
Approximate solution methods

Milica Gašić

Dialogue Systems Group, Cambridge University Engineering Department

1 / 25

In this lecture...

Value-function approximation

Gradient methods

Linear methods

Least-Squares TD

Policy gradient methods

REINFORCE

2 / 25

Value-function approximation

I Representing value function as a table is not possible for large
state spaces or continuous state spaces

I In this case value function can be a parameterised function
with weight vector θ ∈ Rn:

Vπ(s) ≈ V̂π(s,θ)

I The number of components of θ is much less than the
number of states (n� |S|), and changing one weight changes
the estimated value of many states.

I When a single state is updated, the change generalises from
that state to affect the values of many other states.

3 / 25

Back-ups as input-output pairs

Value function estimation can be described as a series of back-ups:

Monte Carlo back-up st 7→ Rt

TD back-up st 7→ rt + γV̂ (st+1,θ)

DP back-up s 7→ Eπ[rt + γV̂ (st+1,θ) | st = s]

Each can be seen as an example of the desired input-output
behaviour of the value function.
This means that we can apply function approximation but only
such that allows data to be obtained sequentially.

4 / 25

Prediction Objective

In the case of approximation it is not possible to get the prediction
in all states correct. Therefore, we produce a distribution over
states which specifies how much we care about the error in each
particular state d(s).
The objective function is then Mean Squared Value Error:

MSVE (θ) =
∑
s

d(s)
(
Vπ(s)− V̂ (s,θ)

)2
Typically one chooses d(s) to be the fraction of time spent in s
under the target policy π - occupancy frequency.

5 / 25

On-policy distribution

I h(s) denotes the probability that an episode begins in state s

I e(s) denotes the average time steps spent in state s in a
single episode.

e(s) = h(s) +
∑
ŝ

e(ŝ)
∑
â

π(â | ŝ)p(s | ŝ, â)

This system of equations can be solved for the expected number of
visits e(s) yielding the distribution:

d(s) =
e(s)∑
s′ e(s ′)

6 / 25

Stochastic gradient descent

I V̂ (s,θ) is differentiable wrt θ = (θ1, θ2, · · · , θn)T.

I θt is updated at each of a series of discrete time steps,
t = 0, 1, 2, 3,

I A sample st 7→ Vπ(st) consists of a (possibly random) state st
and its true value under the policy π. We assume that states
appear in examples with the same distribution, d(s), over
which we are trying to minimize the MSVE :

θt+1 = θt −
1

2
α∇

(
Vπ(st)− V̂ (st ,θt)

)2
= θt + α

(
Vπ(st)− V̂ (st ,θt)

)
∇V̂ (st ,θt),

α > 0 is a step-size parameter.

I It’s called stochastic because the update is done on only a
single example, which has been selected stochastically.

7 / 25

Target output

I In practise true value Vπ(st) is not available during learning.

I Instead, we have st 7→ Ut where Ut is a noisy estimate of
Vπ(st). The general SGD method for state-value prediction is:

θt+1 = θt + α
(
Ut − V̂ (st ,θt)

)
∇V̂ (st ,θt)

I If Ut is an unbiased estimate (E [Ut] = Vπ(st)) for each t,
then θt is guaranteed to converge to a local optimum for
decreasing α.

8 / 25

Prediction with function approximation

Algorithm 1 Gradient Monte Carlo Algorithm for Approximating
V̂ ≈ Vπ

1: Input: the policy π to be evaluated
2: Input: a differentiable function V̂ (s,θ) : S × Rn → R
3: Initialise θ0
4: repeat
5: Generate an episode s0, a0, r1, · · · rT , sT using π
6: for t = 0, 1, · · ·T do

7: θt+1 = θt + α
(
Rt − V̂ (st ,θt)

)
∇V̂ (st ,θt)

8: end for
9: until convergence

9 / 25

Semi-gradient methods

I If instead of MC, we are using TD or DP updates for
prediction using SGD, ie we perform bootstrapping, they all
depend on the current value of the weight vector θt

I This implies that they will be biased and that they will not
produce a true gradient-descent method.

I They include only a part of the gradient and are called
semi-gradient methods.

10 / 25

Linear methods

One of the most important special cases of function approximation
is that in which the approximate function, V̂ (s,θ), is a linear
function of the weight vector, θ:

V̂ (s,θ) = θT · φ(s)

=
∑
i

θiφi (s)

φ = (φ1, φ2, · · · , φn)T, φi (s) : S → R are feature functions.

11 / 25

Linear approximation

It is natural to use stochastic gradient descent updates with linear
function approximation. The gradient of the approximate value
function with respect to θ in this case is:

∇V̂ (s,θ) = φ(s)

In linear case there is only one optimum.

