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In this lecture...

Modular approach from probabilistic perspective

Speech recognition in dialogue
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Architecture of a spoken dialogue system
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I’m looking for a restaurant inform(type=restaurant)

request(food)What kind of food do you have in mind?
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Downside of modular approach

I Information loss between the modules
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Modular approach from probabilistic perspective

I Machine learning allows us not only to find the best output
but a probability distribution over possible outputs.

I Similarly, machine learning allows us to consider a list of
possible inputs scored by their probability.

I In this way, uncertainty is propagated through the pipeline.

I This is particularly important for spoken dialogue systems.
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Architecture of a statistical spoken dialogue system
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Speech recognition

I A speech recogniser converts speech into text

I It performs no understanding of what has been said

I It does however need to deal with acoustic ambiguity
"Recognise speech" vs "Wreck a nice beach"

Example taken from [Murphy, 2012]
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Speech recognition is hard

From a linguistic perspective

Speaker may change

Environment maybe noisy, there maybe other speakers, different
channels (microphone)

Vocabulary maybe diverse

Accent/Dialect may vary for different speakers

Languages spoken estimated to 7000, some involve code-switching

Paralinguistics such as the emotional state influences the accuracy

Slide taken from Peter Bell’s lecture
8 / 48



Speech recognition as a machine learning task

Data

I Transcribed
speech

Model

I Classification

I Sequence-to-
sequence
models

Predictions

I User utterance
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Speech recognition is hard

From a machine learning perspective

I As a classification problem: high-dimensional output

I As a sequence-to-sequence problem: long sequences

I Data is often noisy, with many nuisance factors of variation in
the data

I Very limited quantities of training data available (in terms of
words) compared to text-based NLP

I Manual speech transcription is very expensive (10x real time)

I Hierachical and compositional nature of speech production
and comprehension makes it difficult to handle with a single
model

Slide taken from Peter Bell’s lecture
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Representing speech

I Represent a recorded utterance as a sequence of feature
vectors.

I Feature vector is constructed by extracting features from a
frame of a waveform.

I The frames are roughly 10-20ms in length, over which the
waveforms are assumed to be stationary.

I Spectral properties of each segment are then calculated in
order to yield a low-dimensional representation of the speech
segment

I Spectral properties are usually calculated based on some
model of human hearing.

I Recent neural network approaches directly use raw acoustic
features.

Slide taken from Peter Bell’s lecture
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Labeling speech

I Labels could be phones, characters, words etc.

I Labels may be time-aligned i.e. the start and end times of an
acoustic segment corresponding to a label are known
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Two key challenges

During training having aligned labels

During recognition finding the most likely sequence out of all
possible sequences

Hidden Markov model provides a good solution to both
problems.

Slide taken from Peter Bell’s lecture
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Theory: Hidden Markov model (HMM)
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Figure 1: HMM as a dynamic Bayesian network

I In each time step we have an observation

I This observation is generated by an (unknown/hidden) state

I For each pair of state and observation we have the probability
that an observation is generated by the state - observation
probability p(ot |st ,Θ)

I For each pair of state we have the probability that one state
follows another transition probability p(st+1|st ,Θ)
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Theory: Belief propagation

Probabilities conditional on the observations

xOa Ob

Interested in marginal probabilities p(x |O),O = Oa ∪ Ob

p(x |Ob,Oa) ∝ p(x ,Ob|Oa) = p(Ob|x ,Oa)p(x |Oa) = p(Ob|x)p(x |Oa)
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Theory: Belief propagation

Split Ob further into Oc and Od

x

Oc

Oa

Od

p(x |Oa,Oc ,Od) ∝ p(Oc ,Od |x)p(x |Oa) = p(Oc |x)p(Od |x)p(x |Oa)
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Theory: Belief propagation

c

b

aOa

Ob

Oc

p(c |Oa,Ob) =
∑
a,b

p(a|Oa)p(b|Ob)p(c |a, b)

p(Oc ,Ob|a) ∝
∑
b,c

p(Oc |c)p(b|Ob)p(c |a, b)
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Theory: Belief propagation

a b ObOa

p(b|Oa) =
∑
a

p(a|Oa)p(b|a)

p(Ob|a) =
∑
b

p(Ob|b)p(b|a)
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Theory: Belief propagation in HMM
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Figure 2: HMM as a dynamic Bayesian network

p(o, s|Θ) = p(s1|Θ)ΠT
t=2p(st |st−1,Θ)ΠT

t=1p(ot |st ,Θ) (1)

sequence of observations o = (o1, · · · , oT )

sequence of states s = (s1, · · · , sT )
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Theory: Belief propagation in HMM
s1
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Figure 3: HMM as a dynamic Bayesian network

forward probability αt = p(o1, · · · , ot , st |Θ)

