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Generative Adversarial Networks

3 https://github.com/hindupuravinash/the-gan-zoo/blob/master/cumulative_gans.jpg

One of the most popular research topics

https://github.com/hindupuravinash/the-gan-zoo/blob/master/cumulative_gans.jpg
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Generative Adversarial Networks
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Generative Adversarial Networks

https://www.eff.org/files/2018/02/20/malicious_ai_report_final.pdf5

Generate realistic outputs

Generator models the data distribution

 given 𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 , find 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥; 𝜃 ≈ 𝑝𝑑𝑎𝑡𝑎 𝑥

Maps random noise z to semantic space

The output should be as realistic as possible

 No blur edges, high resolution

 Vivid color

 Turing test

https://www.eff.org/files/2018/02/20/malicious_ai_report_final.pdf
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Generative Adversarial Networks

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.6

 min
𝐺

max
𝐷

𝑉 𝐷, 𝐺 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 +𝔼z~pz z log 1 − 𝐷 𝐺 𝑧

D and G play the two-player minimax game

Generator𝓏
Generated Image

𝐺 𝑧

Real Image

𝑥

Discriminator

Generates samples to fool

the discriminator, minimizes

log 1 − 𝐷 𝐺 𝑧

Distinguishes: the image is from

the generator or from the

dataset, maximizes

log 𝐷 𝑥 and log 1 − 𝐷 𝐺 𝑧
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Training algorithm
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 Update D

 for i=1, D-steps do

 sample m noise samples G 𝑧 and m real samples 𝑥 from dataset

 update D, ∇𝜃𝑑
1

𝑚
σ𝑖=1
𝑚 log𝐷 𝑥𝑖 + log 1 − 𝐷 𝐺 𝑧𝑖

 Update G

 for i=1, G-steps do

 sample m noise samples G 𝑧

 freeze D, update G , ∇𝜃𝑔
1

𝑚
σ𝑖=1
𝑚 log 1 − 𝐷 𝐺 𝑧𝑖

G: generator, D: discriminator
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Training algorithm

Goodfellow, Ian, et al. "Generative adversarial nets."8

generative distribution

data distributiondisciminative

distribution
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Generative Adversarial Networks
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 linearly interpolating (Goodfellow et al. 2014)

 Vector arithmetic for visual concepts (Radford, et al. 2015.)

Example
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Problems of GAN
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 Hard to balance the update of G and D

 Mode collapse

 G only repeats the same image or copy the image in the real dataset

 D is too strong

 the generator cannot get enough information to improve

 D is too weak

 the generator will produce unrealistic images

 Put too much semantic information in one dimension

It is hard to train
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Comparison with VAE

https://www.cs.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-

Naturwissenschaftliche_Fakultaet/Informatik/Dialog_Systems_and_Machine_Learning/052020_vae.pdf
11

 Which information is missing in VAE’s training?

Variational Autoencoder

real example

1-pixel error 3-pixel error

hidden layer

output layer

https://www.cs.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Informatik/Dialog_Systems_and_Machine_Learning/052020_vae.pdf
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Comparison with VAE

Lucic, Mario, et al. "Are gans created equal? a large-scale study." Advances in neural information processing systems. 2018.12

GANs are more sensitive

GANs perform better than VAE if we fully optimize the model

VAE is more stable

Fréchet Inception Distance (FID)

 Measure the quality of generated samples, the lower is better
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GAN in summary
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Maps a random noise space to the semantic space

Generates vivid outputs

Sensitive to parameter choosing

Hard to train, not stable
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Conditional GAN

https://phillipi.github.io/pix2pix/14

 Image to image

We want to generate samples based on some given information

https://phillipi.github.io/pix2pix/
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Conditional GAN

15 Reed, Scott, et al. "Generative adversarial text to image synthesis." arXiv preprint arXiv:1605.05396 (2016).

Text to Image
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Conditional GAN
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Why can’t we use supervise learning?
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Conditional GAN
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Generator𝓏
Generated Image

𝐺 𝑧

Real Image

𝑥

Discriminator
𝑐

𝑐

The image is

real or not

The image is related

to the condition or not
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Text to Image

18

 Model structure

 Example

 Interpolating

 Fixed random noise

 Fixed sentence embedding

Reed et al, 2016
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How about text to text or image to text
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Seq2seq

Tend to generate an “average” response

 “I don’t know”.

 “I’m sorry.”

How do we fit this to the cGAN structure?

