
Dialogue management: Function approximation
for dialogue policy optimisation

Milica Gašić

Dialogue Systems and Machine Learning Group,
Heinrich Heine University Düsseldorf

1 / 59

Problems in applying RL to dialogue

Gaussian process model for Q-function

GP-Sarsa algorithm

Deep reinforcement learning

2 / 59

Applying reinforcement learning to dialogue

Problems in solving dialogue as an RL task

1. Size of the optimisation problem
I Belief state is large and continuous
I Set of system actions also large

2. Knowledge of the environment, in this case the user
I We do not have transition probabilities
I Where do rewards come from?

3. RL algorithms take a long time to converge

Solutions

I Learn in reduced summary space (1)

I Learn in interaction with a simulated user (2&3)

Are these good solutions?

3 / 59

Theory: Reinforcement learning

Policy deterministic π : B → A
or stochastic π : B ×A → [0, 1]

Return Rt =
∑T

k=t+1 γ
k−t−1rk

Q-function What is the value of taking action a in belief state b
under a policy π?

Qπ(b, a) = Eπ(Rt | bt = b, at = a)

Can we find optimal Q-function with fewer data
points so that we can learn from real users?

4 / 59

Non-parametric model for Q-function

Data

I Belief states
(from belief
tracker)

I Reward – a
measure of
dialogue
quality

Model

I Gaussian
process model
of the
Q-function

Predictions

I Optimal
Q-function

5 / 59

Theory: Gaussian processes prior

f (x) ∼ GP(m(x), k(x , x))

6 / 59

Theory: Gaussian processes kernel

f (x0) ∼ N (m(x0), k(x0, x0))

7 / 59

Theory: Gaussian processes kernel

[
f (x0)
f (x1)

]
∼ N

([
m(x0)
m(x1)

]
,

[
k(x0, x0), k(x0, x1)
k(x1, x0), k(x1, x1)

])

8 / 59

Theory: Gaussian processes kernel

Any number of function values is Gaussian distributed.

9 / 59

Theory: Gaussian processes posterior

I Observations y in x and f (x) are jointly Gaussian distributed

I Conditional is then also a Gaussian process
f (x)|x, y ∼ GP(f (x), cov(x , x))

10 / 59

Toy dialogue problem

Voicemail

I States: The user wants the message saved, deleted or the
dialogue is finished

I System actions: save the message, delete the message or
confirm what the user wants

11 / 59

Q-function estimate without uncertainty

Belief state b

12 / 59

Q-function estimate with uncertainty

Belief state b

13 / 59

Role of the kernel function

Belief state Action

Confirm

Confirm

Q-value

3

14 / 59

Gaussian process model for Q-function [Engel et al., 2005]

I Expected return can be expressed iteratively

Rt =
T∑

k=t+1

γk−t−1rk = rt+1 + γRt+1

I Q-function is the expectation of the return

Qπ(b, a) = Eπ (Rt | b(st) = b, at = a)

I Return can be modelled as the Q-value and residual ∆Qπ

Rt(b, a) = Qπ(b, a) + ∆Qπ(b, a).

I Relationship between immediate reward and Q-value is then:

rt+1(b, a) = Qπ(b, a)−γQπ(b′, a′)+∆Qπ(b, a)−γ∆Qπ(b′, a′)

15 / 59

Relationship between immediate rewards and Q-values

r1 = Qπ(b0, a0)− γQπ(b1, a1)
+∆Qπ(b0, a0)− γ∆Qπ(b1, a1)

r2 = Qπ(b1, a1)− γQπ(b2, a2)
+∆Qπ(b1, a1)− γ∆Qπ(b2, a2)

...
r t = Qπ(bt−1, at−1)− γQπ(bt , at)

+∆Qπ(bt−1, at−1)− γ∆Qπ(bt , at),

16 / 59

Relationship between immediate rewards and Q-values

rt = Htq
π
t + Ht∆qπt ,

where

rt = [r1, . . . , r t]T

qπt = [Qπ(b0, a0), . . . ,Qπ(bt , at)]T,

∆qπt = [∆Qπ(b0, a0), . . . ,∆Qπ(bt , at)]T,

Ht =


1 −γ · · · 0 0
0 1 · · · 0 0
...

. . .
. . .

...
...

0 · · · 0 1 −γ

 .

