Temporal-difference methods

Milica Gasi¢

Dialogue Systems Group, Cambridge University Engineering Department

27

In this lecture...

Introduction to temporal-difference learning

SARSA: On-policy TD control

Q-learning: Off-policy TD control

Planning and learning with tabular methods

2/27

Temporal-difference (TD) learning

Temporal-difference methods are similar to
Dynammic programming update estimates based in part on other
learned estimates, without waiting for the final

outcome (they bootstrap)

Monte Carlo methods learn directly from raw experience without a
model of the environment’s dynamics

TD prediction

» TD methods only wait until the next time step to update the
value estimates.

> At time t 4+ 1 they immediately form a target and make an
update using the observed reward r;11 and the current
estimate V/(s¢4+1).

V(st) < V(st) + a(rer1 +vV(se+1) — V(st)),

where a > 0 is a step-size parameter.

» Note that this is similar to the MC update except that it takes
place at every step.

» Similar to DP methods, the TD method bases its update in
part on an existing estimate — a bootstrapping method.

27

TD error

TD error arises in various forms through-out reinforcement
learning
Ot = rep1 + YV (sep1) — V(st)

The TD error at each time is the error in the estimate made at
that time. Because the TD error at step t depends on the next
state and next reward, it is not actually available until step t + 1.
Updating the value function with the TD-error is called a backup.
The TD error is related to the Bellman equation.

SARSA: On-policy TD control

v

TD prediction for control ie action-selection

v

A generalised policy iteration method

v

Balances between exploration and exploitation

v

Learns tabular Q-function

Q(st, at) + Q(st;ar) + a(rey1 +vQ(Se+1,ac41) — Q(st, ar))

This update is done after every transition from a non-terminal
state s;. If syy1 is terminal, then Q(s¢41,ar+1) is defined as zero.
This rule uses every element of the quintuple of events,

(St, at, re+1, St+1, ar+1), hence the name.

6 /27

SARSA: On-policy TD control

Algorithm 1 SARSA

L Initialise Q arbitrarily, Q(terminal,-) =0

2: repeat

3: Initialize s

4. Choose a e-greedily

5. repeat

6: Take action a, observe r, s’

7: Choose a’ e-greedily

8: Q(s,a) « Q(s,a) + a(r+~Q(s, ") — Q(s, a))
0: s« s,a+a

10: until s is terminal
11: until convergence

27

Properties of SARSA

» SARSA is an on-policy algorithm which means that while
learning the optimal policy it uses the current estimate of the
optimal policy to generate the behaviour.

» SARSA converges to an optimal policy as long as all
state-action pairs are visited an infinite number of times and
the policy converges in the limit to the greedy policy (e = %)

27

Q-learning: Off-Policy TD Control

In Q-learning the learned action-value function, Q, directly
approximates the optimal action-value function, independent of the
policy being followed.

Q(St, at) < (St, at) + « (rt+]_ + ’ymaé/lx Q(StJrl./ a/) _ Q(5t7 at))

This dramatically simplifies the analysis of the algorithm and
enabled early convergence proofs: all that is required for correct
convergence is that all pairs continue to be updated.

27

Q-learning: Off-policy TD control

Algorithm 2 Q-learning
1. Initialise Q@ arbitrarily, Q(terminal,-) =0

2: repeat

3 Initialize s

4 repeat

5: Choose a e-greedily

6 Take action a, observe r, s’

7 Q(s,a) + Q(s,a) + a(r+ymaxy Q(s',a") — Q(s, a))
8 s+ s

9 until s is terminal

10: until convergence

10/27

SARSA vs Q-learning

Comparison of the SARSA and the Q-learning algorithm on the
cliff-walking task (a variant of grid-world). The results show the
advantage of on-policy methods during the learning process.

Sarsa
-25
Sum of
ds 07 _
rewards Q-learning
during
episode |
-100 T T T T 1
0 100 200 300 400 500

Episodes

11/27

Expected Sarsa

» An alternative to taking a random action and using the
estimate of the Q-function for that action in TD-error (as in
SARSA) is to use the expected value of the Q-function.

Q(st, at) + Q(st, ar) + a (E[Q(St+1, ar+1) | se1] — Q(st, at))
= Q(st,ar)+

(ft+1 + ’YZ |5t+1 5t+17 3/) - Q(Sh at))

> Although computationally more complex, this method has a
lower variance.

» Generally performs better and it can be either on-policy or
off-policy.

12 /27

Summary

» Prediction: the value function must accurately reflect the
policy

» Improvement: the policy must improve locally (eg e-greedy)
with respect to the current value function

» SARSA is an on-policy TD method
» Q-learning is an off-policy TD method

» Expected SARSA can be either an on-policy or an off-policy
method

» They can be applied on-line, with a minimal amount of
computation, to learn from interaction with an environment

13 /27

Planning and learning with tabular methods

A unified view of
Planning Methods which require the model of the environment

Learning Methods which do not require the model of the
environment

14 /27

Models and planning

Model of the environment — anything that an agent can use
to predict how the environment will respond to its
actions. Models can be used to simulate experience:
given a starting state and action, the model produces
a possible transition.

