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Role of natural language generation

I Converts dialogue act (semantics) into natural language

I Gives a persona to dialogue system

I Directly influences how the user perceives a dialogue system
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Evaluating natural language generation

What makes a natural language generator
good? [Stent et al., 2005]

adequacy correct meaning

fluency linguistic fluency

readabilty fluency in dialogue context

variation multiple realisations for the same concept
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BLEU Score [Papineni et al., 2002]

I Evaluating similarity between paired sentences (n-gram
match).

I There is a gap between human perception and automated
measures.

Correlation coefficent Adequacy Fluency

BLEU 0.388 -0.492

I Human evaluation is always the best way to evaluate language
generation.
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Template-based natural language generator

Define a set of templates which maps dialogue acts into utterances.

Dialogue act Delexicalised utterance
confirm(area=$V) Would you like a restaurant in the $V?
confirm(food=$V) Would you like a $V restaurant?

confirm(food=$V,area=$W) Would you like a $V restaurant in the $W ?
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Template-based natural language generator

Pros simple, usually error free, controllable

Cons time consuming, rigid, not scalable
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Trainable generator [Walker et al., 2002]

I Divide the problem into a pipeline

Sentence plan generator Produces multiple sentence plans for
a given dialogue act (or set of dialogue acts).

Sentence plan reranker Ranks possible candidates.
Surface realiser Turns the top candidate into an utterance.
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Trainable generator overview
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Sentence plan generator

I Utilise machine learning to do reranking (RankBoost)

I Extract features from sentence plan trees: indicator function
fi relating to traversal features, ancestor features, leaf
features, etc. size 3291.

F (x) =
∑
i

αi fi (x)

Loss =
∑

x ,y∈D
exp(−(F (x)− F (y))),

where x and y are sentence plans, x is preferred to y , αi are
learnable parameters, and D are sentence plans referring to a
given dialogue act.
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Sentence plan generator - example
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Other similar approaches

I Learning sentence plan generation rules.

I Statistical surface realisers.
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Properties

Pros Can generate sentences with complex linguistic
structure.

Cons Many rules, heavily engineered.
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Class-based language modelling for
NLG [Oh and Rudnicky, 2000]

I Language modelling

p(W ) =
∏
t

p(wt |w0, · · · ,wt−1)

I Class-based language modelling

p(W |u) =
∏
t

p(wt |w0, · · · ,wt−1, u)

I Decoding
W ∗ = arg max

W
p(W |u)
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Class-based language modelling for NLG

I Classes:
inform area
inform address
inform phone
request area
...

I Generation process:
I Generate utterances by sampling words from a particular class

language model in which the dialogue act belongs to.
I Re-rank utterances according to scores.

16 / 38



Properties

Pros no complicated rules, easy to implement, easy to
understand

Cons error-prone

17 / 38



Can we do better?

I RNN as language generator: natural model for modeling
sequences

I Long-term dependencies?

I Flexible to condition on auxiliary inputs

Long-term dependencies in NLG:
Example: The restaurant (in the north) is a nice Chinese place.
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RNN & Vanishing gradient [Pascanu et al., 2013]

hj = σ(Wrhj−1 + Wiwj + bh)

yj = softmax(Wohj + bo)
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∂hj
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= W T
r diag(σ′(Wrhj−1 + Wiwj + bh)),

where ′ is elementwise derivative. The norm of the last term is
smaller than 1 causing vanishing gradient.
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LSTM [Hochreiter and Schmidhuber, 1997]

I Sigmoid gates

it = σ(Wwiwt + Whiht−1)

ft = σ(Wwfwt + Whf ht−1)

ot = σ(Wwowt + Whoht−1)

I Proposed cell value

Ĉt = tanh(Wwcwt + Whcht−1)

I Update cell and hidden layer

Ct = it � Ĉt + ft � Ct−1

ht = ot � tanh(Ct)
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LSTM

How it prevents vanishing gradient problem?

I Consider memory cell, where recurrence actually happens

Ct = it � Ĉt + ft � Ct−1

I We can back-propagate the gradient by chain rule

∂Et

∂Ct−1
=
∂Et

∂Ct

∂Ct

∂Ct−1
=
∂Et

∂Ct
ft
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RNN for NLG [Wen et al., 2015a]
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Semantically conditioned LSTM [Wen et al., 2015b]
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Learned alignemnts
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Human evaluation

Method Informativeness Naturalness

SC-LSTM 2.59 2.50
Class LM 2.46 2.45
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Exampes

inform no match(area=tenderloin)
there are no restaurants in the tenderloin area.
there are 0 restaurants in the tenderloin area.
unfortunately there are 0 restaurants in the tenderloin area.
i could not find any restaurants in tenderloin.
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Properties

Pros more accurate, does not require intermediate
alignments

Cons does not utilise pre-trained word-vector embeddings
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Generative pre-training (GPT)

I Autoregressive language model that utilises transformer
architecture

I Pretrained on large amounts of crawled text

I Predicts the next token u given context U = [u−k , · · · , u−1]

h0 = UWe + Wp

hl = transformer(hl−1), l ∈ [1, n]

p(u) = softmax(hnW
T
e )

I GPT-2 and GPT-3 have effectively the same model structure
with substantially more parameters

GPT GPT-2 GPT-3

Parameters 117M 1.5B 175B
Data 12GB 40GB 570GB
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Generative pre-training (GPT)

Masked multi self-attention

Normalisation

Feed-forward

Normalisation

Text and position embedding

12x

+

+

Task generation Task classification
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Semantically conditioned GPT

I Pre-trains the GPT-2 model with a large corpus of dialogue
act and utterance pairs.

I Fine-tuned with only a few domain-specific labels to adapt to
new domains.

I Operates on lexicalised inputs.
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Human evaluation

Models trained on FewshotWOZ with only 50 dialogue acts in the
training set and 500K in test set.

Method Informativeness Naturalness

SC-GPT 2.64 2.47
SC-LSTM 2.29 2.13

Human 2.92 2.72
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Summary of NLG

I Evaluating NLG is hard. The best way is human evaluation.

I Tree-based NLG is a linguistically motivated approach. By
introducing machine learning in the pipeline enables the model
to learn from data.

I Language Modeling casts NLG as a sequential prediction
problem.

I LSTM overcomes vanishing gradient by sophisticated gating
mechanism. The same idea was applied to NLG resulting in
semantically conditioned-LSTM, a generator that can learn
realisation and semantic alignments jointly.

I Pre-trained transformer models perform particularly well on
few shot learning tasks.
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Role of a speech synthesiser in a dialogue system

I In a dialogue system the context is available from the dialogue
manager.

I Text-to-speech system can make use of the context to
produce more natural and expressive speech [Yu et al., 2010].
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