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Applying reinforcement learning to dialogue

Problems in solving dialogue as an RL task
1. Size of the optimisation problem

> Belief state is large and continuous
» Set of system actions also large

2. Knowledge of the environment, in this case the user

» We do not have transition probabilities
» Where do rewards come from?

3. RL algorithms take a long time to converge
Solutions

» Learn in reduced summary space (1)

» Learn in interaction with a simulated user (2&3)

Are these good solutions?
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Theory: Reinforcement learning

Policy deterministic 7: B — A
or stochastic 7: B x A — [0, 1]

Return R; = ZkT:H_l yk—t=1p

Q-function What is the value of taking action a in belief state b
under a policy 77

Qﬂ—(b, 3) = Eﬂ(Rt | bt = b, dy = 3)

Can we find optimal Q-function with fewer data
points so that we can learn from real users?
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Non-parametric model for Q-function

> Belief states
(from belief
tracker)

» Reward — a
measure of
dialogue
quality

» Gaussian
process model
of the
Q-function

Predictions

» Optimal
Q-function

5/59



Theory: Gaussian processes prior

f(x) ~ GP(m(x), k(x,x))
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Theory: Gaussian processes kernel

f(x0) ~ N(m(x0), k(x0, x0))
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Theory: Gaussian processes kernel
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Theory: Gaussian processes kernel

Any number of function values is Gaussian distributed.
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Theory: Gaussian processes posterior

» Observations y in x and f(x) are jointly Gaussian distributed

» Conditional is then also a Gaussian process
fF(x)|x,y ~ GP(f(x), cov(x, x))

0.5[
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Toy dialogue problem

Voicemail

> States: The user wants the message saved, deleted or the
dialogue is finished

» System actions: save the message, delete the message or
confirm what the user wants
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Q-function estimate without uncertainty
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Q-function estimate with uncertainty
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Role of the kernel function
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Gaussian process model for Q-function [Engel et al., 2005]

» Expected return can be expressed iteratively

-
k—t—1
R = Z Y rk = ree1 +YReq1
k=t+1

» Q-function is the expectation of the return
Qx(b,a) = Ex (R: | b(st) =b,a; = a)
» Return can be modelled as the Q-value and residual AQ;,
R:(b,a) = Qx(b, a) + AQx(b, a).
» Relationship between immediate reward and Q-value is then:

rt+1(ba a) — Qﬂ'(bu a)_’YQﬂ'(b/) a,)+AQ7T(b7 a) _’YAQTF(b/v a/)
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Relationship between immediate rewards and Q-values

rl — Qw(bo, 30) _ ’YQw(b17 al)
+AQ,(b%, 2% — yAQ, (b}, a')

r2 — Qﬂ(bl, al) _ ,wa(b27 32)
+AQx(b!, a') — YAQ.(b?, %)

o= Qﬁ(btfl, atfl) _ ’yQﬂ(bt, at)
+AQr (b1, a") — yAQR (b, a"),
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Relationship between immediate rewards and Q-values

re = Hiqy + H:Aqy,
where

re=1[rt, ... rf]"

a7 = [Qx(b%,2%), ..., Qx (b, 2%)]",
Aqi‘r = [AQW(bO’ aO)’ ctty AQﬂ'(bt’ at)]T’
1 -y -~ 0 0
0 1 -~ 0 0

H, = | | o

0 -« 0 1 —v
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Gaussian process model for Q-function

Prior Qz(b,a) ~ GP (0, k((b, a), (b, a))),
AQx(b, ) ~ N(0,02)

Observations Belief-action pairs B; = [(b®, a%),.. ., (bf, a?)]"
immediate rewards ry = [r}, ..., rf]

Posterior Qr(b, a)|r:, B¢
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Posterior of the Q-function

Q= (b, a)|r:, B ~ GP(Q(b, a), cov((b, a), (b, a))),
Q(b,a) = ke(b,a)"H] (H:K:H] + o?HH] )" r,,
cov((b, a), (b, a)) = k((b, a), (b, a))

— k¢(b,a) THT (H.KH] + ¢?HH]) " Hk:(b, a)

ke(b, a) = [k((b%, %), (b, ), ... k((b%, a"), (b, a))]"
k((b07ao)7(b07ao)) k((bO’QO)’(bt7at))

K: = : . :
k((boaao)v(bt7at)) e k((btaat)’(btvat))
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Applying this to an on-line setting

Computational complexity — need to invert Gram matrix K;
Sequential nature of data — need to perform updates sequentially

Kernel function — need to define correlations
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GP-Sarsa algorithm

