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Course

I 8 lectures

I 1 practical session on 7th February

I Assessment: written report on coursework (upto 2000 words)

I Deadline 2nd March

I Sutton and Barto Reinforcement learning, an introduction
second edition available at
http://incompleteideas.net/book/the-book-2nd.html
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In this course...

1. Introduction to reinforcement learning (RL)

2. Model-based and Model-free RL

3. Temporal difference (TD) methods

4. Function approximation for Value function

5. Actor-critic methods

6. Deep RL

7. Variance reduction

8. RL for continuous spaces and LQR
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In this lecture...

Introduction to reinforcement learning

Learning from interaction

Markov assumption

Markov decision process

Value function

Bellman optimality equation
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Different learning frameworks

Supervised

I learning from a
training set of
labelled
examples
provided by a
knowledgeable
teacher

Unsupervised

I Finds hidden
structure in
data, estimate
density
functions

Reinforcement

I Learns from
interaction and
not from
examples

I The goal is to
maximise
reward and not
to find hidden
structure
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Learning from interaction

I Reinforcement learning
involve learning what to do

I It maps solutions to actions
as to maximize a numerical
reward

I The agent is not told what
to do but it must discover
the best behaviour

I The actions that it takes
affect future outcomes
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Learning from interaction in practise

I Reinforcement learning in
practise gives only an
approximation to a true
solution

I Real problem might be
continuous and high
dimensional
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Exploration and exploitation dilemma

In reinforcement learning we have a goal-seeking agent that must
simultaneously:

I exploit current knowledge

I explore new actions

The agent must try a variety of actions and progressively favour
those that appear to be best.
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Examples

Traditionally theoretical area, but nowadays example include:

I Robot learning how to move

I Mastering the game of Go

I Teaching a dialogue system how to respond

I Online-advertisement

I Self-driving cars

I Medication dosage

I ...
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Key properties of reinforcement learning

The agent in reinforcement learning

I Learns from interaction with the environment

I Needs to perform planning

I Has a goal or a number of sub-goals

I Must deal with uncertain environments

I Learns from experience
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The agent-environment interface

Environment Agent

state st

reward rt

action at

I state st ∈ S
I action at ∈ A
I reward rt ∈ R
I policy πt(a | s) = p(at = a | st = s)
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Main elements in reinforcement learning

policy defines behaviour of the agent

reward defines the goal of the agent

value function defines what is the goal in the long run, a
prediction of the future reward

model explains how the environment behaves: what are the
transition probabilities for different states? It used for
planning in model-based learning, otherwise the agent
learns from trial and error in model-free learning
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Example

A robot picks boxes and puts them on the shelf. What are states,
actions and rewards?
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Abstraction

Reinforcement learning offers an abstraction to the problem of
goal-directed learning from interaction.
It proposes that the sensory, memory and control apparatus and
the objective can be reduced to states, actions and rewards passing
back and forth between the agent and the environment.
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Goals and rewards

Reward hypothesis: The goal and the purpose of the agent can
be thought of as the maximisation of the expected value of
cumulative reward.
Question: Who computes the reward the environment or the
agent?
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Tasks

Episodic tasks: interaction terminates after a finite number of
steps

Continuing tasks: interaction has no limit
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Return

Episodic tasks: Rt = rt+1 + rt+2 + · · ·+ rT , where T is the final
time step

Continuing tasks: Rt = rt+1 + γrt+2 + γ2rt+3 + . . . where γ is the
discount factor, 0 ≤ γ < 1

I for continuing tasks γ must be smaller than 1

I when γ = 0 the agent is miopic

I when γ → 1 the agent is farsighted

Unified notation: Rt =
∑T−t−1

k=0 γk rt+k+1
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The Markov property

The state contains all information about the environment that is
available to the agent. State representation deals with what
information goes into the state.
The state satisfies the Markov property if it summarises past
sensations compactly in such a way that all relevant information is
retained. If the state satisfies the Markov property than the state
at time t + 1 only depends on the state and the action at time t:

p(st+1 = s ′, rt+1 = r | s0, a0, r1, . . . , st−1, at−1, rt , st , at) =

p(st+1 = s ′, rt+1 = r | st = s, at = a)
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The Markov property

