogue
- Conclusion

One of the most popular research topics

- Generate realistic outputs
- Generator models the data distribution
 - given $x \sim p_{data}(x)$, find $p_{model}(x; \theta) \approx p_{data}(x)$
- Maps random noise z to semantic space
- The output should be as realistic as possible
 - No blur edges, high resolution
 - Vivid color
 - Turing test

2014

2015

2016

2017

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)} \left[\log \left(D(x) \right) \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[\log \left(1 - D \left(G(z) \right) \right) \right]$$

Training algorithm

G: generator, D: discriminator

- Update D
 - for i=1, D-steps do
 - sample m noise samples G(z) and m real samples x from dataset
 - update D, $\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D(x^i) + \log \left(1 D\left(G(z^i) \right) \right) \right]$
- Update G
 - for i=1, G-steps do
 - sample m noise samples G(z)
 - lacksquare freeze D, update G , $\nabla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log \left(1 D\left(G(z^i)
 ight)
 ight)$

Training algorithm

Example

linearly interpolating (Goodfellow et al. 2014)

111155555557799911111

Vector arithmetic for visual concepts (Radford, et al. 2015.)

Problems of GAN

It is hard to train

- Hard to balance the update of G and D
- Mode collapse
 - G only repeats the same image or copy the image in the real dataset
- D is too strong
 - the generator cannot get enough information to improve
- D is too weak
 - the generator will produce unrealistic images
- Put too much semantic information in one dimension.

Comparison with VAE

Variational Autoencoder

Which information is missing in VAE's training?

Comparison with VAE

- GANs are more sensitive
- GANs perform better than VAE if we fully optimize the model
- VAE is more stable
- Fréchet Inception Distance (FID)
 - Measure the quality of generated samples, the lower is better

12

GAN in summary

- Maps a random noise space to the semantic space
- Generates vivid outputs
- Sensitive to parameter choosing
- Hard to train, not stable

We want to generate samples based on some given information

Image to image

Text to Image

this small bird has a pink breast and crown, and black primaries and secondaries.

this magnificent fellow is almost all black with a red crest, and white cheek patch.

the flower has petals that are bright pinkish purple with white stigma

this white and yellow flower have thin white petals and a round yellow stamen

Why can't we use supervise learning?

17

Text to Image

Reed et al, 2016

Model structure

- Example
 - Interpolating
 - Fixed random noise

Fixed sentence embedding

How about text to text or image to text

- Tend to generate an "average" response
 - "I don't know".
 - "I'm sorry."

$$P(Y) = \prod_{i=1}^{n} P(y_i | y_{1:i-1}, X)$$

How do we fit this to the cGAN structure?

How about text to text

Directly fit into the cGAN framework?

- Cannot update G because the sampling process is not differentiable
 - gray -> gray + 0.1
 - cat -> cat + 0.1 ?

How about text to text

Pass distribution instead of sampling token

The real data is discrete (one hot representation)

Use reinforcement learning!

Using reinforcement learning to update

- Update G
 - D is the "environment"
 - Use policy gradient to update G

- Update D
 - use supervise learning

SeqGAN with policy gradient

- Without intermediate reward
- the generator (policy): $G_{\theta}(y_t|Y_{1:t-1})$
- maximize expected end reward $J_{\theta} = \mathbb{E}[R_T|s_0, \theta] = \sum_{y_1 \in \mathcal{Y}} G_{\theta}(y_1|s_0) \cdot Q_{D_{\theta}}^{G_{\theta}}(s_0, y_1)$
 - \blacksquare R_T comes from discriminator D_{φ}
 - $lackbox{ }Q_{D_{arphi}}^{G_{ heta}}(s,a)$ is the action-value function, the expected accumulative reward
- $Q_{D_{\varphi}}^{G_{\theta}}(s = Y_{1:T-1}, a = y_T) = D_{\varphi}(Y_{1:T})$
 - reward only at the end of the sentence

Use RL to train the sequential generator

- C: "What's your name?" G: "I am fine."
- D(C,G) is negative, update θ_g to decrease $\log P_{\theta_g}(G|C)$

- However, "I am John." is a positive example.
- How to get the intermediate reward? Use Monte Carlo search

N-time Monte Carlo search

$$Q_{D_{\varphi}}^{G_{\theta}}(s = Y_{1:T-1}, a = y_T) = D_{\varphi}(Y_{1:T})$$

$$Y_{1:T}^1, \dots, Y_{1:T}^N \} = MC^{G\beta}(Y_{1:t}; N)$$

$$Q_{D_{\varphi}}^{G_{\theta}}(s=Y_{1:T-1},a=y_T) = \begin{cases} \frac{1}{N} \sum_{n=1}^{N} D_{\varphi}(Y_{1:T}^n), Y_{1:T}^n \in MC^{G_{\beta}}(Y_{1:t};N) \text{ for } t < T \\ D_{\varphi}(Y_{1:t}), & \text{for } t = T \end{cases}$$

conditional GAN in summary

- Input "condition" to G and D
- For sequential generator
 - use reinforcement learning to update G
 - utilise Monte Carlo search
 - more computational power
 - more unstable

Adversarial Learning in Dialogue

Train the dialogue agent (generator) (Li, et al, 2017)

- Open-domain dialogue
- with the dialogue history and the user utterance
- to generate the system response similar to human response

Input	tell me how long have you had this falling sickness?
Vanilla-MLE	i'm not a doctor.
Vanilla-Sample	well everything you did was totally untrue.
REINFORCE	i don 't know how long it 's been .
REGS Monte Carlo	A few months, I guess.

Adversarial Learning in Dialogue

Estimate the reward function (discriminator) (Liu, et al, 2018)

- Task-Oriented
- the reward function can be learned as a discriminator
- Oracel
 - +1 success, +0 fail
- Human design:
 - +1 for each correct informable slot
 - if all informable slots are correct, +1 for each success requestable slot

Conclusion

Pros

- Powerful to generate photo-like images
- Model the data distribution
- Learn the representation of semantic space by mapping the noise
- cGANs have various generation condition

Cons

- Training and tuning GANs is not trivial
- Not stable
- Require a huge amount of computational power

Potentials

GANs on the natural language (sequential generating) still need to improve

Thank you

References

Generative Adversarial Networks

- Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.
- Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
- Lucic, Mario, et al. "Are gans created equal? a large-scale study." Advances in neural information processing systems. 2018.

References

Conditional GAN

- Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
- Reed, Scott, et al. "Generative adversarial text to image synthesis." arXiv preprint arXiv:1605.05396 (2016).
- Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
- Yu, Lantao, et al. "Seqgan: Sequence generative adversarial nets with policy gradient." Thirty-First AAAI Conference on Artificial Intelligence. 2017.

References

Adversarial Learning in Dialogue

- Li, Jiwei, et al. "Adversarial learning for neural dialogue generation." *arXiv* preprint arXiv:1701.06547 (2017).
- Liu, Bing, and Ian Lane. "Adversarial Learning of Task-Oriented Neural Dialog Models." Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue. 2018.