» Gram matrix is approximated with a dictionary of
representative points

> Updates take place every time a reward is observed

» Kernel function is decomposed into separate kernels over
belief states and actions

k((b, a), (b, a)) = kg(b,b)k4(a, a)
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Sparsification

» Kernel function is a dot product of potentially infinite set of
feature functions ¢(b, a) = [¢1(b, a), ¢2(b, a),...]"

k((b7 a)? (bv a)) = <¢(b> a)a ¢(b’ a)>

» Gram matrix K; is approximated with Gram matrix over
dictionary points K; and coefficients G; = [g1, . . ., 8¢]

Kt = (D—trq)t ~ GtktG;r

» Dimensionality of K; is m < t



Policy

v

For given b, ﬂl each action a, there is a Gaussian distribution
Q@(b, a) ~ N(Q(b, a), cov((b, a), (b, 2))))
Sampling from these Gaussian distributions gives Q-values

{@(b, a):ae A}
The highest sampled Q-value can then be selected:

v

v

m(b) = arg max {Q(b, a):ac A}

v

This balances exploration and exploitation during learning
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Kernel function

Action kernel Action space is reduced to summary space and then
kernel is simple § function: k(a,a’) = d,(a’)
Belief state kernel Options:

» Reduce to summary space and then calculate
kernel on summary space

» Calculate the kernel directly on the full belief
space

» For continuous variables use linear or Gaussian
kernel
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GP-Sarsa algorithm

Algorithm 1 GP-Sarsa algorithm
1: Define prior for Q-function
2: for each dialogue do
3 Initialise b and choose a according to current @ estimate
4:  if (b, a) is representative add to dictionary
5 for each turn do
6: Take action a observe r and next belief state b’
.
8
9

Choose a’ according to current @ estimate
if (b’,a") is representative add to dictionary
Update posterior mean and variance of @

10: b —=b a—d
11:  end for
12: end for
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Learning from real users [Gasic and Young, 2014]

Moving average success
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GPSarsa

AR A

Value-based or policy-based?
Model-based or model-free?
On-policy or off-policy?
Exploration?

High variance or high bias?

27 /59



GPSarsa

Value-based
Model-free
On-policy
Thompson sampling

AR A

Biased by the choice of prior
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GPSarsa - summary

» Q-function is modelled as a Gaussian process allowing
posterior mean and variance to be calculated every time a
reward is observed

» GP-Sarsa is a model-free, on-line algorithm which allows
tractable approximation to the Gaussian process model for
Q-function

» With adequate choice of the kernel function learning speed
can be significantly improved

» Kernel function can be defined directly on belief space

» The bottleneck of this method is the computational
complexity that is cubic in the number of representative
points.
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Non-parametric vs parametric approaches

» In non-parametric approaches the data are effectively the
parameters of the model. The more data we have the more
complex the optimisation process is.

» In parametric approaches we define the structure of the model
that depends on parameters a priori and these parameters are
estimated from the data.
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Deep learning approaches

» Value function, Q-function or policy are approximated as
neural networks

> These are approximated as non-linear functions, which is
desirable in RL

» Gradient-based optimisation only finds local optima
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Q-learning

For discrete space S and dialogue states s € S

Algorithm 2 Q-learning

1. Initialise @ arbitrarily, Q(terminal,-) =0

2: repeat

3:  Initialize s

4. repeat

5: Choose a e-greedily

6: Take action a, observe r, s’

7: Q(s,a) « Q(s,a) + a(r+ymaxy Q(s',a) — Q(s, a))
8: s s

9:  until s is terminal

10: until convergence
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Deep Q-network algorithm

» Q-function is approximated as a deep neural network
parameterised with 6

» The gradient is given by

VoL(0) = Vo(r +ymax Q(b',a',0) — Q(b, a, 0))>
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DQN

AR A

Value-based or policy-based?
Model-based or model-free?
On-policy or off-policy?
Exploration?

High variance or high bias?
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DQN

AT

Value-based
Model-free
Off-policy
e-greedy
Biased
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Data for reinforcement learning

> In reinforcement learning data from which the agent learns is
created through interaction.

» Reinforcement learning needs a lot of data, but each data
point is used only once.

» In which set-up can we use the data more than once? Can we
learn from experience rather than just through interaction?

36
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Experience replay

» All interactions that the agent generates are kept in
experience replay pool.

> The agent can sample interactions from this pool to "replay”
the interactions that it had.

» This learning set-up has a foundation in neuroscience and is
related to dreaming in mice.

‘ Sample

Experience replay pool
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Off-policy algorithms

> In order to apply experience replay the optimisation algorithm
must be off-policy.

» Remember: off-policy learning follows a behavioural policy u
while optimising a target policy 7.

