Dynamic programming and Monte Carlo methods

Milica Gasi¢

Dialogue Systems Group, Cambridge University Engineering Department

/ 26

In this lecture...

Introduction to model-based RL

Policy iteration

Value iteration

Introduction to model-free RL

Monte Carlo methods

2/26

Reminder: Optimal value function

The optimal value function for each state gives highest the
expected return that can be obtained from that state.

2 3 4 3

3 4 5 7
5 6 7 8

5 7 9

6 7 8 9 10

26

Reminder: Optimal Q-function

The optimal Q-function for each state and action gives the highest
expected return that can be obtained from that state when that
action is taken.

“bleliole

4 5 7

3 4 6
D] TC] [
6
AV
a 2
v
D] G B By

-]
][]
-]

IS

Reminder: Optimal policy

The optimal policy is the policy associated with the optimal value

function or the optimal Q-function.

10

26

Dynamic programming

Dynamic programming (DP) algorithms can solve an MDP
reinforcement learning task given the model of the
environment (the state-transition probabilities and
the reward function).

Finite-state MDP A common way of obtaining approximate
solutions for tasks with continuous states and actions
is to quantize the state and action spaces and then
apply finite-state DP methods.

Key idea the use of value functions to organize and structure
the search for good policies.

6

26

Policy evaluation

How to compute the state-value function for a given policy?
» Choose initial approximation arbitrary, eg Vs, Vp(s) =0

» Successive approximations are based on the Bellman equation

Virr(s) = > _m(a,9) Y p(s',rls,a) (r+yVi(s)) (1)

a s'r

» Stop when the value function stops changing
maxXs |Vk+1(5) — Vk(S)’ <40

7/26

Policy improvement

The reason for computing the value function for a given policy is
to be able to find better policies.

Policy improvement theorem Let 7 and 7’ be any pair of
deterministic policies such that, Vs € S, Q(s,7'(s)) > Vi(s).
Then the policy " must be as good as, or better than, .
Policy improvement: constructing a greedy policy 7’ which
actions are better than the original policy 7 in short term

7'(s) = arg;naxz p(s’,rls,a) (r+ Vi(s)) (2)

s,r

If the new policy is not better than the old policy then they are
optimal.

8/26

Policy iteration

Once a policy 7 has been improved using V. to yield a better
policy ™ we can then compute V,, and improve it again to yield
an even better 7.

Algorithm 1 Policy iteration

. Initialise V' and 7 arbitrarily
2: repeat

3: Evaluate V using 7 (Eq 1)
4: Improve 7 using V (Eq 2)
5. until convergence

Jury

9/26

Value iteration

One drawback of policy iteration is that it involves evaluating a
policy at every step. Instead we can perform value iteration:

> Initialise values arbitrarily, eg V(s) = 0 for every s

» Successive approximations/improvements are based on

Viga(s) = max 3" p(s'.rls.a) (r +2Vi(s)) (3)

» Stop when the value function stops changing
maxs | Vit1(s) — Vi(s)| < 0

10/26

Value iteration

Value iteration effectively combines, in each of its sweeps, one
sweep of policy evaluation and one sweep of policy improvement.

Algorithm 2 Value iteration

1: Initialise Vj arbitrarily

2: repeat

3: Improve V41 using the estimate of Vi (Eq 3)
4: until convergence

11/26

Asynchronous dynamic programming

Drawback of DP methods they involve operations over the entire

state set of the MDP. If the state space is very large,
this becomes computationally prohibitive.

Asynchronous algorithms back up the values of states in any order
whatsoever, using whatever values of other states
happen to be available. The values of some states

may be backed up several times before the values of
others are backed up once.

12/26

Generalised policy iteration

Policy evaluation and policy improvement processes interact,
independent of the granularity of the two processes. The
evaluation and improvement processes in GPI can be viewed

competing

cooperating

They compete in the sense that they pull in opposing
directions. Making the policy greedy with respect to
the value function typically makes the value function
incorrect for the changed policy, and making the
value function consistent with the policy typically
causes that policy no longer to be greedy.

In the long run, however, these two processes interact
to find a single joint solution

13 /26

Generalised policy iteration

Vs, Ty

14 /26

Efficiency of dynamic programming

» If n and k denote the number of states and actions, the total
number of (deterministic) policies is k".

» A DP method takes a number of computational operations
that is less than some polynomial function of n and k.