The best policy for choosing actions as a function of a Markov
state is just as good as the best policy for choosing actions as a
function of complete history.
The Markov property is important because it simplifies the policy
optimisation process as the policy is simply a function of states.
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Markov decision process

st st+1

at

rt+1

I p(s ′, r | s, a) = p(st+1 = s ′, rt+1 = r |
st = s, at = a)

I r(s, a) = E [rt+1 | st = s, at = a] =∑
r∈R r

∑
s′∈S p(s ′, r | s, a)
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Markov decision process

Markov decision process is characterised by

state-transition probability p(s ′ | s, a) =
∑

r∈R p(s ′, r | s, a)

expected reward r(s, a, s ′) =
∑

r∈R rp(r | s, a, s ′) =
∑

r∈R rp(s′,r |s,a)
p(s′|s,a)

21 / 30



Value functions

How good is it for the agent to be in a particular state?

state-value function for policy π Vπ(s) = Eπ[Rt | st = s]

action-value function for policy π
Qπ(s, a) = Eπ[Rt | st = s, at = a]
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Bellman equation

Value functions satisfy recursive relations.

Vπ(s) = Eπ[Rt | st = s]

= Eπ[
T−t−1∑
k=0

γk rt+k+1 | st = s]

= Eπ[rt+1 + γ

T−t−1∑
k=0

γk rt+k+2 | st = s]

=
∑
a

π(a, s)
∑
s′

∑
r

p(s ′, r | s, a)

(r + γEπ[
T−1∑
k=0

γk rt+k+2 | st+1 = s ′])

=
∑
a

π(a, s)
∑
s′

∑
r

p(s ′, r | s, a)(r + γVπ(s ′))
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Bellman equation

Bellman equation expresses the relationship between the value of a
state and the value of its successor states. It averages over all
possibilities weighted by their probability of occurrence.
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Optimal value functions

Policy π is better or equal to policy π′ iff Vπ(s) ≥ Vπ′(s) for every
s ∈ S.

V∗(s) = max
π

Vπ(s)

Q∗(s, a) = max
π

Qπ(s, a)

= E [rt+1 + γV∗(st+1) | st = s, at = a]
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Bellman optimality equation

Bellman optimality equation for state-value function:

V∗(s) = max
a

Q∗(s, a)

= max
a

Eπ∗ [Rt | st = s, at = a]

= max
a

Eπ∗ [
T−t−1∑
k=0

γk rt+k+1 | st = s, at = a]

= max
a

Eπ∗ [rt+1 + γ

T−t−1∑
k=0

γk rt+k+2 | st = s, at = a]

= max
a

Eπ∗ [rt+1 + γV∗(st+1) | st = s, at = a]

= max
a

∑
s′,r

p(s ′, r | s, a)[rt+1 + γV∗(s
′)]
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Bellman optimality equation

Bellman optimality equation for action-value function:

Q∗(s, a) = max
a

Eπ∗ [rt+1 + γ max
a′∈A

Q∗(st+1, a
′) | st = s, at = a]

=
∑
s′,r

p(s ′, r | s, a)[rt+1 + γmax
a′

Q∗(s
′, a′)]

For a finite-state MDP this is a system of N non-linear equations
with N unknowns. Once we get the optimal state-value function or
the optimal action-value function we can retrieve the optimal
policy.
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Optimality and approximation

Critical aspect of the problem is the computational power available
in a single time step.

tabular case Value functions can be expressed as table values

non-tabular case Value functions must be approximated using
function approximations

The online nature of reinforcement learning makes it possible to
approximate optimal policies in ways that put more emphasis into
making close-to-optimal decisions for frequently used states than
occasionally used states.
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Summary

I Unlike supervised and unsupervised learning, reinforcement
learning allows learning from interaction

I Elements of reinforcement learning are the policy, the reward,
the value function and the model.

I The state comprises of all information that is relevant to
policy optimisation. A state with Markov property only
depends on the previous state and the action taken.

I Value functions satisfy Bellman equations.
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Next lecture

I Dynamic programming and Monte Carlo methods
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