> In the case of experience replay the p is the policy that
generated the experience.
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Policy-based methods

» Methods that learn a parameterised policy 7(alb, w)
» Can select actions without consulting a value function

» Optimised with respect to a performance measure J(w)
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Policy gradient theorem

» J(w) is the value of the initial belief state.

J(w) = Vx(b)
Vud(w) = Ex[V,, log m(alb, w) Q= (b, a)]
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REINFORCE algorithm

» Policy is approximated as a deep neural network parameterised
with w

» The objective function is the value of the initial state

» The gradient is given by the policy gradient theorem where
Q@ is estimated in a Monte Carlo fashion as the total return
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REINFORCE

AR A

Value-based or policy-based?
Model-based or model-free?
On-policy or off-policy?
Exploration?

High variance or high bias?
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REINFORCE

AR A

Policy-based

Model-free

On-policy

Sampling from the policy

High variance
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Actor critic methods

» Estimate the Q function or the value function (critic) at the

same time as they estimate the policy (actor)

action

reward
User .
belief state
Actor <
A
value

Critic

A A
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Importance sampling

» Importance sampling allows us to take into account that a
behavioural policy produced samples while optimising the
target policy.

m(alb)
b) =
p(alb) 11(alb)
b o m(at|bT)
et u(arlbr)
202
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Problems with importance sampling

» Since the importance sampling ratios are unbounded some
trajectories may "vanish” and some may "explode”, this is
why we need to truncate the importance sampling ratio.

E:[R] = E,

m(ai|bj)
ILGis) R]

i

A

p1 p2 p3 pT
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Off-policy policy gradient theorem

» Utilise importance sampling weights to off-set that the data is
generated with a behavioural policy .

» Use @ instead of R as the return in data generated by p.

» Estimation of @, becomes a critic in the actor-critic
framework.
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Retrace - off-policy estimate for Q-function

» In order to reduce bias (of DQN for example), the estimate
deploys A-returns, a method that combines the benefits of
Monte Carlo estimates (which average returns) and temporal
difference learning (which base estimates on the previous
estimates) by looking a few steps in the future.
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Retrace - off-policy estimate for Q-function

The Retrace target is given by:

Qret — Q(b7 3,9)+

E[_ 7' (H Amin (1, p(as\bs))>

t>0 s=1
(rt + fwa(a!btﬂ)Q(th, a,0) — Q(by, ar, 9)>]

The Q-function gradient is given by

VoL(0) = Vo (Q — Q(b, a,0))*
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TRPO Trust region policy optimisation

» Remember: policy is a probability distribution.

» Small changes in the parameter space can lead to erratic
changes in the output policy.

» Solution: natural gradient, but expensive to compute

» Distance metric in natural gradient can be approximated as
the KL divergence.

» TRPO makes sure that the KL divergence between policies of
subsequent parameters is kept small.
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ACER [Wang et al., 2016]

Algorithm 3 ACER

1: Initialise 6 and w arbitrarily, w(alb,w) and Qy(b, a,w)

2: repeat

3:  Generate episode e according to 7

4. Save episode e and policy 7 in replay pool P

5:  Sample a subset M of episodes from replay pool P

6: for each pair by.7,a1.7, n.-T,HW in M do

7 fort=T to1do

A 08

0: dw + dw + V,J(w)

10: db < db — VQL(H)

11 end for

12.  end for

130 k VoKL [7(:|wpr)||7(-|w)], dw < dw — max{0, %k}
14 wé+wtoa-dw 00+ a-df i

15: until convergence
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ACER

AR A

Value-based or policy-based?
Model-based or model-free?
On-policy or off-policy?
Exploration?

High variance or high bias?
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ACER

Actor-critic
Model-free
Off-policy

Thompson sampling from Boltzmann policy

AT

Reduced variance and low bias
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Dialogue policy: Master action space

Learned
polic!
inform

Heuristics

[

inform(name=Sala Thong, food=Thai, area=centre)

15 summary
actions

1035 master
actions
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ACER for dialogue management [Weisz et al., 2018]

Q-function

| hidden L1 |

| belief state ]
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ACER vs GPSARSA on summary and master
space [Weisz et al., 2018]

Success rate (%)

—— GP on master action space
GP on summary action space
——= ACER on master action space
ACER on summary action space

0 500 1000 1500 2000 2500 3000 3500 4000
Training Dialogues

» Note ACER needed ~7h to train while GPSARSA needed ~9
days on master action space.
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ACER: Summary

» ACER is an elaborate deep reinforcement learning algorithm

that aims to be sample efficient by utilising experience replay.

» |t utilises several methods to provide estimates with low bias
and variance to support efficient learning.
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