
Temporal-difference methods

Milica Gašić

Dialogue Systems Group, Cambridge University Engineering Department

1 / 27

In this lecture...

Introduction to temporal-difference learning

SARSA: On-policy TD control

Q-learning: Off-policy TD control

Planning and learning with tabular methods

2 / 27

Temporal-difference (TD) learning

Temporal-difference methods are similar to

Dynammic programming update estimates based in part on other
learned estimates, without waiting for the final
outcome (they bootstrap)

Monte Carlo methods learn directly from raw experience without a
model of the environment’s dynamics

3 / 27

TD prediction

I TD methods only wait until the next time step to update the
value estimates.

I At time t + 1 they immediately form a target and make an
update using the observed reward rt+1 and the current
estimate V (st+1).

V (st)← V (st) + α (rt+1 + γV (st+1)− V (st)) ,

where α > 0 is a step-size parameter.

I Note that this is similar to the MC update except that it takes
place at every step.

I Similar to DP methods, the TD method bases its update in
part on an existing estimate – a bootstrapping method.

4 / 27

TD error

TD error arises in various forms through-out reinforcement
learning

δt = rt+1 + γV (st+1)− V (st)

The TD error at each time is the error in the estimate made at
that time. Because the TD error at step t depends on the next
state and next reward, it is not actually available until step t + 1.
Updating the value function with the TD-error is called a backup.
The TD error is related to the Bellman equation.

5 / 27

SARSA: On-policy TD control

I TD prediction for control ie action-selection

I A generalised policy iteration method

I Balances between exploration and exploitation

I Learns tabular Q-function

Q(st , at)← Q(st , at) + α (rt+1 + γQ(st+1, at+1)− Q(st , at))

This update is done after every transition from a non-terminal
state st . If st+1 is terminal, then Q(st+1, at+1) is defined as zero.
This rule uses every element of the quintuple of events,
(st , at , rt+1, st+1, at+1), hence the name.

6 / 27

SARSA: On-policy TD control

Algorithm 1 SARSA

1: Initialise Q arbitrarily, Q(terminal , ·) = 0
2: repeat
3: Initialize s
4: Choose a ε-greedily
5: repeat
6: Take action a, observe r , s ′

7: Choose a′ ε-greedily
8: Q(s, a)← Q(s, a) + α (r + γQ(s ′, a′)− Q(s, a))
9: s ← s ′,a← a′

10: until s is terminal
11: until convergence

7 / 27

Properties of SARSA

I SARSA is an on-policy algorithm which means that while
learning the optimal policy it uses the current estimate of the
optimal policy to generate the behaviour.

I SARSA converges to an optimal policy as long as all
state-action pairs are visited an infinite number of times and
the policy converges in the limit to the greedy policy (ε = 1

t).

8 / 27

Q-learning: Off-Policy TD Control

In Q-learning the learned action-value function, Q, directly
approximates the optimal action-value function, independent of the
policy being followed.

Q(st , at)← (st , at) + α

(
rt+1 + γmax

a′
Q(st+1, a

′)− Q(st , at)

)
This dramatically simplifies the analysis of the algorithm and
enabled early convergence proofs: all that is required for correct
convergence is that all pairs continue to be updated.

9 / 27

Q-learning: Off-policy TD control

Algorithm 2 Q-learning

1: Initialise Q arbitrarily, Q(terminal , ·) = 0
2: repeat
3: Initialize s
4: repeat
5: Choose a ε-greedily
6: Take action a, observe r , s ′

7: Q(s, a)← Q(s, a) + α (r + γmaxa′ Q(s ′, a′)− Q(s, a))
8: s ← s ′

9: until s is terminal
10: until convergence

10 / 27

SARSA vs Q-learning
Comparison of the SARSA and the Q-learning algorithm on the
cliff-walking task (a variant of grid-world). The results show the
advantage of on-policy methods during the learning process.

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 141

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

R

R

Sum of
rewards
during

episode

Figure 6.5: The cli↵-walking task. The results are from a single run, but smoothed by
averaging the reward sums from 10 successive episodes.