17 / 59

Gaussian process model for Q-function

Prior Qπ(b, a) ∼ GP (0, k((b, a), (b, a))),
∆Qπ(b, a) ∼ N (0, σ2)

Observations Belief-action pairs Bt = [(b0, a0), . . . , (bt , at)]T

immediate rewards rt = [r1, . . . , r t]

Posterior Qπ(b, a)|rt ,Bt

18 / 59

Posterior of the Q-function

Qπ(b, a)|rt ,Bt ∼ GP(Q(b, a), cov((b, a), (b, a))),

Q(b, a) = kt(b, a)THT
t (HtKtH

T
t + σ2HtH

T
t)−1rt ,

cov((b, a), (b, a)) = k((b, a), (b, a))

− kt(b, a)THT
t (HtKtH

T
t + σ2HtH

T
t)−1Htkt(b, a)

kt(b, a) = [k((b0, a0), (b, a)), . . . , k((bt , at), (b, a))]T

Kt =

 k((b0, a0), (b0, a0)) · · · k((b0, a0), (bt , at))
...

. . .
...

k((b0, a0), (bt , at)) · · · k((bt , at), (bt , at))


19 / 59

Applying this to an on-line setting

Computational complexity – need to invert Gram matrix Kt

Sequential nature of data – need to perform updates sequentially

Kernel function – need to define correlations

20 / 59

GP-Sarsa algorithm

I Gram matrix is approximated with a dictionary of
representative points

I Updates take place every time a reward is observed

I Kernel function is decomposed into separate kernels over
belief states and actions

k((b, a), (b, a)) = kB(b,b)kA(a, a)

21 / 59

Sparsification

I Kernel function is a dot product of potentially infinite set of
feature functions φ(b, a) = [φ1(b, a), φ2(b, a), . . .]T

k((b, a), (b, a)) = 〈φ(b, a),φ(b, a)〉

I Gram matrix Kt is approximated with Gram matrix over
dictionary points K̃t and coefficients Gt = [g1, . . . , gt]

Kt = ΦT
t Φt ≈ GtK̃tG

T
t

I Dimensionality of K̃t is m� t

22 / 59

Policy

I For given b, for each action a, there is a Gaussian distribution
Q̂(b, a) ∼ N (Q(b, a), cov((b, a), (b, a))))

I Sampling from these Gaussian distributions gives Q-values{
Q̂(b, a) : a ∈ A

}
I The highest sampled Q-value can then be selected:

π(b) = arg max
a

{
Q̂(b, a) : a ∈ A

}
I This balances exploration and exploitation during learning

23 / 59

Kernel function

Action kernel Action space is reduced to summary space and then
kernel is simple δ function: k(a, a′) = δa(a′)

Belief state kernel Options:

I Reduce to summary space and then calculate
kernel on summary space

I Calculate the kernel directly on the full belief
space

I For continuous variables use linear or Gaussian
kernel

24 / 59

GP-Sarsa algorithm

Algorithm 1 GP-Sarsa algorithm

1: Define prior for Q-function
2: for each dialogue do
3: Initialise b and choose a according to current Q estimate
4: if (b, a) is representative add to dictionary
5: for each turn do
6: Take action a observe r and next belief state b′

7: Choose a′ according to current Q estimate
8: if (b′, a′) is representative add to dictionary
9: Update posterior mean and variance of Q

10: b′ → b, a→ a′

11: end for
12: end for

25 / 59

Learning from real users [Gasic and Young, 2014]

0 200 400 600 800 1000 1200
Dialogues

0

20

40

60

80

100
M

ov
in

g
av

er
ag

e
su

cc
es

s

On-lineLearning
SimulatorTrained

26 / 59

GPSarsa

1. Value-based or policy-based?

2. Model-based or model-free?

3. On-policy or off-policy?

4. Exploration?

5. High variance or high bias?

27 / 59

GPSarsa

1. Value-based

2. Model-free

3. On-policy

4. Thompson sampling

5. Biased by the choice of prior

28 / 59

GPSarsa - summary

I Q-function is modelled as a Gaussian process allowing
posterior mean and variance to be calculated every time a
reward is observed

I GP-Sarsa is a model-free, on-line algorithm which allows
tractable approximation to the Gaussian process model for
Q-function

I With adequate choice of the kernel function learning speed
can be significantly improved

I Kernel function can be defined directly on belief space

I The bottleneck of this method is the computational
complexity that is cubic in the number of representative
points.