» DP has limited applicability because of the curse of
dimensionality, the fact that the number of states often grows
exponentially with the number of state variables.

> This is the inherent difficulty of the problem, not of DP as a
solution method.

15/26

Summary

» Policy evaluation refers to the iterative computation of the
value functions for a given policy.

» Policy improvement refers to the computation of an improved
policy given the value function for that policy.

» Putting these two computations together, we obtain policy
iteration and value iteration, the two most popular DP
methods.

» Generalized policy iteration is the general idea of two
interacting processes revolving around an approximate policy
and an approximate value function.

16 /26

Model-free reinforcement learning

» The complete model of the environment is not always
available.

> In that case, the agent learns from experience.

» The experience can be obtained from interaction with
simulated or real environment.

» Even-though the agent doesn't have the model of the
environment, it can still find the optimal behaviour.

17 /26

Monte Carlo methods

» Monte Carlo methods are
ways of solving the

evaluation reinforcement learning
problem based on averaging
Q@ ~ 4x sample returns.

» Monte Carlo methods
sample and average returns
Q for each state-action pair
and average rewards for
7~ greedy(Q) each action.

» They are typically applied to

improvement episodic tasks.
» The policy is updated only
at the end of an episode.

18 /26

Monte Carlo prediction

Estimates value function for a given policy.

Algorithm 3 Monte Carlo prediction

1: Initialise V arbitrarily

2: Returns(s) <— empty list Vs € S

3: repeat

4 Generate an episode using 7

5 for s in the episode do

6 Returns(s) < append return following s
7. end for
8
9:

V(s) = average(Returns(s))
until convergence

Each average is an unbiased estimate, and the standard deviation

of its error falls as %ﬁ where n is the number of returns averaged.

19/26

Monte Carlo estimation of the Q-function

state-action pairs are followed instead of states

maintains exploration all state-action pairs must be visited

20/26

On-policy and off-policy methods

In reinforcement learning we distinguish between

On-policy methods which attempt to evaluate or improve the
policy that is used to make decisions

Off-policy methods which evaluate or improve a policy different
from that used to generate the data.

21/26

On-policy Monte Carlo control

Algorithm 4 On-policy Monte Carlo control

1: Initialise @ and 7 arbitrarily

2: Returns(s, a) + empty list Vs € S,a € A

3: repeat

4: forseSand ac Ado

5: Generate an episode using e-greedy 7 starting with s, a
6: for s, a in the episode do

7: Returns(s, a) < append return following s, a
8: Q(s, a) = average(Returns(s, a))

9: end for

10: for s in the episode do

11: 7(s) = arg max, Q(s, a)

12: end for

13: end for
14: until convergence

22/26

Monte Carlo off-policy methods

In off-policy methods we have two policies
target policy the policy being learned
» The target policy is the greedy policy with
respect to Q.

behaviour policy the policy that generates behaviour

» The behaviour policy must have a non-zero probability of
selecting all actions that might be selected by the target
policy (coverage).

» To insure this we require the behaviour policy to be soft (i.e.,
that it select all actions in all states with non-zero probability)

» The behaviour policy i1 can be anything, but in order to assure
convergence of w to the optimal policy, an infinite number of
returns must be obtained for each pair of state and action.

23 /26

Off-policy Monte Carlo control

Algorithm 5 Off-policy Monte Carlo control
1: Initialise Q arbitrarily, C(s,a) =0Vs € S,a € A 7 <+ greedy
with respect to Q

2: repeat

3: Generate an episode [sp, ao, . .., a71_1, ST] using soft policy p
4 R+ 0 W<+1

5. fort = T down-to 0 do

6: R+ YR+ rt41

7 C(st,at) < C(st,ar) + W

8: Q(st, ar) < Qlst; at) + oz (R — Qlst, ar))
o: 7(s) = argmax, Q(s, a)

10: if a; # m(st) then

11: Exit for loop

12: end if

13: W « Wu(ahst)

14: end for

15: until convergence
24 /26

Summary

» Model-based vs model-free methods

» The Monte Carlo methods learn value functions and optimal
policies from experience in the form of sample episodes.

» They do not require the model of the environment and can be
learned directly in the interaction with the environment of in
simulation.

» They simply average many returns for each state-action pair.

» On-policy vs off-policy methods.

25 /26

Next lecture

» Temporal difference (TD) learning

26 /26

	Introduction to model-based RL
	Policy iteration
	Value iteration
	Introduction to model-free RL
	Monte Carlo methods

