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Disadvantages of modular approach

v

Each module necessitates labeled data:
» ASR transcriptions
» Semantic decoding labels

Dialogue act specification and rewards
NLG labels
TTS labels

The abundance of data from chatting platforms and/or
human-human speech cannot be used in this set-up.

vV vy

Defining labeling scheme and performing labeling is a very
costly and time-consuming process.

Unsupervised and semi-supervised learning is very valuable in
this respect, but typically not as accurate as supervised
learning.
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End-to-end modelling

» Deep learning has made a revolution across the Al spectrum:

computer vision, speech, NLP, ...
> It learns from huge amounts of data

» Traditional models require careful feature engineering and
intermediate labels

» Deep learning uses raw features directly.
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Advantages from learning from raw input

» Removes the need for defining features.
» Removes the need for labeling.

» Has the potential to extract better features - the ones that
really aid learning and not the ones for which a human thinks
aid learning.



End-to-end dialogue modelling

» Human brain takes speech as input and produces speech as
output

» If we see human brain as a giant neural network, can we build
a dialogue system as an end-to-end neural network without
explicit intermediate modules?
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Human brain vs artificial neural network

» Neurons have a much more complicated structure than neural
networks building blocks.

» The way electric signals are passed through is different to
gradient descent.

» We also know that different parts of the brain are responsible
for different tasks, eg. language, emotions etc.

» Still, it is the best learning system we know and we would like
to draw inspiration from it.
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End-to-end neural network-based dialogue systems

» It is possible to build each component of a dialogue system
using a neural network

> Is it possible to build a dialogue system which is one giant
neural network trained end-to-end?

> In theory we can simply propagate gradients.
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End-to-end dialogue modelling

» To date there are still no attempts to build end-to-end speech
dialogue system although there is remarkable success with
end-to-end speech recognition and synthesis.

» Still end-to-end text dialogue modelling is a very active area
of research
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End-to-end neural network-based dialogue systems

Predictions
» Dialogues: » Sequence-to » System
system and responses
sequence

user utterances .
learning model

» Dialogue

» Dee
rewards P

reinforcement
learning model

10/40



Chatbots

» End-to-end modelling has first been applied to chatbots.

> These are systems that are not necessarily goal-driven but
rather used for chit-chat and entertainment.

» The main reason is the sheer availability of data.

> In their development virtually no dialogue theory is applied,
everything is learned from data.
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Hierarchical Recurrent Encoder-Decoder for

dialogue [Serban et al., 2015]
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Hierarchical Recurrent Encoder-Decoder for dialogue

encoder RNN maps each utterance to an utterance vector

context RNN keeps track of past utterances by processing
iteratively each utterance vector; essentially maps
dialogue turns into a dialogue vector

decoder RNN takes the hidden state of the context RNN and

produces a probability distribution over the tokens in
the next utterance

This model can be pre-initialised using a data set of a similar
structure but not necessarily dialogue (eg QA). Also, the words can
be represented as pretrained word embeddings.
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Memory networks for end-to-end goal oriented
dialogue [Bordes et al., 2017]

» By first writing and then iteratively reading from a memory
component (using hops) that can store historical dialogues
and short-term context to reason about the required response,
they have been shown to perform well on those tasks
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Seq2Seq model with additional
supervision [Wen et al., 2017]
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> Belief tracker trained separately
Intent network and generation network trained end-to-end
using the supervision signal from the belief tracker and the
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Seq2Seq model with additional
supervision [Wen et al., 2017]

» Strictly speaking this model is not end-to-end!

» The reason is that it still necessitates intermediate labels for
training the belief tracker.

» It is end-to-end trainable: everything is differentiable and the
gradient can be propagated.

» This is an important property as it means that information of
one part of the network can inform another part of the
network.

» This is not normally the case in modular approaches.
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Mem?2Seq end-to-end model [Madotto et al., 2018]

> The model augments the existing MemNN framework with a
sequential generative architecture, using global multihop
attention mechanisms to copy words directly from dialogue
history or KBs.

» Combines multi-hop attention mechanisms with the idea of
pointer networks, which allows us to effectively incorporate
KB information.
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What are all these models missing?
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Core properties of goal-oriented dialogue
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Most end-to-end dialogue models do not incorporate RL

fmoeingforan taen resaurent » RL is essential for ensuring goal directed
behaviour

» Without RL the models only imitate what
they see in data, they do not perform any
planning.

