Dialogue management: Function approximation
for dialogue policy optimisation

Milica Gasi¢

Dialogue Systems and Machine Learning Group,
Heinrich Heine University Diisseldorf

/59

Problems in applying RL to dialogue

Gaussian process model for Q-function

GP-Sarsa algorithm

Deep reinforcement learning

2/59

Applying reinforcement learning to dialogue

Problems in solving dialogue as an RL task
1. Size of the optimisation problem

> Belief state is large and continuous
» Set of system actions also large

2. Knowledge of the environment, in this case the user

» We do not have transition probabilities
» Where do rewards come from?

3. RL algorithms take a long time to converge
Solutions

» Learn in reduced summary space (1)

» Learn in interaction with a simulated user (2&3)

Are these good solutions?

3/59

Theory: Reinforcement learning

Policy deterministic 7: B — A
or stochastic 7: B x A — [0, 1]

Return R; = ZkT:H_l yk—t=1p

Q-function What is the value of taking action a in belief state b
under a policy 77

Qﬂ—(b, 3) = Eﬂ(Rt | bt = b, dy = 3)

Can we find optimal Q-function with fewer data
points so that we can learn from real users?

59

Non-parametric model for Q-function

> Belief states
(from belief
tracker)

» Reward — a
measure of
dialogue
quality

» Gaussian
process model
of the
Q-function

Predictions

» Optimal
Q-function

5/59

Theory: Gaussian processes prior

f(x) ~ GP(m(x), k(x,x))

59

Theory: Gaussian processes kernel

f(x0) ~ N(m(x0), k(x0, x0))

59

Theory: Gaussian processes kernel

L ([] [)

(x1)

2 ‘ HM
gl

i)

|

i
i

(x)
)

/59

Theory: Gaussian processes kernel

Any number of function values is Gaussian distributed.

59

Theory: Gaussian processes posterior

» Observations y in x and f(x) are jointly Gaussian distributed

» Conditional is then also a Gaussian process
fF(x)|x,y ~ GP(f(x), cov(x, x))

0.5[

10 /59

Toy dialogue problem

Voicemail

> States: The user wants the message saved, deleted or the
dialogue is finished

» System actions: save the message, delete the message or
confirm what the user wants

11/59

Q-function estimate without uncertainty

1.0
® * a=delete
® e g=confirm

08

0.8,
0.6 2’0.6
z
0.4 ©
Q2
[<
0.2 0 04
save delete finish
i 0.2
Belief state b
0.0
-10 -5 0 5 10

Expected long term reward Q(b,a)

12 /59

Q-function estimate with uncertainty

1.0
— a=delete
— a=confirm
0.8
0.8
08 206
’ o
8
0.4)
<4
02 0 04
save delete finish
0.2
Belief state b
0.0
-10 -5 0 5 10

Expected long term reward Q(b,a)

13 /59

Role of the kernel function

0.8

0.6

0.4

0.8

Belief state

save delete finish

save delete finish

Action

Confirm

Confirm

Q-value

w

14 /59

Gaussian process model for Q-function [Engel et al., 2005]

» Expected return can be expressed iteratively

-
k—t—1
R = Z Y rk = ree1 +YReq1
k=t+1

» Q-function is the expectation of the return
Qx(b,a) = Ex (R: | b(st) =b,a; = a)
» Return can be modelled as the Q-value and residual AQ;,
R:(b,a) = Qx(b, a) + AQx(b, a).
» Relationship between immediate reward and Q-value is then:

rt+1(ba a) — Qﬂ'(bu a)_’YQﬂ'(b/) a,)+AQ7T(b7 a) _’YAQTF(b/v a/)

15 /59

Relationship between immediate rewards and Q-values

rl — Qw(bo, 30) _ ’YQw(b17 al)
+AQ,(b%, 2% — yAQ, (b}, a')

r2 — Qﬂ(bl, al) _ ,wa(b27 32)
+AQx(b!, a') — YAQ.(b?, %)

o= Qﬁ(btfl, atfl) _ ’yQﬂ(bt, at)
+AQr (b1, a") — yAQR (b, a"),

16 /59

Relationship between immediate rewards and Q-values

re = Hiqy + H:Aqy,
where

re=1[rt, ... rf]"

a7 = [Qx(b%,2%), ..., Qx (b, 2%)]",
Aqi‘r = [AQW(bO’ aO)’ ctty AQﬂ'(bt’ at)]T’
1 -y -~ 0 0
0 1 -~ 0 0

