End-to-end dialogue systems

Milica Gašić

Dialogue Systems and Machine Learning Group, Heinrich Heine University Düsseldorf End-to-end models

Chatbots

Disadvantages of modular approach

- ► Each module necessitates labeled data:
 - ASR transcriptions
 - Semantic decoding labels
 - Dialogue act specification and rewards
 - ▶ NLG labels
 - TTS labels
- The abundance of data from chatting platforms and/or human-human speech cannot be used in this set-up.
- Defining labeling scheme and performing labeling is a very costly and time-consuming process.
- Unsupervised and semi-supervised learning is very valuable in this respect, but typically not as accurate as supervised learning.

End-to-end modelling

- ▶ Deep learning has made a revolution across the AI spectrum: computer vision, speech, NLP, ...
- ▶ It learns from huge amounts of data
- ► Traditional models require careful feature engineering and intermediate labels
- Deep learning uses raw features directly.

Advantages from learning from raw input

- Removes the need for defining features.
- Removes the need for labeling.
- Has the potential to extract better features the ones that really aid learning and not the ones for which a human thinks aid learning.

End-to-end dialogue modelling

- Human brain takes speech as input and produces speech as output
- ▶ If we see human brain as a giant neural network, can we build a dialogue system as an end-to-end neural network without explicit intermediate modules?

Human brain vs artificial neural network

- Neurons have a much more complicated structure than neural networks building blocks.
- ► The way electric signals are passed through is different to gradient descent.
- ► We also know that different parts of the brain are responsible for different tasks, eg. language, emotions etc.
- ► Still, it is the best learning system we know and we would like to draw inspiration from it.

End-to-end neural network-based dialogue systems

- ▶ It is possible to build each component of a dialogue system using a neural network
- ▶ Is it possible to build a dialogue system which is one giant neural network trained end-to-end?
- ▶ In theory we can simply propagate gradients.

End-to-end dialogue modelling

- ➤ To date there are still no attempts to build end-to-end speech dialogue system although there is remarkable success with end-to-end speech recognition and synthesis.
- Still end-to-end text dialogue modelling is a very active area of research

End-to-end neural network-based dialogue systems

- Dialogues: system and user utterances
- Dialogue rewards

- Sequence-tosequence learning model
- Deep reinforcement learning model

System responses

Chatbots

- End-to-end modelling has first been applied to chatbots.
- ► These are systems that are not necessarily goal-driven but rather used for chit-chat and entertainment.
- ▶ The main reason is the sheer availability of data.
- ▶ In their development virtually no dialogue theory is applied, everything is learned from data.

Hierarchical Recurrent Encoder-Decoder for dialogue [Serban et al., 2015]

Hierarchical Recurrent Encoder-Decoder for dialogue

encoder RNN maps each utterance to an utterance vector
context RNN keeps track of past utterances by processing
iteratively each utterance vector; essentially maps
dialogue turns into a dialogue vector

decoder RNN takes the hidden state of the context RNN and produces a probability distribution over the tokens in the next utterance

This model can be pre-initialised using a data set of a similar structure but not necessarily dialogue (eg QA). Also, the words can be represented as pretrained word embeddings.

Memory networks for end-to-end goal oriented dialogue [Bordes et al., 2017]

▶ By first writing and then iteratively reading from a memory component (using hops) that can store historical dialogues and short-term context to reason about the required response, they have been shown to perform well on those tasks

Seq2Seq model with additional supervision [Wen et al., 2017]

- Belief tracker trained separately
- Intent network and generation network trained end-to-end using the supervision signal from the belief tracker and the database

Seq2Seq model with additional supervision [Wen et al., 2017]

- Strictly speaking this model is not end-to-end!
- ► The reason is that it still necessitates intermediate labels for training the belief tracker.
- It is end-to-end trainable: everything is differentiable and the gradient can be propagated.
- This is an important property as it means that information of one part of the network can inform another part of the network.
- ▶ This is not normally the case in modular approaches.