The lower part of Figure 6.5 shows the performance of the Sarsa and Q-learning
methods with "-greedy action selection, " = 0.1. After an initial transient, Q-learning
learns values for the optimal policy, that which travels right along the edge of the
cli↵. Unfortunately, this results in its occasionally falling o↵ the cli↵ because of
the "-greedy action selection. Sarsa, on the other hand, takes the action selection
into account and learns the longer but safer path through the upper part of the
grid. Although Q-learning actually learns the values of the optimal policy, its on-
line performance is worse than that of Sarsa, which learns the roundabout policy.
Of course, if " were gradually reduced, then both methods would asymptotically
converge to the optimal policy.

Exercise 6.9 Why is Q-learning considered an o↵-policy control method?

Q-learning Expected Sarsa

Figure 6.6: The backup diagrams for Q-learning and expected Sarsa.

11 / 27

Expected Sarsa

I An alternative to taking a random action and using the
estimate of the Q-function for that action in TD-error (as in
SARSA) is to use the expected value of the Q-function.

Q(st , at)← Q(st , at) + α (E [Q(st+1, at+1) | st+1]− Q(st , at))

= Q(st , at)+

α

(
rt+1 + γ

∑
a′

π(a′|st+1)Q(st+1, a
′)− Q(st , at)

)

I Although computationally more complex, this method has a
lower variance.

I Generally performs better and it can be either on-policy or
off-policy.

12 / 27

Summary

I Prediction: the value function must accurately reflect the
policy

I Improvement: the policy must improve locally (eg ε-greedy)
with respect to the current value function

I SARSA is an on-policy TD method

I Q-learning is an off-policy TD method

I Expected SARSA can be either an on-policy or an off-policy
method

I They can be applied on-line, with a minimal amount of
computation, to learn from interaction with an environment

13 / 27

Planning and learning with tabular methods

A unified view of

Planning Methods which require the model of the environment

Learning Methods which do not require the model of the
environment

14 / 27

Models and planning

Model of the environment – anything that an agent can use
to predict how the environment will respond to its
actions. Models can be used to simulate experience:
given a starting state and action, the model produces
a possible transition.

Planning – any computational process that takes a model as
input and produces or improves a policy for
interacting with the modelled environment.

Model Policy
Planning

15 / 27

Planning

Planning is based on two basic ideas:

1. all state-space planning methods involve computing value
functions as a key intermediate step toward improving the
policy

2. they compute their value functions by backup operations (TD
updates) applied to simulated experience.

Model Simulated
experience Values Policy

back-ups

16 / 27

Dyna: integrating planning, acting, and learning
A planning agent can be used to:

model-learning improve the model (to match the real environment)

reinforcement learning directly improve the value function and
policy

170 CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

the model and thereby interact with planning. It may be desirable to customize the
planning process in some way to the states or decisions currently under consideration,
or expected in the near future. If decision-making and model-learning are both
computation-intensive processes, then the available computational resources may
need to be divided between them. To begin exploring these issues, in this section we
present Dyna-Q, a simple architecture integrating the major functions needed in an
on-line planning agent. Each function appears in Dyna-Q in a simple, almost trivial,
form. In subsequent sections we elaborate some of the alternate ways of achieving
each function and the trade-o↵s between them. For now, we seek merely to illustrate
the ideas and stimulate your intuition.

Within a planning agent, there are at least two roles for real experience: it can be
used to improve the model (to make it more accurately match the real environment)
and it can be used to directly improve the value function and policy using the kinds of
reinforcement learning methods we have discussed in previous chapters. The former
we call model-learning , and the latter we call direct reinforcement learning (direct
RL). The possible relationships between experience, model, values, and policy are
summarized in Figure 8.1. Each arrow shows a relationship of influence and presumed
improvement. Note how experience can improve value and policy functions either
directly or indirectly via the model. It is the latter, which is sometimes called indirect
reinforcement learning, that is involved in planning.