12 / 25

Semi-gradient TD update

θt+1 = θt + α
(
rt+1 + γθTt φt+1 − θTt φt

)
φt

= θt + α
(
rt+1φt − φt(φt − γφt+1)Tθt

)
,

where φt = φ(st). Once the system has reached steady state, for
any given θt , the expected next weight vector is:

E [θt+1 | θt] = θt + α(b − Aθt),

where

b = E [rt+1φt]

A = E [φt(φt − γTφt+1)]

If the system converges to θ, then b − Aθ = 0

13 / 25

Least-Squares TD

TD with linear function approximation converges asymptotically,
for appropriately decreasing step sizes, to the TD fixpoint:

θ = A−1b

A = E [φt(φt − γφt+1)T]

b = E [Rt+1φt]

If this is so, then we don’t need to compute the solution iteratively.
Instead, we can calculate A and b separately and then find the
fixpoint.

14 / 25

Least-Squares TD prediction

Algorithm 2 Least-Squares TD

1: Input: policy π, features φ(s) ∈ Rn, φ(terminal) = 0

2: Initialise Â−1 = ε−1I , b̂ = 0
3: repeat
4: for each episode do
5: Initialise s and obtain φ
6: for each step do
7: Choose a ∼ π(· | s), take a, observe r , s ′, obtain φ′

8: v = Â−1(φ− γφ′)
9: Â−1 = Â−1 − (Â−1φ)vT/(1 + vTφ)

10: b̂ ← b̂ + rφ
11: θ = A−1b
12: s ← s ′,φ← φ′

13: end for
14: end for
15: until convergence

15 / 25

Properties of LSTD

I Complexity is O(n2) vs O(n) for semi-gradient TD

I No step size parameter is required

I ε-greedy policy is used in the policy improvement step

I This requires setting ε: if ε is too small the sequence of
inverses can vary wildly, and if ε is too large then learning is
slowed

I It never forgets which is problematic if the target policy
changes as it does in reinforcement learning and generalised
policy iteration.

16 / 25

Summary

I Reinforcement learning systems must be capable of
generalization if they are to be applicable to artificial
intelligence or to large engineering applications.

I In parameterised function approximation the value function is
parameterised by a weight vector θ

I To find a good weight vector we use a variation of stochastic
gradient descent

I Good results can be obtained for semi-gradient methods in
the special case of linear function approximation, in which the
value estimates are weighted sum of features.

I LSTD is the most data-efficient linear TD prediction method,
but has computational complexity O(n2) for n features

17 / 25

Policy gradient methods

I Policy gradient methods learn a parametrised policy that can
select actions without needing to compute a value function

I Policy π is parametrised with ω ∈ Rn

π(a | s,ω) = p(at = a | st = s,ωt = ω)

I Given a performance measure J(ω) the gradient is

ωt+1 = ωt + α∇J(ωt)

I J(ω) is typically the value of the initial state Vπ(ω)(s0),

18 / 25

Policy approximation

I Stochastic policy

I Approximation method such that gradient ∇ωπ(a|s,ω) exists
and is finite

I We often use a Gibbs policy:

π(a|s,ω) =
exp(ωTψ(s, a))∑
a′ exp(ωTψ(s, a′))

where ψ denotes parametrised the feature functions.

19 / 25

Policy gradient theorem

∇J(ω) =
∑
s

dπ(s)
∑
a

Qπ(s, a)∇ωπ(a | s,ω)

PROOF

20 / 25

REINFORCE

I The policy gradient theorem gives us an exact expression for
the gradient; all we need is some way of sampling whose
expectation equals or approximates this expression.

I Notice that the right-hand side is a sum over states weighted
by how often the states occurs under the target policy π
weighted again by γ times how many steps it takes to get to
those states.

I If we just follow π we will encounter states in these
proportions, which we can then weight by γ to preserve the
expected value.

21 / 25

REINFORCE

∇J(ω) = Eπ

[
γtRt

∇ωπ(a|s,ω)

π(a|st ,ω)

]
= Eπ

[
γtRt∇ω log π(a|st ,ω)

]
ωt+1 = ωt + αγtRt∇ log π(a|st ,ω)

In case π is a Gibbs policy:

∇ log π(a|s,ω) = ψ(s, a)−
∑
b

π(b|s,ω)ψ(s, b)

22 / 25

REINFORCE, A Monte-Carlo Policy-Gradient Method

Algorithm 3 REINFORCE

1: Input: a differentiable policy parameterization π(a|s,ω), α > 0
2: Initialise ω
3: repeat
4: Generate an episode s0, a0, r1, · · · , sT , aT following π(·|·,ω)
5: for each step t = 0, · · · ,T do
6: Rt ← return from step t
7: ω ← ω + αγtRt∇ log π(a|st ,ω)
8: end for
9: until convergence

23 / 25

Summary

I Instead of parametrising value functions we can directly
parametrise policy

I Policy gradient theorem states the value of the gradient

I An episodic Monte Carlo algorithm which estimates policy
parameters using policy gradient theorem is REINFORCE
algorithm

24 / 25

Next lecture

I Actor-critic methods

25 / 25

	Value-function approximation
	Gradient methods
	Linear methods
	Least-Squares TD
	Policy gradient methods
	REINFORCE