H, = | | o

0 -« 0 1 —v

17 /59

Gaussian process model for Q-function

Prior Qz(b,a) ~ GP (0, k((b, a), (b, a))),
AQx(b,) ~ N(0,02)

Observations Belief-action pairs B; = [(b®, a%),.. ., (bf, a?)]"
immediate rewards ry = [r}, ..., rf]

Posterior Qr(b, a)|r:, B¢

18 /59

Posterior of the Q-function

Q= (b, a)|r:, B ~ GP(Q(b, a), cov((b, a), (b, a))),
Q(b,a) = ke(b,a)"H] (H:K:H] + o?HH])" r,,
cov((b, a), (b, a)) = k((b, a), (b, a))

— k¢(b,a) THT (H.KH] + ¢?HH]) " Hk:(b, a)

ke(b, a) = [k((b%, %), (b,), ... k((b%, a"), (b, a))]"
k((b07ao)7(b07ao)) k((bO’QO)’(bt7at))

K: = : . :
k((boaao)v(bt7at)) e k((btaat)’(btvat))

19 /59

Applying this to an on-line setting

Computational complexity — need to invert Gram matrix K;
Sequential nature of data — need to perform updates sequentially

Kernel function — need to define correlations

20 /59

GP-Sarsa algorithm

» Gram matrix is approximated with a dictionary of
representative points

> Updates take place every time a reward is observed

» Kernel function is decomposed into separate kernels over
belief states and actions

k((b, a), (b, a)) = kg(b,b)k4(a, a)

21 /59

Sparsification

» Kernel function is a dot product of potentially infinite set of
feature functions ¢(b, a) = [¢1(b, a), ¢2(b, a),...]"

k((b7 a)? (bv a)) = <¢(b> a)a ¢(b’ a)>

» Gram matrix K; is approximated with Gram matrix over
dictionary points K; and coefficients G; = [g1, . . ., 8¢]

Kt = (D—trq)t ~ GtktG;r

» Dimensionality of K; is m < t

Policy

v

For given b, ﬂl each action a, there is a Gaussian distribution
Q@(b, a) ~ N(Q(b, a), cov((b, a), (b, 2))))
Sampling from these Gaussian distributions gives Q-values

{@(b, a):ae A}
The highest sampled Q-value can then be selected:

v

v

m(b) = arg max {Q(b, a):ac A}

v

This balances exploration and exploitation during learning

23 /59

Kernel function

Action kernel Action space is reduced to summary space and then
kernel is simple § function: k(a,a’) = d,(a’)
Belief state kernel Options:

» Reduce to summary space and then calculate
kernel on summary space

» Calculate the kernel directly on the full belief
space

» For continuous variables use linear or Gaussian
kernel

24 /59

GP-Sarsa algorithm

Algorithm 1 GP-Sarsa algorithm
1: Define prior for Q-function
2: for each dialogue do
3 Initialise b and choose a according to current @ estimate
4: if (b, a) is representative add to dictionary
5 for each turn do
6: Take action a observe r and next belief state b’
.
8
9

Choose a’ according to current @ estimate
if (b’,a") is representative add to dictionary
Update posterior mean and variance of @

10: b —=b a—d
11: end for
12: end for

25 /59

Learning from real users [Gasic and Young, 2014]

Moving average success

— On-lineLearning
- - SimulatorTrained

i \ \ Il Il Il
0 200 400 600 800 1000 1200
Dialogues

26/59

GPSarsa

AR A

Value-based or policy-based?
Model-based or model-free?
On-policy or off-policy?
Exploration?

High variance or high bias?