Mem2Seq end-to-end model [Madotto et al., 2018]

- The model augments the existing MemNN framework with a sequential generative architecture, using global multihop attention mechanisms to copy words directly from dialogue history or KBs.
- Combines multi-hop attention mechanisms with the idea of pointer networks, which allows us to effectively incorporate KB information.

What are all these models missing?

Core properties of goal-oriented dialogue

Most end-to-end dialogue models do not incorporate RL

- ► RL is essential for ensuring goal directed behaviour
- Without RL the models only imitate what they see in data, they do not perform any planning.

Word-level RL for end-to-end models

- ▶ Each word is treated as an action
- Huge action space
- Long trajectory
- ► Optimising language coherence and reward at the same time can lead to divergence

Theory: Variational autoencoder

- Autoencoders encode the input into lower-dimensional latent features
- These features should allow reconstruction of the input
- ▶ However, mapping between input and features is deterministic
- Can we modify the model such that we can generate more data from it?
- Instead of deterministic mapping, VAE models the distribution of the latent variable

Theory: Variational autoencoder - latent variabe

- ▶ We assume there is a variable that governs the generation of the output.
- ▶ This could be intent or an image type.
- ▶ We try to capture its distribution.
- We do not have labels for this variable therefore it is latent (hidden).

Theory: Variational autoencoder

Input x and latent variable z

recognition network Encoder maps input x to a distribution $q_{\phi}(z|x)$

generation network Decoder generates new data conditioned on z $p_{\theta}(x|z)$

Distribution of latent variable z

- ▶ True posterior $p_{\theta'}(z|x)$ is not known
- ▶ Prior $p_{\theta''}(z)$ initial assumption of how z is distributed

VAE loss function: evidence lower bound (ELBO)

$$\begin{split} \log p(x) &= \mathbb{E}_{z \sim q_{\phi}(z|x)} \log p_{\theta''}(x) \\ &= \mathbb{E}_{z} \log \frac{p_{\theta}(x|z)p_{\theta''}(z)}{p_{\theta'}(z|x)} \\ &= \mathbb{E}_{z} \log \frac{p_{\theta}(x|z)p_{\theta''}(z)}{p_{\theta'}(z|x)} \frac{q_{\phi}(z|x)}{q_{\phi}(z|x)} \\ &= \mathbb{E}_{z} \log p_{\theta}(x|z) + \mathbb{E}_{z} \log \frac{p_{\theta''}(z)}{q_{\phi}(z|x)} + \mathbb{E}_{z} \log \frac{q_{\phi}(z|x)}{p_{\theta'}(z|x)} \\ &= \mathbb{E}_{z} \log p_{\theta}(x|z) - \mathbb{E}_{z} \log \frac{q_{\phi}(z|x)}{p_{\theta''}(z)} + \mathbb{E}_{z} \log \frac{q_{\phi}(z|x)}{p_{\theta'}(z|x)} \\ &= \mathbb{E}_{z} \log p_{\theta}(x|z) - \mathbb{KL}(q_{\phi}(z|x)||p_{\theta''}(z)) + \mathbb{KL}(q_{\phi}(z|x)||p_{\theta'}(z|x)) \\ &\geq \mathbb{E}_{z} \log p_{\theta}(x|z) - \mathbb{KL}(q_{\phi}(z|x)||p_{\theta''}(z)) \end{split}$$

If we maximize the right hand side we maximize the left hand side too.

Latent action RL in end-to-end dialogue systems [Zhao et al., 2019]

- Train a variational model to infer a latent space between encoder and decoder to serve as the action space
- x is the response for a given context c
- Modified evidence lowerbound (ELBO), i.e. lite ELBO avoids distribution mismatch between training and testing, since x is not present during testing

$$L_{\mathsf{full}}(\theta) = \mathbb{E}_{q_{\theta}(z|x,c)}[\log p_{\theta}(x|z)] - \mathbb{KL}(q_{\theta}(z|x,c)||p_{\theta}(z|c))$$

$$L_{\mathsf{lite}}(\theta) = \mathbb{E}_{p_{\theta}(z|c)}[\log p_{\theta}(x|z)] - \beta \mathbb{KL}(p_{\theta}(z|c)||p(z))$$