Encoder

Decoder

Which area do you have in mind?
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Word-level RL for end-to-end models

I'm looking for an italian restaurant

Encoder

Decoder

Which area do you have in mind?

reward

v

v

Each word is treated as an action
Huge action space
Long trajectory

Optimising language coherence and reward at
the same time can lead to divergence
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Theory: Variational autoencoder

» Autoencoders encode the input into lower-dimensional latent
features

» These features should allow reconstruction of the input
» However, mapping between input and features is deterministic

» Can we modify the model such that we can generate more
data from it?

» Instead of deterministic mapping, VAE models the
distribution of the latent variable



Theory: Variational autoencoder - latent variabe

> We assume there is a variable that governs the generation of
the output.

v

This could be intent or an image type.

v

We try to capture its distribution.

We do not have labels for this variable therefore it is latent
(hidden).

v
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Theory: Variational autoencoder

Input x and latent variable z
recognition network Encoder maps input x to a distribution
9¢(2[x)
generation network Decoder generates new data conditioned on z
po(x|2)
Distribution of latent variable z
» True posterior pyr(z|x) is not known

» Prior pgr(z) initial assumption of how z is distributed
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VAE loss function: evidence lower bound (ELBO)
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Latent action RL in end-to-end dialogue
systems [Zhao et al., 2019]

» Train a variational model to infer a latent
space between encoder and decoder to serve
as the action space

» x is the response for a given context ¢
» Modified evidence lowerbound (ELBO), i.e.
lite ELBO avoids distribution mismatch

between training and testing, since x is not
present during testing

Lt (0) = Eqy(z)x,c) [log po(x| )] — KL(go(z|x, c)||po(z|c))

Liite(0) = Epy(z|c)llog pa(x|2)] — BKIL(py(z|c)||p(2))
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Latent action RL in end-to-end dialogue systems

Benefits:
» Shortening the dialogue trajectory

» Decouples decision making and language generation
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Latent action RL in end-to-end dialogue systems

Shortcomings:
» Optimises latent space with an uninformed prior

» Does not consider the distributions w.r.t. dialogue responses

v

Latent space is modelled conditioned on the context only

v

Unclear whether the variables effectively encode action
information
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LAVA: Latent Action
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Space via VAE [Lubis et al., 2020]

VAE as pre-training
Auto-encode dialogue responses

VAE infers the distribution of the latent
variables to be used to reconstruct the
response

Captures underlying generative factors of
responses

In a modular approach this is what a dialogue
act would do

Here we let the model find out what are
possible dialogue acts
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LAVA: Latent Action Space via VAE

» Use VAE and RG encoders in tandem during
fine-tuning
» Newly initialized RG encoder

» Pre-trained VAE encoder to obtain an
informed prior

» Optimise using informed prior

Liavaii(0) = Ep, (2 c) [log po(x|2)] — BKL(ps(z]c)l|g4(2]x))
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Results
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Shortcomings of end-to-end approaches

» Only corpus based evaluation
» Utilises delexicalisation

» Best performing systems still utilise dialogue state information
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More shortcomings of end-to-end approaches

» Lack of interpretability is the main problem of these
approaches.

» In fact this is already a problem in statistical modular
approaches.

» One cannot place guarantees on how the system will perform
in each case.

> In end-to-end approaches this is further exacerbated: when
the system fails there is almost no way of saying what caused
it to fail.

> Interpretability and accountability are important
considerations for machine learning.
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Bias and ethics when learning from data

» All models that we presented learn from data.

» The less human intervention there is the more they will be
governed from what is in the data.

» This means that there is no curating going on, if there is
abusive or non-ethical behaviour exhibited in the data, the
model will imitate it.

» This is exacerbated in end-to-end models as there is little
opportunity to inspect what is happening inside the model.
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Interaction

v

A lot of advances have been made recently in terms of
end-to-end learning.

Still, due to all the shortcomings the use of end-to-end
dialogue models is very limited.

They are typically evaluated on measures such as BLEU.

Almost no models have so far been tested in interaction with
real users.
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Summary

v

Advances in deep learning enabled tackling dialogue as an
end-to-end learning task.

v

Early models treated dialogue as a purely supervised learning
task.

» It is non-trivial to include RL in end-to-end models.

v

Including RL achieves best success and match rates.
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