29 / 59

Non-parametric vs parametric approaches

I In non-parametric approaches the data are effectively the
parameters of the model. The more data we have the more
complex the optimisation process is.

I In parametric approaches we define the structure of the model
that depends on parameters a priori and these parameters are
estimated from the data.

30 / 59

Deep learning approaches

I Value function, Q-function or policy are approximated as
neural networks

I These are approximated as non-linear functions, which is
desirable in RL

I Gradient-based optimisation only finds local optima

31 / 59

Q-learning

For discrete space S and dialogue states s ∈ S

Algorithm 2 Q-learning

1: Initialise Q arbitrarily, Q(terminal , ·) = 0
2: repeat
3: Initialize s
4: repeat
5: Choose a ε-greedily
6: Take action a, observe r , s ′

7: Q(s, a)← Q(s, a) + α (r + γmaxa′ Q(s ′, a′)− Q(s, a))
8: s ← s ′

9: until s is terminal
10: until convergence

32 / 59

Deep Q-network algorithm

I Q-function is approximated as a deep neural network
parameterised with θ

I The gradient is given by

∇θL(θ) = ∇θ(r + γmax
a′

Q(b′, a′, θ)− Q(b, a, θ))2

33 / 59

DQN

1. Value-based or policy-based?

2. Model-based or model-free?

3. On-policy or off-policy?

4. Exploration?

5. High variance or high bias?

34 / 59

DQN

1. Value-based

2. Model-free

3. Off-policy

4. ε-greedy

5. Biased

35 / 59

Data for reinforcement learning

I In reinforcement learning data from which the agent learns is
created through interaction.

I Reinforcement learning needs a lot of data, but each data
point is used only once.

I In which set-up can we use the data more than once? Can we
learn from experience rather than just through interaction?

36 / 59

Experience replay

I All interactions that the agent generates are kept in
experience replay pool.

I The agent can sample interactions from this pool to ”replay”
the interactions that it had.

I This learning set-up has a foundation in neuroscience and is
related to dreaming in mice.

Experience replay pool

Sample

37 / 59

Off-policy algorithms

I In order to apply experience replay the optimisation algorithm
must be off-policy.

I Remember: off-policy learning follows a behavioural policy µ
while optimising a target policy π.

I In the case of experience replay the µ is the policy that
generated the experience.

38 / 59

Policy-based methods

I Methods that learn a parameterised policy π(a|b, ω)

I Can select actions without consulting a value function

I Optimised with respect to a performance measure J(ω)

39 / 59

Policy gradient theorem

I J(ω) is the value of the initial belief state.

J(ω) = Vπ(b)

∇ωJ(ω) = Eπ[∇ω log π(a|b, ω)Qπ(b, a)]

40 / 59

REINFORCE algorithm

I Policy is approximated as a deep neural network parameterised
with ω

I The objective function is the value of the initial state

I The gradient is given by the policy gradient theorem where
Qπ is estimated in a Monte Carlo fashion as the total return

41 / 59

REINFORCE

1. Value-based or policy-based?

2. Model-based or model-free?

3. On-policy or off-policy?

4. Exploration?

5. High variance or high bias?

42 / 59

REINFORCE

1. Policy-based

2. Model-free

3. On-policy

4. Sampling from the policy

5. High variance

43 / 59

Actor critic methods

I Estimate the Q function or the value function (critic) at the
same time as they estimate the policy (actor)

User

Critic

Actor

belief state

reward

action

value

44 / 59

Importance sampling

I Importance sampling allows us to take into account that a
behavioural policy produced samples while optimising the
target policy.

ρ(a|b) =
π(a|b)

µ(a|b)

45 / 59

Problems with importance sampling

I Since the importance sampling ratios are unbounded some
trajectories may ”vanish” and some may ”explode”, this is
why we need to truncate the importance sampling ratio.

Eπ[R] = Eµ

[∏
i

π(ai |bi)

µ(ai |bi)
R

]

!1 !2 !3 !T

46 / 59

Off-policy policy gradient theorem

I Utilise importance sampling weights to off-set that the data is
generated with a behavioural policy µ.

I Use Qπ instead of R as the return in data generated by µ.

I Estimation of Qπ becomes a critic in the actor-critic
framework.

