Dialogue management: integrated approaches to understanding and tracking

Milica Gašić

Dialogue Systems and Machine Learning Group, Heinrich Heine University Düsseldorf
Hybrid approach to tracking and understanding

Delexicalisation

Word-vector embeddings

Self-attention & transformer architecture in tracking
Limitations of modular approach to dialogue systems

- Modular approaches suffer from information loss between the components.
- Labeled data not always available to train individual modules.
Hybrid approach

- Dialogue act output of NLU module is an intermediate designer-defined step.
- We could directly predict dialogue state or dialogue belief state.
- We then do not need dialogue act labels for the user input.
Alternative dialogue system architecture
Integrated approaches to semantic decoding and belief tracking [Henderson et al., 2014]

- Instead of extracting features from semantic decoding hypotheses extract features from ASR hypotheses
- Apply the same neural network structure
- Avoids information loss resulting from compact semantic representation of traditional approach
- Output: distribution over slot-value pairs
Feature extraction from ASR hypotheses

- For limited vocabulary dialogue system possible to extract N-gram features from ASR
- In order to deal with data sparsity need to delexicalise input
- Unlike for semantic decoding output, here it is not obvious which word corresponds to which slot and value
- Semantic dictionary is therefore needed to define possible values
Results from dialogue state tracking challenge

<table>
<thead>
<tr>
<th></th>
<th>Goals</th>
<th>Method</th>
<th>Requested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc.</td>
<td>L2</td>
<td>Acc.</td>
</tr>
<tr>
<td>SD features</td>
<td>0.742</td>
<td>0.387</td>
<td>0.922</td>
</tr>
<tr>
<td>ASR features</td>
<td>0.768</td>
<td>0.346</td>
<td>0.940</td>
</tr>
</tbody>
</table>
Delexicalisation - elephant in the room

- Most of the performance gain comes from delexicalised features.
- This requires a separate semantic dictionary which for all values from ontology defines their possible realisations, for example expensive → luxurious, upmarket, pricey.
- In real systems this poses a major problem.
Understanding the context

- Speech recognition performs extremely well in noise-free conditions for a high-resource language.
- Still personal assistants even in such circumstances do not perform well.
- Their understanding of context is not adequate!
Video
Hybrid approach
Word-vector embeddings

- Instead of 1-hot feature vectors, delexicalised features, or n-gram features, each word is represented by a dense vector.
- Semantically similar words are represented by vectors that are close to each other in the vector space.
What does semantic similarity mean for dialogue modelling?

- I would like something in the **north** part of town.
- I would like something in the **south** part of town.
- How close are embeddings for **north** and **south**?
Attract-repel algorithm [Mrkšić et al., 2016]

- Start from a given static word embedding
- Modify the word embeddings iteratively
 - **Attract** reduce the distance of synonyms
 - **Repel** increase the distance of antonyms

while keeping the distance between any other words the same
Static vs contextual word embeddings

- Contextual word embeddings have the potential to model context better.
- This is achieved through transformer framework.
An attention network maintains a set of hidden representations that scale with the size of the source.

The model uses an internal inference step to perform a soft selection over these representations.

\[
\begin{align*}
\mathbf{x} &= (x_1, \ldots, x_n) \quad \text{input sequence} \\
q &= \text{query} \\
z &\sim p(z|x, q) \quad \text{attention distribution with } \mathbf{x} \text{ as keys} \\
f(\mathbf{x}, z) &= \text{attention function with } \mathbf{x} \text{ as values} \\
c &= E_{p(z|x, q)} f(\mathbf{x}, z) \quad \text{context}
\end{align*}
\]
Example of attention network in translation

- Translation task with encoder-decoder architecture
- \(x \) is the sequence of hidden states of encoder
- \(q \) is the (current) hidden state of the decoder
- \(p(z|x, q) \) modelled as a neural network with softmax output
- \(f(x, z) = x_z \) selected hidden state to attend to during translation
Example of attention network in question answering

- x is the sequence of facts
- q is the question
Theory: Self-attention

- Attention relates input to output in order to determine which part of input should be used as context to output.
- Self-attention relates different parts of the input sequence to produce a better representation for that sequence.
Theory: Transformer

