
Dialogue management: Tabular approaches to
policy optimisation

Milica Gašić

Dialogue Systems and Machine Learning Group,
Heinrich Heine University Düsseldorf

1 / 36

Dialogue optimisation as a reinforcement learning task

Dialogue management as a continuous space Markov decision
process

Summary space

Simulated user

RL algorithms for dialogue management

2 / 36

Elements of dialogue management

a1actions

states

observations

a2 a3 aT-1

s1 s2 s3 sT-1 sT

o1 o2 o3 oT-1 oT

dialogue turns

What the system says:

What the user wants:

What the system hears:

3 / 36

Dialogue decision making as an RL
problem [Levin et al., 2000]

Input the distribution over possible states – belief state, the
output of the belief tracker

Control actions that the system takes – what the system says
to the user

Feedback signal the estimate of dialogue quality

Aim automatically optimise system actions – dialogue
policy

4 / 36

Belief tracking vs policy optimisation

current
turn

initial turn final turn

BELIEF TRACKING POLICY

FUTUREPAST

5 / 36

Dialogue as a partially observable Markov decision process

Data

I Noisy
observations

I Reward – a
measure of
dialogue
quality

Model

I Partially
observable
Markov
decision
process

Predictions

I Optimal
system actions
in noisy
environment

6 / 36

Theory: Partially observable Markov decision process

st dialogue states

ot noisy observations

at system actions

rt rewards

p(st+1|st , at) transition
probability

p(ot+1|st+1) observation
probability

b(st) distribution over
possible states

st

ot

st+1

ot+1

at

rt

7 / 36

Optimising POMDP policy

I Finding optimal policy tractable only for very simple
cases [Kaelbling et al., 1998]

I Alternative view: discrete space POMDPs can be viewed as a
continuous space MDP with states as belief states bt = b(st)

8 / 36

Theory: Markov decision process

bt belief states from
tracker

at system actions

rt rewards

p(bt+1|bt , at) transition
probability bt bt+1

at

rt

9 / 36

Dialogue management as a continuous space Markov
decision process

Data

I belief states
(from belief
tracker)

I Reward – a
measure of
dialogue
quality

Model

I Markov
decision
process and
reinforcement
learning

Predictions

I Optimal
system actions

10 / 36

Problems

Size of the optimisation problem

I Belief state is large and continuous

I Set of system actions also large

Knowledge of the environment, in this case the user

I We do not have transition probabilities

I Where do rewards come from?

11 / 36

Problem: large belief state and action space

Solution: perform optimisation in a reduced space – summary
space built according to the heuristics

Belief space
(Master space)

Summary space

System Actions
(Master actions)

Summary actions

Summary
Function

Master
Function

(Learned) Summary
Policy

12 / 36

Problem: Where do the transition probability and the
reward come from?

Solution: learn from real users.

Speech
recognition

Semantic
decoding

Natural language
generationSpeech synthesis

Ontologywaveform distribution over
text hypotheses

distribution over
dialogue acts

Belief
tracking

Policy
optimisation

13 / 36

Problem: Where do the transition probability and the
reward come from?

Solution: learn from a simulated user.

Ontology

distribution over
user dialogue acts

Belief
tracking

Policy
optimisation

Simulated user

system
 dialogue act

14 / 36

Elements of the simulated user

Ontology

distribution over
user dialogue acts

Belief
tracking

Policy
optimisation

Error model

User model

Reward
model

reward

system
 dialogue act

15 / 36

Evaluation metrics/optimisation criteria

Candidate Issues

User satisfaction How to measure in a real scenario?

Task completion Task is hidden.

Dialogue length Hang up on user?

Channel accuracy Endless confirmations

Repeat usage Not always makes sense.

Financial benefit Maybe in industry but not in research.