𝑥1< 𝑠 > 𝑥2 < \s > < 𝑠 >

𝑦1

𝑦1

𝑦2

𝑦2

𝑦3

𝑦3

< \s >

𝑃 𝑌 =ෑ

𝑖=1

𝑛

𝑃 𝑦𝑖|𝑦1:𝑖−1, 𝑋
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How about text to text
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 Cannot update G because the sampling process is not differentiable

 gray -> gray + 0.1

 cat -> cat + 0.1 ?

Directly fit into the cGAN framework?

𝑥1< 𝑠 > 𝑥2 < \s > < 𝑠 >

𝑦1

𝑦1

𝑦2

𝑦2

𝑦3

𝑦3

< \s >

𝓏

sampling
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How about text to text
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 The real data is discrete (one hot representation)

 The distribution cannot fool D

 Use reinforcement learning!

Pass distribution instead of sampling token

𝑤1< 𝑠 > 𝑤2 < \s > < 𝑠 > 𝑤1 𝑤2 𝑤3

𝓏
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SeqGAN

22

 Update G

 D is the “environment”

 Use policy gradient to update G

 Update D

 use supervise learning

Using reinforcement learning to update

Environment

(Discriminator)
Generator

output

reward
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SeqGAN

23

 Without intermediate reward

 the generator (policy): 𝐺𝜃 𝑦𝑡|𝑌1:𝑡−1

 maximize expected end reward 𝐽𝜃 = 𝔼 𝑅𝑇|𝑠0, 𝜃 = σ𝑦1∈𝒴
𝐺𝜃 𝑦1|𝑠0 ∙ 𝑄𝐷𝜑

𝐺𝜃 𝑠0, 𝑦1

 𝑅𝑇 comes from discriminator 𝐷𝜑

 𝑄𝐷𝜑
𝐺𝜃 𝑠, 𝑎 is the action-value function, the expected accumulative reward

 𝑄𝐷𝜑
𝐺𝜃 𝑠 = 𝑌1:𝑇−1, 𝑎 = 𝑦𝑇 = 𝐷𝜑 𝑌1:𝑇

 reward only at the end of the sentence

SeqGAN with policy gradient
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SeqGAN

Yu, Lantao, et al. "Seqgan: Sequence generative adversarial nets with policy gradient." Thirty-First AAAI Conference on 

Artificial Intelligence. 2017.
24

 C: “What’s your name?” G: “I am fine.”

 𝐷 𝐶, 𝐺 is negative, update 𝜃𝑔 to decrease logPθg G C

 logPθg G C = logPθg x1 C + logPθg x2 C, x1 + logPθg x3 C, x1:2

 However, ”I am John.” is a positive example.

 How to get the intermediate reward? Use Monte Carlo search

Use RL to train the sequential generator
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SeqGAN
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 𝑄𝐷𝜑
𝐺𝜃 𝑠 = 𝑌1:𝑇−1, 𝑎 = 𝑦𝑇 = 𝐷𝜑 𝑌1:𝑇

 𝑌1:𝑇
1 , … , 𝑌1:𝑇

𝑁 = 𝑀𝐶𝐺𝛽 𝑌1:𝑡; 𝑁

 𝑄𝐷𝜑
𝐺𝜃 𝑠 = 𝑌1:𝑇−1, 𝑎 = 𝑦𝑇 = ቐ

1

𝑁
σ𝑛=1
𝑁 𝐷𝜑 𝑌1:𝑇

𝑛 , 𝑌1:𝑇
𝑛 ∈ 𝑀𝐶𝐺𝛽 𝑌1:𝑡; 𝑁 for 𝑡 < 𝑇

𝐷𝜑 𝑌1:𝑡 , for 𝑡 = 𝑇

N-time Monte Carlo search
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conditional GAN in summary
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 Input “condition” to G and D

For sequential generator

 use reinforcement learning to update G

 utilise Monte Carlo search

 more computational power

 more unstable
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Adversarial Learning in Dialogue
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Open-domain dialogue

with the dialogue history and the user utterance

 to generate the system response similar to human response

Train the dialogue agent (generator) (Li, et al, 2017)
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Adversarial Learning in Dialogue
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Task-Oriented

 the reward function can be
learned as a discriminator

Oracel

 +1 success, +0 fail

Human design:

 +1 for each correct informable 
slot

 if all informable slots are
correct, +1 for each success
requestable slot

Estimate the reward function (discriminator) (Liu, et al, 2018)
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Conclusion
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Pros

Powerful to generate photo-like images

Model the data distribution 

 Learn the representation of semantic space by mapping the noise

 cGANs have various generation condition

Cons

 Training and tuning GANs is not trivial

Not stable

Require a huge amount of computational power

Potentials

GANs on the natural language (sequential generating) still need to 
improve
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Thank you

30
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