αt = Σst−1αt−1p(st |st−1,Θ)p(ot |st ,Θ)

backward probability βt = p(ot+1, · · · , oT |st ,Θ)

βt = Σst+1p(st+1|st ,Θ)p(ot+1|st+1,Θ)βt+1

p(st |o1, · · · , ot ,Θ) ∝ αt (2)

p(st |o,Θ) ∝ αtβt (3)

p(st , st+1|o,Θ) ∝ αtp(ot+1|st+1,Θ)βt+1p(st+1|st ,Θ) (4)
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Theory: Expectation Maximisation for HMMs

We start with some initial parameters Θ′

E step We would like to calculate the posterior distribution
of the hidden states given the parameters and
observations p(s|o,Θ′). (You can think of this as
soft alignment.) We could then use this posterior
distribution to evaluate the expectation of the
complete data log likelihood
L(Θ) = Σsp(s|o,Θ′) log p(o, s|Θ), which is a
function of the parameters Θ. In order to evaluate
L(Θ) Eq.1,3&4 are sufficient [Bishop, 2006].

M step We find new parameters Θ′ = arg maxΘ L(Θ)

We repeat these two steps until Θ′ stops changing. EM algorithm
is guaranteed to increase log p(O|Θ) in every step. For derivation
of parameters for HMMs used in speech recognition refer
to [Gales and Young, 2007].
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Theory: Viterbi algorithm

I For fixed parameters Θ, Viterbi algorithm allows us to find the
most likely sequence of states for a given sequence of
observations.

I Note that this is different to finding the set of states that are
individually most probable as is done in E step of the EM
algorithms.
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Theory: Viterbi algorithm

I Consider a time step t and a particular state sk .

I We want to find the sequence that has the highest probability
and takes state sk at time t.
φt(s

k) = maxs1,··· ,st−1p(o1, · · · , ot , s1, · · · , st−1, st = sk)

I Because there are K possible states at time step t, we need to
keep track of K such sequences.

I At time step t + 1, there will be K 2 possible sequences to
consider, comprising K possible sequences leading out of each
of the K current states, but we only need to retain K of these
corresponding to the best sequence for each state at time
t + 1.
φt+1(s l) = maxkφt(s

k)p(st+1 = s l |st = sk)p(st+1 = s l |ot+1)

I When we reach the final time step T we will discover which
state corresponds to the overall most probable sequence.
Because there is a unique path coming into that state we can
trace the sequence back to the beginning.
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Hierarchical modelling of speech

I Utterance consists of words

I Words consist of subwords (ie. phones, triphones) - this is
provided by a pronunciation dictionary

I Three senones: beginning, middle and end comprise a subword
unit. If we take into account contextual subword units - there
may be as many as 20, 000 senones.

I The sequence of senones for an utterance is modelled as a
sequence of states in HMM.

I Each state of an HMM generates a feature vector of a frame.
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Hierarchical modelling of speech

(silence)        Stop       that       (silence) 

sil         s         t          oh          p          th          ae          t          sil

sil  sil-s+t  s-t+oh  t-oh+p oh-p+th p-th+ae th-ae+t ae-t+sil   sil

m1     m23      m94      m32     m34     m984     m763    m2    m1

words

phones

triphones

HMM models

Figure 4: Context dependent phone modeling [Gales and Young, 2007]
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Hidden Markov model in speech recognition

b

x1 x2

m e

Figure 5: HMM as a probabilistic finite state machine

I The transition probabilities are partly known: the next state is
either the same senon, or middle if previous was beginning , or
end if previous was middle.

I The observation probability: how a state generates the feature
vector is unknown

I This can be modelled as a Gaussian Mixture Model.
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Hidden Markov model in speech recognition

I Traditionally each phone was modelled with three states.

I This enforces a minimal duration of three frames per phone.