47 / 59

Retrace - off-policy estimate for Q-function

I In order to reduce bias (of DQN for example), the estimate
deploys λ-returns, a method that combines the benefits of
Monte Carlo estimates (which average returns) and temporal
difference learning (which base estimates on the previous
estimates) by looking a few steps in the future.

48 / 59

Retrace - off-policy estimate for Q-function

The Retrace target is given by:

Qret = Q(b, a, θ)+

E
µ

[
∑
t≥0

γt

(
t∏

s=1

λmin (1, ρ(as |bs))

)
(
rt + γ

∑
a

π(a|bt+1)Q(bt+1, a, θ)− Q(bt , at , θ)

)
]

The Q-function gradient is given by

∇θL(θ) = ∇θ
(
Qret − Q(b, a, θ)

)2

49 / 59

TRPO Trust region policy optimisation

I Remember: policy is a probability distribution.

I Small changes in the parameter space can lead to erratic
changes in the output policy.

I Solution: natural gradient, but expensive to compute

I Distance metric in natural gradient can be approximated as
the KL divergence.

I TRPO makes sure that the KL divergence between policies of
subsequent parameters is kept small.

50 / 59

ACER [Wang et al., 2016]

Algorithm 3 ACER

1: Initialise θ and ω arbitrarily, π(a|b, ω) and Qθ(b, a, ω)
2: repeat
3: Generate episode e according to π
4: Save episode e and policy π in replay pool P
5: Sample a subset M of episodes from replay pool P
6: for each pair b1:T , a1:T , r1:T , µ in M do
7: for t = T to 1 do
8: ρt ← π(at |bt ,ω)

µ(at |bt)

9: dω ← dω +∇ωJ(ω)
10: dθ ← dθ −∇θL(θ)
11: end for
12: end for
13: k ← ∇ωKL [π(·|ωpr)||π(·|ω)], dω ← dω −max{0, kTdω−δ

||k||22
k}

14: ω ← ω + α · dω, θ ← θ + α · dθ
15: until convergence

51 / 59

ACER

1. Value-based or policy-based?

2. Model-based or model-free?

3. On-policy or off-policy?

4. Exploration?

5. High variance or high bias?

52 / 59

ACER

1. Actor-critic

2. Model-free

3. Off-policy

4. Thompson sampling from Boltzmann policy

5. Reduced variance and low bias

53 / 59

Dialogue policy: Master action space

restaurant

other
Turkish

other
Thai

0.8
0.4

0.2 0.30.3

Sala Thong is in
the centre and

serves Thai food.

Learned
policy

Heuristics

inform

inform(name=Sala Thong, food=Thai, area=centre)

15 summary
actions

1035 master
 actions

Thai.

54 / 59

ACER for dialogue management [Weisz et al., 2018]

belief state

hidden L1

hidden L2

policy Q-function

!s !p Qs Qp

55 / 59

ACER vs GPSARSA on summary and master
space [Weisz et al., 2018]

0 500 1000 1500 2000 2500 3000 3500 4000
Training Dialogues

0

20

40

60

80

100
Su

cc
es

s
ra

te
 (%

)

GP on master action space
GP on summary action space
ACER on master action space
ACER on summary action space

I Note ACER needed ∼7h to train while GPSARSA needed ∼9
days on master action space.

56 / 59

ACER: Summary

I ACER is an elaborate deep reinforcement learning algorithm
that aims to be sample efficient by utilising experience replay.

I It utilises several methods to provide estimates with low bias
and variance to support efficient learning.

57 / 59

References I

Engel, Y., Mannor, S., and Meir, R. (2005).
Reinforcement learning with Gaussian processes.
In Proceedings of ICML.

Gasic, M. and Young, S. (2014).
Gaussian processes for pomdp-based dialogue manager
optimization.
Audio, Speech, and Language Processing, IEEE/ACM
Transactions on, 22(1):28–40.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., and de Freitas, N. (2016).
Sample efficient actor-critic with experience replay.
CoRR, abs/1611.01224.

58 / 59

References II

Weisz, G., Budzianowski, P., Su, P.-H., and Gasic, M. (2018).
Sample efficient deep reinforcement learning for dialogue
systems with large action spaces.
IEEE/ACM Trans. Audio, Speech and Lang. Proc.,
26(11):20832097.

59 / 59

	Problems in applying RL to dialogue
	Gaussian process model for Q-function
	GP-Sarsa algorithm
	Deep reinforcement learning