- Deploys encoder-decoder architecture
- Relies solely on attention (incorporates neither recurrent nor convolutional connections)
Theory: Dot-product attention

\[q = x_1 W_Q \]
\[k_1 = x_1 W_K \]
\[v_1 = x_1 W_V \]

\[k_2 = x_2 W_K \]
\[v_2 = x_2 W_V \]

\[k_3 = x_3 W_K \]
\[v_3 = x_3 W_V \]

\[\text{softmax}(qK^T) \]

\[\text{softmax}(qK^T) V \]

\[\text{output} \]

Theory: Multi-head attention

- Instead of performing a single attention function, we project queries, keys and values h times

\[
Attention(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V
\]

\[
head_i = Attention(QW_Q^i, KW_k^i, VW_V^i)
\]

\[
MultiHead(Q, K, V) = \text{Concat}(head_1, \ldots, head_h)W^0
\]
Theory: Attention in transformer

Encoder keys, values and queries come from the output of the previous layer. Each position in the encoder can attend to all positions in the previous layer.

Encoder-Decoder queries come from previous decoder layer and the keys and values come from the output of the encoder.

Decoder keys, values and queries come from the output of the previous layer BUT in order to preserve autoregressive property all connections going from right to left are masked.
Theory: Positional encoding

- Dot-product attention does not incorporate any information about the order of words
- In order to mitigate this issue we utilise positional encoding with following properties:
 - unique and deterministic encoding e_t for each position t
 - distance between any two positions consistent $e_{t+k} = L_k e_t$
 - the values should be bounded
Theory: Positional encoding

- By choosing

\[e_t(2i) = \sin \left(\frac{t}{10000} \right) \]
\[e_t(2i + 1) = \cos \left(\frac{t}{10000} \right) \]

- \(L_k \) in this case is a block diagonal matrix consisting of rotation matrices that do not depend on \(t \) but only on \(k \) and \(d \).
Theory: Transformer architecture [Vaswani et al., 2017]
Computational complexity

<table>
<thead>
<tr>
<th></th>
<th>Complexity per layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-attention</td>
<td>$O(n^2d)$</td>
</tr>
<tr>
<td>Recurrent</td>
<td>$O(nd^2)$</td>
</tr>
</tbody>
</table>

- n sequence length
- d representation dimension

Self attention could be restricted to consider only a neighbourhood of size r in the input sequence centered around the respective output distribution. Then computational complexity is $O(rnd)$.
Application of transformers in dialogue systems

Encoder Represent words via BERT

Structure Utilise self-attention in the system’s structure
In order to avoid delexicalisation we need a way to calculate the similarity between slots and values and the input. Multi-head attention can be used in this respect.
SUMBT: Slot-Utterance Matching for Universal and Scalable Belief Tracking [Lee et al., 2019]
TripPy: A Triple Copy Strategy for Value Independent Neural Dialog State Tracking [Heck et al., 2020]

Input:
- last user utterance
- last system utterance
- dialogue history (as is)

Dialogue state copy mechanisms: slot-value of the dialogue is
- mentioned by the user
- mentioned by the system
- referred to in the history from another slot

Span prediction: for value independence
- slot-value is directly extracted from the input
Evaluation

- MultiWOZ dataset collected via Amazon MTurk portal where humans take roles of user and system — *Wizard of Oz* set-up
- Contains more than 10K dialogues spanning multiple domains

<table>
<thead>
<tr>
<th></th>
<th>Joint goal acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDBT(^1)</td>
<td>15%</td>
</tr>
<tr>
<td>GCE(^2)</td>
<td>36%</td>
</tr>
<tr>
<td>SUMBT(^3)</td>
<td>46%</td>
</tr>
<tr>
<td>TripPy(^4)</td>
<td>55%</td>
</tr>
</tbody>
</table>

- \(^1\)[Ramadan et al., 2018]
- \(^2\)[Nouri and Hosseini-Asl, 2018]
- \(^3\)[Lee et al., 2019]
- \(^4\)[Heck et al., 2020]
Summary

- To avoid the information loss and the need for intermediate labels the process of understanding and tracking can be integrated.
- The biggest gains come from delexicalisation and this necessitates semantic dictionaries, which in practice is undesirable.
- To avoid the need for delexicalisation word-vector embeddings can be used.
- Static embeddings can be modified to be more suited for dialogue.
- Contextualised embeddings however are particularly useful for tracking.
References 1