Both direct and indirect methods have advantages and disadvantages. Indirect
methods often make fuller use of a limited amount of experience and thus achieve
a better policy with fewer environmental interactions. On the other hand, direct
methods are much simpler and are not a↵ected by biases in the design of the model.
Some have argued that indirect methods are always superior to direct ones, while
others have argued that direct methods are responsible for most human and animal
learning. Related debates in psychology and AI concern the relative importance
of cognition as opposed to trial-and-error learning, and of deliberative planning as
opposed to reactive decision-making. Our view is that the contrast between the
alternatives in all these debates has been exaggerated, that more insight can be gained

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

Figure 8.1: Relationships among learning, planning, and acting.
Figure 1: Planning agent

17 / 27

Dyna-Q

Dyna-Q includes all of the processes shown in Figure 1: planning,
acting, model-learning, and direct RL – all occurring continually.

Planning the Q-learning applied to samples from the model

Model-learning table-based and assumes the world is deterministic

RL after each transition st , at ;→ rt+1, st+1, the model
records in its table entry for st , at the prediction that
rt+1, st+1 will deterministically follow.

The planning algorithm randomly samples only from state-action
pairs that have previously been experienced, so the model is never
queried with a pair about which it has no information.

18 / 27

Dyna architecture

8.2. DYNA: INTEGRATING PLANNING, ACTING, AND LEARNING 171

by recognizing the similarities between these two sides than by opposing them. For
example, in this book we have emphasized the deep similarities between dynamic
programming and temporal-di↵erence methods, even though one was designed for
planning and the other for model-free learning.

Dyna-Q includes all of the processes shown in Figure 8.1—planning, acting, model-
learning, and direct RL—all occurring continually. The planning method is the
random-sample one-step tabular Q-planning method given in Figure 8.1. The di-
rect RL method is one-step tabular Q-learning. The model-learning method is also
table-based and assumes the world is deterministic. After each transition St, At !
Rt+1, St+1, the model records in its table entry for St, At the prediction that Rt+1, St+1

will deterministically follow. Thus, if the model is queried with a state–action pair
that has been experienced before, it simply returns the last-observed next state and
next reward as its prediction. During planning, the Q-planning algorithm randomly
samples only from state–action pairs that have previously been experienced (in Step
1), so the model is never queried with a pair about which it has no information.

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one
example, is shown in Figure 8.2. The central column represents the basic interaction
between agent and environment, giving rise to a trajectory of real experience. The
arrow on the left of the figure represents direct reinforcement learning operating
on real experience to improve the value function and the policy. On the right are
model-based processes. The model is learned from real experience and gives rise to
simulated experience. We use the term search control to refer to the process that
selects the starting states and actions for the simulated experiences generated by the
model. Finally, planning is achieved by applying reinforcement learning methods
to the simulated experiences just as if they had really happened. Typically, as in

real

direct RL

update

Model

planning update

search

control

Policy/value functions

experience

model
learning

Environment

simulated
experience

Figure 8.2: The general Dyna Architecture. Real experience, passing back and forth between
the environment and the policy, a↵ects policy and value functions in much the same way as
does simulated experience generated by the model of the environment.

19 / 27

Tabular Dyna-Q

Algorithm 3 Tabular Dyna-Q

1: Initialise Q(s, a) and Model(s, a) arbitrarily
2: repeat
3: Initialize s
4: Choose a ε-greedily
5: Take action a, observe r , s ′ {real experience}
6: Q(s, a)← Q(s, a) +α (r + γmaxa′ Q(s ′, a′)− Q(s, a)) {RL}
7: Model(s, a)← r , s ′ {model learning deterministically}
8: repeat
9: s, a random previously observed state-action pair {search

control}
10: r , s ′ ← Model(s, a) {simulated experience}
11: Q(s, a) ← Q(s, a) + α (r + γmaxa′ Q(s ′, a′)− Q(s, a))

{planning}
12: s ← s ′

13: until n times
14: until convergence

20 / 27

Dyna: properties

I Learning and planning are accomplished by exactly the same
algorithm, operating on real experience for learning and on
simulated experience for planning.

I Planning proceeds incrementally, it is trivial to intermix
planning and acting.

I The agent responds instantly to the latest sensory information
and yet always plans in the background.

I As new information is gained, the model is updated to better
match reality.

21 / 27

Prioritised sweeping

I Upto now simulated transitions in state-action pairs are
selected uniformly at random from all previously experienced
pairs.