Williams, Spoken dialogue system: challenges and opportunities for
research, ASRU (invited talk), 2009

16 / 36

Theory: reinforcement learning [Sutton and Barto, 2018]

The agent in reinforcement learning

I Learns from interaction with the environment

I Needs to perform planning

I Has a goal or a number of sub-goals

I Must deal with uncertain environments

I Learns from experience

17 / 36

Main elements in reinforcement learning

policy defines behaviour of the agent

reward defines the goal of the agent

value function is a prediction of the future reward for a given state,
defines how ”good” it is to be in a particular state

model explains how the environment behaves:

I What are the transition probabilities for different
(belief) states?

I What is the reward for any given state and
action?

18 / 36

The agent-environment interface

I (belief) state b ∈ B
I action a ∈ A
I reward r ∈ R
I policy πt(a | b) = p(at = a | bt = b)

19 / 36

Return

Episodic tasks: Rt = rt+1 + rt+2 + · · ·+ rT , where T is the final
time step

Continuing tasks: Rt = rt+1 + γrt+2 + γ2rt+3 + . . . where γ is the
discount factor, 0 ≤ γ < 1

I when γ = 0 the agent is miopic

I when γ → 1 the agent is farsighted

Unified notation: Rt =
∑T−t−1

k=0 γk rt+k+1

20 / 36

Value function

Value function How good is it for the system to be in a particular
belief state when following policy π?

Vπ(b) = Eπ [Rt |bt = b]

Q-function How good it is to take action a in belief state b and
then follow a policy π?

Qπ(b, a) = Eπ [Rt |bt = b, at = a]

21 / 36

Optimal value functions

Policy π is better or equal to policy π′ iff Vπ(b) ≥ Vπ′(b) for every
b ∈ B.

V∗(b) = max
π

Vπ(b)

Q∗(b, a) = max
π

Qπ(b, a)

= E [rt+1 + γV∗(bt+1) | bt = b, at = a]

22 / 36

Bellman optimality equation

Bellman optimality equation for Value function:

V∗(b) = max
a

∑
b′,r

p(b′, r | b, a)[r + γV∗(b
′)]

Bellman optimality equation for Q function:

Q∗(b, a) =
∑
b′,r

p(b′, r | b, a)[r + γmax
a′

Q∗(b
′, a′)]

Once we have the optimal Q function we can retrieve the optimal
policy:

π∗(b) = arg max
a

Q∗(b, a)

23 / 36

1. Value-based vs policy-based learning

Value-based learning Optimising the Value function or the Q
function is equivalent to optimising the policy.
Value-based reinforcement learning finds the optimal
Value function or the Q-function and from there
derive the policy.

Policy-based learning We could directly optimise the policy
without needing to optimise first the value function.

Actor-critic methods We can optimise the policy (actor) and the
value (critic) jointly. Learning one can aid learning
another.

24 / 36

2. Model-free vs model-based learning

Model-free RL The agent has no knowledge of the underlying
dynamics of the environment and learns solely from
trial and error in interaction with the environment.

Model-based RL The knowledge of the model (transition
probabilities and the reward function) is used for
planning and no interaction is necessary.

Dyna-Q framework learn from the interaction but use that data to
also learn the model.

Offline RL Learn only from (a fixed set of) interactions from a
dataset.

25 / 36

3. On-policy vs off-policy methods

In reinforcement learning we distinguish between

On-policy methods which attempt to evaluate or improve the
policy that is used to make decisions when
interacting with environment

Off-policy methods which evaluate or improve a policy different
from that used to interact with the environment
(behavioural policy).

26 / 36

4. Exploration and exploitation dilemma

When interacting with the environment, the agent must
simultaneously:

I exploit current knowledge

I explore new actions

The agent must try a variety of actions and progressively favour
those that appear to be best. Examples include:

ε-greedy π(b) =

{
arg maxa Q(b, a) with 1− ε probability

random action with ε probability
,

where ε is the exploration rate

Boltzmann policy π(a|b) = exp(αQ(b,a))∑
a exp(αQ(b,a)) , where α > 0 is the

learning rate

Thompson sampling If π or Q function are stochastic we can
sample from these to directly deal with
exploration/exploitation dilemma.