I The phone HMMs can be concatenated to form an HMM for
the whole word, using the pronunciation dictionary.
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Fundamental Equation of Statistical Speech Recognition

I If x is the sequence of acoustic feature vectors (observations)
and w denotes a word sequence, the most likely word
sequence w∗ is given by

w = arg max
w

P(w|x) (5)

I Applying Bayes Theorem:

P(w|x) =
P(x|w)P(w)

P(x)
(6)

∝ P(x|w)P(w) (7)

I P(x|w) is the acoustic model

I P(w) is the language model

Slide taken from Peter Bell’s lecture
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ASR overview

Slide taken from Peter Bell’s lecture
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Acoustic modelling

I The role of the acoustic model is to model the probability that
a sequence of feature vectors is generated by a given word
sequence p(x|w)

I This can be done using an HMM where the transition
probabilities are parametrised as a Gaussian Mixture Model
and estimated using expectation maximisation.
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Hybrid HMM-DNN systems

I By modelling the observation probabilities as a GMM we place
very strong assumptions

I A deep neural network (DNN) as a function estimator places
fewer assumptions on the unknown function that it is
approximating

I Once we have a GMM/HMM we know which state
corresponds to which observation and we can model the
observations probability as a DNN

I This is bootstrapping: the process of self improvement

I In this case we still use the HMM to find the most likely
sequence
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End-to-end acoustic models

I If we have sequence of phones or characters and the
corresponding sequence of frames

I We can directly model acoustics in an end-to-end fashion, as
a sequence to sequence learning task

I What is particularly useful is that one directly consider raw
audio features

I One good way to achieve so is via a
transformer [Pham et al., 2019].
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How do we measure how good is speech recognition?

I We are interested in the quantity called word error rate

I It is the Levenshtein distance between the hypothesised
sequence of words and the target sequence of words
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Theory: Levenshtein distance

h hypothesis sequence

t target sequence

m = |h|, n = |t|
D0,0 = 0,Di ,0 = i ,D0,j = j , 0 ≤ i ≤ n, 0 ≤ j ≤ m

Di ,j = min


Di−1,j−1 hi = tj

Di−1,j−1 + 1 substitution

Di ,j−1 + 1 insertion

Di−1,j + 1 deletion

1 ≤ i ≤ n, 1 ≤ j ≤ m
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Word error rate

I Use Levenshtein distance to calculate the distance between
the ASR output h and the reference transcription t, by
calculating substitutions, insertions and deletions.

I If there are n words in the reference transcript, the word error
rate and the accuracy is given as

WER = 100 ∗ D(h, t)

n
(8)

Accuracy = 100−WER (9)
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Acoustic modelling for dialogue systems

I Spoken dialogue systems are meant to be used everywhere:
busy street, noisy car

I Advantage: the conversation spans over several turns so it is
possible to perform adaptation in the first turn to improve
future interactions

I Advantage: the same speaker through-out the dialogue
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Language modelling

I The role of a language model is to model the probability of a
word sequence p(w)

I Some sequences of words are more likely than others

I p(w) = p(w1)p(w2|w1) · · · p(wt |wt−1, ...) , where wi is the ith
word in the sequence

I p(wt |wt−1, ...) ≈ p(wt |wt−1, ...,wt−n) n-gram language
model
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Perplexity

I Entropy

H(w) = − 1

N
log p(w1, · · · ,wN)

I Perplexity
PP(w) = 2H(w)
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Language modelling for dialogue systems

I The vocabulary in limited domain dialogue systems is small so
the language model can be trained with in-domain data

I A general purpose language model can be combined with
in-domain language model to provide better recognition
results and also deal with out-of-domain requests.

39 / 48



Speech recognition for dialogue systems

Provide alternative recognition result

I N-best list (extension of the Viterbi algorithm)

I Confusion network

I Lattice

am looking for
I

I’m

an inexpensive

a expensive

place

Figure 6: Confusion network
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Speech recognition for dialogue systems

Recognise when the user has started speaking

I Key-word spotter running on a smartphone - always
listening [Chen et al., 2015]

I Requirements: low memory footprint, low computational cost
and high precision

Recognise when the user has stopped speaking

I This is studied in the broad context of voice activity detection
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Theory: Precision and recall

Measure Data Model

TP true positive + +
TN true negative - -
FP false positive - +
FN false negative + -

P =
TP

TP + FP

R =
TP

TP + FN

F = 2
P · R

P + R
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How much data do we need to train a speech recogniser?

I Thousands hours of transcribed speech to train the acoustic
model

I Close to billion words to train the language model

I Deep neural network models have achieved impressive results,
though human parity remains arguable.
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Summary

I Speech recognition converts speech into text.

I This is a hard AI problem.

I Hierarchical modelling of speech decomposes utterance into
words, words in subword units.

I Each subword unit can be modelled as a parameterised HMM
with acoustic feature vectors as observations.

I For an HMM-GMM there is a closed form solution for
parameters, but more recently hybrid HMM-DNN models
achieved state of the art results.

I From a point of view of dialogue what is important to
consider are alternative recognition so that the uncertainty is
propagated through the pipeline.
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Next lecture

I Semantic decoding
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