Planning — any computational process that takes a model as
input and produces or improves a policy for
interacting with the modelled environment.

Planning
Model » Policy

15 /27

Planning

Planning is based on two basic ideas:

1. all state-space planning methods involve computing value
functions as a key intermediate step toward improving the
policy

2. they compute their value functions by backup operations (TD
updates) applied to simulated experience.

; back-ups
Simulated P

Model ———» .
experience

Values — Policy

16

27

Dyna: integrating planning, acting, and learning
A planning agent can be used to:
model-learning improve the model (to match the real environment)

reinforcement learning directly improve the value function and

policy
value/policy
acting
planning direct
RL
model experlence
model
learning

Figure 1: Planning agent

17 /27

Dyna-Q

Dyna-Q includes all of the processes shown in Figure 1: planning,
acting, model-learning, and direct RL — all occurring continually.
Planning the Q-learning applied to samples from the model
Model-learning table-based and assumes the world is deterministic
RL after each transition s;, a;; — rt41, St+1, the model
records in its table entry for s;, a; the prediction that
re4+1, S+1 will deterministically follow.
The planning algorithm randomly samples only from state-action
pairs that have previously been experienced, so the model is never
queried with a pair about which it has no information.

18 /27

Dyna architecture

VAN

Policy/value functions

planning update

direct RL simulated
update experience
real
experience
model search
learning control
Model

[Environment]

19/27

Tabular Dyna-Q

Algorithm 3 Tabular Dyna-Q
1. Initialise Q(s, a) and Model(s, a) arbitrarily
. repeat
Initialize s
Choose a e-greedily
Take action a, observe r, s’ {real experience}

2
3
4
5:
6: Q(s,a) + Q(s,a)+a(r+ymaxy Q(s',3a") — Q(s,a)) {RL}
7.
8
9

Model(s, a) < r,s’ {model learning deterministically}
repeat
s,a random previously observed state-action pair {search
control}
10: r,s' < Model(s, a) {simulated experience}
11: Q(s,a) + Q(s,a) + a(r+ymaxy Q(s',a") — Q(s, a))
{planning}
12: s« s
13: until n times

14: until convergence
20/27

Dyna:

properties

Learning and planning are accomplished by exactly the same
algorithm, operating on real experience for learning and on
simulated experience for planning.

Planning proceeds incrementally, it is trivial to intermix
planning and acting.

The agent responds instantly to the latest sensory information
and yet always plans in the background.

As new information is gained, the model is updated to better
match reality.

21/27

Prioritised sweeping

» Upto now simulated transitions in state-action pairs are
selected uniformly at random from all previously experienced
pairs.

» The number of updates grows rapidly but not all updates are
equally useful.

» The value of some state-action pairs have changed a lot while
the value of other state-action pairs has changed little.

» In a stochastic environment, variations in estimated transition
probabilities also contribute to the magnitude of the change.

Prioritised sweeping

Prioritize the backups according to a measure of their urgency
» Base urgency on the TD-error

» If a state-action pair was updated all state-actions preceding
this pair must be updated too.

» Perform the backups in order of priority

23 /27

Prioritised sweeping for a deterministic env.

Algorithm 4 Prioritised sweeping
1: Initialise Q(s, a), Model(s, a) arbitrarily and PQueue to empty
2: repeat
3 Initialize s; choose a e-greedily
4; Take action a, observe r, s'; Model(s,a) < r,s
5. P« |r+~ymaxy Q(s',a") — Q(s,a)| {TD-error}
6: if P > 0 then insert s, a into PQueue with priority P
.
8
9

repeat
s, a < first(PQueue) , r,s' «+ Model(s, a)
Q(s,a) « Q(s,a) + a(r+ymaxy Q(s',d) — Q(s, a))

10: for all s, 3 predicted to lead to s do

11 7 reward for §,4,s; P < |F 4+ ymax, Q(s,a) — Q(S, 8)]
12: if P> 0 then insert §, 4 into PQueue with priority P
13: end for

14: until PQueue empty
15: until convergence

24 /27

Benefit of prioritised sweeping

107_
106_ Dyna'Q
105_
Backups
until 104 prioritized
optimal sweeping
solution .
10°
102
10 T T T T T T T |

0 47 94 186 376 752 1504 3008 6016
Gridworld size (#states)

25 /27

Summary

» Planning optimal behaviour and learning optimal behaviour
involve estimating the same value functions.

> Any of the learning methods can be converted into planning
methods simply by applying them to simulated
(model-generated) experience rather than to real experience.

» Prioritized sweeping orders the updates according to the
urgency and it can lead to the optimal solution with less
updates

» Prioritized sweeping focuses backward on the predecessors of
states whose values have recently changed significantly.

26 /27

Next lecture

» Approximate solutions and function approximation

27 /27

	Introduction to temporal-difference learning
	SARSA: On-policy TD control
	Q-learning: Off-policy TD control
	Planning and learning with tabular methods