I The number of updates grows rapidly but not all updates are
equally useful.

I The value of some state-action pairs have changed a lot while
the value of other state-action pairs has changed little.

I In a stochastic environment, variations in estimated transition
probabilities also contribute to the magnitude of the change.

22 / 27

Prioritised sweeping

Prioritize the backups according to a measure of their urgency

I Base urgency on the TD-error

I If a state-action pair was updated all state-actions preceding
this pair must be updated too.

I Perform the backups in order of priority

23 / 27

Prioritised sweeping for a deterministic env.

Algorithm 4 Prioritised sweeping

1: Initialise Q(s, a), Model(s, a) arbitrarily and PQueue to empty
2: repeat
3: Initialize s; choose a ε-greedily
4: Take action a, observe r , s ′; Model(s, a)← r , s ′

5: P ← |r + γmaxa′ Q(s ′, a′)− Q(s, a)| {TD-error}
6: if P > θ then insert s, a into PQueue with priority P
7: repeat
8: s, a← first(PQueue) , r , s ′ ← Model(s, a)
9: Q(s, a)← Q(s, a) + α (r + γmaxa′ Q(s ′, a′)− Q(s, a))

10: for all ŝ, â predicted to lead to s do
11: r̂ reward for ŝ, â, s; P ← |r̂ + γmaxa Q(s, a)− Q(ŝ, â)|
12: if P > θ then insert ŝ, â into PQueue with priority P
13: end for
14: until PQueue empty
15: until convergence

24 / 27

Benefit of prioritised sweeping8.4. PRIORITIZED SWEEPING 179

Backups
until

optimal
solution

10

103

104

105

106

107

102

0 47 94 186 376 752 1504 3008 6016

Gridworld size (#states)

Dyna-Q

prioritized
sweeping

Figure 8.7: Prioritized sweeping significantly shortens learning time on the Dyna maze task
for a wide range of grid resolutions. Reprinted from Peng and Williams (1993).

sweeping maintained a decisive advantage over unprioritized Dyna-Q. Both systems
made at most n = 5 backups per environmental interaction.

Example 8.5: Rod Maneuvering The objective in this task is to maneuver a
rod around some awkwardly placed obstacles within a limited rectangular work space
to a goal position in the fewest number of steps (see Figure 8.8). The rod can be
translated along its long axis or perpendicular to that axis, or it can be rotated in
either direction around its center. The distance of each movement is approximately
1/20 of the work space, and the rotation increment is 10 degrees. Translations
are deterministic and quantized to one of 20 ⇥ 20 positions. The figure shows the
obstacles and the shortest solution from start to goal, found by prioritized sweeping.
This problem is still deterministic, but has four actions and 14,400 potential states
(some of these are unreachable because of the obstacles). This problem is probably
too large to be solved with unprioritized methods.

Extensions of prioritized sweeping to stochastic environments are straightforward.
The model is maintained by keeping counts of the number of times each state–action
pair has been experienced and of what the next states were. It is natural then to
backup each pair not with a sample backup, as we have been using so far, but with
a full backup, taking into account all possible next states and their probabilities of
occurring.

Prioritized sweeping is just one way of distributing computations to improve plan-
ning e�ciency, and probably not the best way. One of prioritized sweeping’s limita-
tions is that it uses full backups, which in stochastic environments may waste lots of
computation on low-probability transitions. In many cases, sample backups can get
closer to the true value function with less computation despite the variance intro-
duced by sampling (see Sutton & Barto, 1998, Section 9.5). Sample backups can win

25 / 27

Summary

I Planning optimal behaviour and learning optimal behaviour
involve estimating the same value functions.

I Any of the learning methods can be converted into planning
methods simply by applying them to simulated
(model-generated) experience rather than to real experience.

I Prioritized sweeping orders the updates according to the
urgency and it can lead to the optimal solution with less
updates

I Prioritized sweeping focuses backward on the predecessors of
states whose values have recently changed significantly.

26 / 27

Next lecture

I Approximate solutions and function approximation

27 / 27

	Introduction to temporal-difference learning
	SARSA: On-policy TD control
	Q-learning: Off-policy TD control
	Planning and learning with tabular methods