Latent action RL in end-to-end dialogue systems

Benefits:

- Shortening the dialogue trajectory
- ▶ Decouples decision making and language generation

Latent action RL in end-to-end dialogue systems

Shortcomings:

- Optimises latent space with an uninformed prior
- ▶ Does not consider the distributions w.r.t. dialogue responses
- ▶ Latent space is modelled conditioned on the context only
- Unclear whether the variables effectively encode action information

LAVA: Latent Action Space via VAE [Lubis et al., 2020]

- VAE as pre-training
- Auto-encode dialogue responses
- VAE infers the distribution of the latent variables to be used to reconstruct the response
- Captures underlying generative factors of responses
- In a modular approach this is what a dialogue act would do
- Here we let the model find out what are possible dialogue acts

LAVA: Latent Action Space via VAE

- Use VAE and RG encoders in tandem during fine-tuning
- Newly initialized RG encoder
- Pre-trained VAE encoder to obtain an informed prior
- Optimise using informed prior

$$L_{\mathsf{LAVA_kI}}(\theta) = \mathbb{E}_{p_{\theta}(z|c)}[\log p_{\theta}(x|z)] - \beta \mathbb{KL}(p_{\theta}(z|c)||q_{\phi}(z|x))$$

Results

Shortcomings of end-to-end approaches

- Only corpus based evaluation
- Utilises delexicalisation
- ▶ Best performing systems still utilise dialogue state information

More shortcomings of end-to-end approaches

- Lack of interpretability is the main problem of these approaches.
- In fact this is already a problem in statistical modular approaches.
- One cannot place guarantees on how the system will perform in each case.
- ▶ In end-to-end approaches this is further exacerbated: when the system fails there is almost no way of saying what caused it to fail.
- Interpretability and accountability are important considerations for machine learning.

Bias and ethics when learning from data

- ▶ All models that we presented learn from data.
- ► The less human intervention there is the more they will be governed from what is in the data.
- ► This means that there is no curating going on, if there is abusive or non-ethical behaviour exhibited in the data, the model will imitate it.
- This is exacerbated in end-to-end models as there is little opportunity to inspect what is happening inside the model.

Interaction

- A lot of advances have been made recently in terms of end-to-end learning.
- Still, due to all the shortcomings the use of end-to-end dialogue models is very limited.
- They are typically evaluated on measures such as BLEU.
- Almost no models have so far been tested in interaction with real users.

Summary

- Advances in deep learning enabled tackling dialogue as an end-to-end learning task.
- Early models treated dialogue as a purely supervised learning task.
- ▶ It is non-trivial to include RL in end-to-end models.
- ▶ Including RL achieves best success and match rates.

References I

Lubis, N., Geishauser, C., Heck, M., Lin, H.-c., Moresi, M., van Niekerk, C., and Gasic, M. (2020).

LAVA: Latent action spaces via variational auto-encoding for dialogue policy optimization.

In Proceedings of the 28th International Conference on Computational Linguistics, pages 465–479, Barcelona, Spain (Online). International Committee on Computational Linguistics.

References II

Madotto, A., Wu, C.-S., and Fung, P. (2018).

Mem2seq: Effectively incorporating knowledge bases into end-to-end task-oriented dialog systems.

In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1468–1478.

Serban, I. V., Sordoni, A., Bengio, Y., Courville, A., and Pineau, J. (2015).

Hierarchical neural network generative models for movie dialogues.

arXiv preprint arXiv:1507.04808.

References III

Wen, T.-H., Vandyke, D., Mrkšić, N., Gašić, M., Rojas-Barahona, L. M., Su, P.-H., Ultes, S., and Young, S. (2017).

A network-based end-to-end trainable task-oriented dialogue system.

In EACL.

Zhao, T., Xie, K., and Eskenazi, M. (2019).

Rethinking action spaces for reinforcement learning in end-to-end dialog agents with latent variable models.

In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1208–1218.

Credits

We thank Nurul Lubis for sharing her slides on Variational Autoencoders and LAVA.