27 / 36

5. Variance vs bias

I The prime objective in RL is to maximise the return R in
expectation

I We can make samples and simply observe at the end of each
interaction what is the (empirical) return, averaging these
over time would give us the estimate. These estimates have
high variance (but no bias).

I Alternatively, we can observe from the Bellmen equations that
the difference between estimates in the current belief state
and the next belief state is the immediate reward. Therefore
we can base estimate in the current state on the immediate
reward and the (previous) estimate in the next (belief) state.
These estimates have high bias (but low variance).

28 / 36

Tabular reinforcement learning

For discrete state spaces standard RL approaches can be used to
estimate optimal Value function, Q-function or policy π

Dynamic programming model-based learning and update of the
estimates are based on the previous estimates

Monte-Carlo methods model-free learning and update of estimates
is based on raw experience (empirical return)

Temporal-difference methods model-free learning and update of
the estimates are based on the previous estimates

29 / 36

Reinforcement learning for dialogue management

Options

I Discretise the belief state/summary space into a grid and
apply tabular RL algorithms to estimate Value function,
Q-function or policy π (for example Monte-Carlo Control in
the practical)

I Apply parametric function approximation to Value
function, Q-function or policy π and find optimal parameters
using gradient methods (for example Deep Q network or
ACER in the practical)

I Apply non-parametric function approximation to Value
function, Q-function or policy π (GPSARSA)

30 / 36

Discretisation of the belief state
I B̂ is a set of representative points
I bt is a belief state at time step t
I If bt is not near any representative point b̂ we create a new

representative point b̂ = bt
I Function Nearest returns the closest representative point

Belief space

b = bt
^

b̂

bt

31 / 36

Monte Carlo control algorithm

Algorithm 1 Monte Carlo control

1: Initialise π and Q arbitrarily
2: Set N(·, ·) to 0
3: repeat
4: Generate an episode [b0, a0, r1 . . . , aT−1, rT ,bT] using policy

π ε-greedily
5: R ← 0
6: for t = T − 1 down-to 0 do
7: R ← γR + rt+1

8: b̂ = Nearest(bt)

9: Q(b̂, at)← Q(b̂,at)∗N(b̂,at)+R

N(b̂,at)+1

10: N(b̂, at)← N(b̂, at) + 1
11: π(b̂) = arg maxa Q(b̂, a)
12: end for
13: until convergence

32 / 36

Monte Carlo control algorithm

1. Value-based or policy-based?

2. Model-based or model-free?

3. On-policy or off-policy?

4. Exploration?

5. High variance or high bias?

33 / 36

Monte Carlo control algorithm

I Value-based method - we are estimating the Q function

I Model-free method - we do not know the transition
probabilities, the system instead interacts with the (simulated)
user

I On-policy method - we use the current best estimate of the
policy to interact with the environment

I ε-greedy exploration

I Raw experience - we only update the Q function at the end of
interaction.

34 / 36

Summary

I Dialogue policy optimisation can be viewed as a reinforcement
learning task

I POMDP can be viewed as a continuous space MDP

I Belief state space can be summarised to reduce computational
complexity

I Concepts of consideration in RL include: value-based vs
policy-based, model-based vs model-free, exploration vs
exploitation, on-policy vs off-policy and variance vs bias.

I Since we work with continuous spaces in dialogue systems to
apply RL the space either needs to be discretised or function
approximation needs to be applied.

35 / 36

References I

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998).
Planning and acting in partially observable stochastic domains.

Artif. Intell., 101(1-2):99–134.

Levin, E., Pieraccini, R., and Eckert, W. (2000).
A stochastic model of human-machine interaction for learning
dialog strategies.
IEEE Transactions on Speech and Audio Processing,
8(1):11–23.

Sutton, R. S. and Barto, A. G. (2018).
Reinforcement Learning: An Introduction.
A Bradford Book, Cambridge, MA, USA.

36 / 36

	Dialogue optimisation as a reinforcement learning task
	Dialogue management as a continuous space Markov decision process
	Summary space
	Simulated user
	RL algorithms for dialogue management