27 /59

GPSarsa

Value-based
Model-free
On-policy
Thompson sampling

AR A

Biased by the choice of prior

28 /59

GPSarsa - summary

» Q-function is modelled as a Gaussian process allowing
posterior mean and variance to be calculated every time a
reward is observed

» GP-Sarsa is a model-free, on-line algorithm which allows
tractable approximation to the Gaussian process model for
Q-function

» With adequate choice of the kernel function learning speed
can be significantly improved

» Kernel function can be defined directly on belief space

» The bottleneck of this method is the computational
complexity that is cubic in the number of representative
points.

29 /59

Non-parametric vs parametric approaches

» In non-parametric approaches the data are effectively the
parameters of the model. The more data we have the more
complex the optimisation process is.

» In parametric approaches we define the structure of the model
that depends on parameters a priori and these parameters are
estimated from the data.

30/59

Deep learning approaches

» Value function, Q-function or policy are approximated as
neural networks

> These are approximated as non-linear functions, which is
desirable in RL

» Gradient-based optimisation only finds local optima

31/59

Q-learning

For discrete space S and dialogue states s € S

Algorithm 2 Q-learning

1. Initialise @ arbitrarily, Q(terminal,-) =0

2: repeat

3: Initialize s

4. repeat

5: Choose a e-greedily

6: Take action a, observe r, s’

7: Q(s,a) « Q(s,a) + a(r+ymaxy Q(s',a) — Q(s, a))
8: s s

9: until s is terminal

10: until convergence

32/59

Deep Q-network algorithm

» Q-function is approximated as a deep neural network
parameterised with 6

» The gradient is given by

VoL(0) = Vo(r +ymax Q(b',a',0) — Q(b, a, 0))>

33 /59

DQN

AR A

Value-based or policy-based?
Model-based or model-free?
On-policy or off-policy?
Exploration?

High variance or high bias?

34 /59

DQN

AT

Value-based
Model-free
Off-policy
e-greedy
Biased

35/59

Data for reinforcement learning

> In reinforcement learning data from which the agent learns is
created through interaction.

» Reinforcement learning needs a lot of data, but each data
point is used only once.

» In which set-up can we use the data more than once? Can we
learn from experience rather than just through interaction?

36

59

Experience replay

» All interactions that the agent generates are kept in
experience replay pool.

> The agent can sample interactions from this pool to "replay”
the interactions that it had.

» This learning set-up has a foundation in neuroscience and is
related to dreaming in mice.

‘ Sample

Experience replay pool

37/59

Off-policy algorithms

> In order to apply experience replay the optimisation algorithm
must be off-policy.

» Remember: off-policy learning follows a behavioural policy u
while optimising a target policy 7.

> In the case of experience replay the p is the policy that
generated the experience.

38 /59

Policy-based methods

» Methods that learn a parameterised policy 7(alb, w)
» Can select actions without consulting a value function

» Optimised with respect to a performance measure J(w)

39 /59

Policy gradient theorem

» J(w) is the value of the initial belief state.

J(w) = Vx(b)
Vud(w) = Ex[V,, log m(alb, w) Q= (b, a)]

40 /59

REINFORCE algorithm

» Policy is approximated as a deep neural network parameterised
with w

» The objective function is the value of the initial state

» The gradient is given by the policy gradient theorem where
Q@ is estimated in a Monte Carlo fashion as the total return

41 /59

REINFORCE

AR A

Value-based or policy-based?
Model-based or model-free?
On-policy or off-policy?
Exploration?

High variance or high bias?

42 /59

REINFORCE

AR A

Policy-based

Model-free

On-policy

Sampling from the policy

High variance

43 /59

Actor critic methods

» Estimate the Q function or the value function (critic) at the

same time as they estimate the policy (actor)

action

reward
User .
belief state
Actor <
A
value

Critic

A A

44 /59

Importance sampling

» Importance sampling allows us to take into account that a
behavioural policy produced samples while optimising the
target policy.

m(alb)
b) =
p(alb) 11(alb)
b o m(at|bT)
et u(arlbr)
202

45 /59

Problems with importance sampling

» Since the importance sampling ratios are unbounded some
trajectories may "vanish” and some may "explode”, this is
why we need to truncate the importance sampling ratio.

E:[R] = E,

m(ai|bj)
ILGis) R]

i

A

p1 p2 p3 pT

46 /59

Off-policy policy gradient theorem

» Utilise importance sampling weights to off-set that the data is
generated with a behavioural policy .

» Use @ instead of R as the return in data generated by p.

» Estimation of @, becomes a critic in the actor-critic
framework.

47 /59

Retrace - off-policy estimate for Q-function

» In order to reduce bias (of DQN for example), the estimate
deploys A-returns, a method that combines the benefits of
Monte Carlo estimates (which average returns) and temporal
difference learning (which base estimates on the previous
estimates) by looking a few steps in the future.

48 /59

Retrace - off-policy estimate for Q-function

The Retrace target is given by:

Qret — Q(b7 3,9)+

E[_ 7' (H Amin (1, p(as\bs))>

t>0 s=1
(rt + fwa(a!btﬂ)Q(th, a,0) — Q(by, ar, 9)>]

The Q-function gradient is given by

VoL(0) = Vo (Q — Q(b, a,0))*

49 /59

TRPO Trust region policy optimisation

» Remember: policy is a probability distribution.

» Small changes in the parameter space can lead to erratic
changes in the output policy.

» Solution: natural gradient, but expensive to compute

» Distance metric in natural gradient can be approximated as
the KL divergence.

» TRPO makes sure that the KL divergence between policies of
subsequent parameters is kept small.

50 /59

ACER [Wang et al., 2016]

Algorithm 3 ACER

1: Initialise 6 and w arbitrarily, w(alb,w) and Qy(b, a,w)

2: repeat

3: Generate episode e according to 7

4. Save episode e and policy 7 in replay pool P

5: Sample a subset M of episodes from replay pool P

6: for each pair by.7,a1.7, n.-T,HW in M do

7 fort=T to1do

A 08

0: dw + dw + V,J(w)

10: db < db — VQL(H)

11 end for

12. end for

130 k VoKL [7(:|wpr)||7(-|w)], dw < dw — max{0, %k}
14 wé+wtoa-dw 00+ a-df i

15: until convergence

51/59

ACER

AR A

Value-based or policy-based?
Model-based or model-free?
On-policy or off-policy?
Exploration?

High variance or high bias?

52 /59

ACER

Actor-critic
Model-free
Off-policy

Thompson sampling from Boltzmann policy

AT

Reduced variance and low bias

53 /59

Dialogue policy: Master action space

Learned
polic!
inform

Heuristics

[

inform(name=Sala Thong, food=Thai, area=centre)

15 summary
actions

1035 master
actions

54 /59

ACER for dialogue management [Weisz et al., 2018]

Q-function

| hidden L1 |

| belief state]

55 /59

ACER vs GPSARSA on summary and master
space [Weisz et al., 2018]

Success rate (%)

—— GP on master action space
GP on summary action space
——= ACER on master action space
ACER on summary action space

0 500 1000 1500 2000 2500 3000 3500 4000
Training Dialogues

» Note ACER needed ~7h to train while GPSARSA needed ~9
days on master action space.

56 /59

ACER: Summary

» ACER is an elaborate deep reinforcement learning algorithm

that aims to be sample efficient by utilising experience replay.

» |t utilises several methods to provide estimates with low bias
and variance to support efficient learning.

57 /59

References |

[8 Engel, Y., Mannor, S., and Meir, R. (2005).
Reinforcement learning with Gaussian processes.
In Proceedings of ICML.

[8 Gasic, M. and Young, S. (2014).
Gaussian processes for pomdp-based dialogue manager
optimization.
Audio, Speech, and Language Processing, IEEE/ACM
Transactions on, 22(1):28-40.

@ Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., and de Freitas, N. (2016).
Sample efficient actor-critic with experience replay.
CoRR, abs/1611.01224.

58 /59

References |l

[] Weisz, G., Budzianowski, P., Su, P.-H., and Gasic, M. (2018).
Sample efficient deep reinforcement learning for dialogue
systems with large action spaces.

IEEE/ACM Trans. Audio, Speech and Lang. Proc.,
26(11):20832097.

59 /59

	Problems in applying RL to dialogue
	Gaussian process model for Q-function
	GP-Sarsa algorithm
	Deep reinforcement learning

