
Deep reinforcement learning

Milica Gašić

Dialogue Systems Group, Cambridge University Engineering Department

1 / 25

In this lecture...

Introduction to deep reinforcement learning

Value-based Deep RL

Deep Q-network

Policy-based Deep RL

Advantage actor-critic

Model-based Deep RL

2 / 25

Deep reinforcement learning

Reinforcement learning where

I the value function,

I the policy, or

I the model

is approximated via a neural network is deep reinforcement learning.
Neural network approximates a function as a non-linear function
which is preferred in reinforcement learning. However, the
approximation does not give any interpretation and the estimate is
a local optimum which is not always desirable.

3 / 25

Deep representations

I A deep representation is a composition of many functions

I Its gradient can be backpropagated by the chain rule

4 / 25

Deep neural networks

Neural network transforms input vector x into an output y:

h0 = g0(W0x
T + b0)

hi = gi (Wih
T
i−1 + bi), 0 < i < m

y = gm(Wmh
T
m−1 + bm)

where

gi (differentiable) activation functions hyperbolic
tangent tanh or sigmoid σ, 0 ≤ i ≤ m

Wi , bi parameters to be estimated, 0 ≤ i ≤ m

It is trained to minimise the loss function L = |y∗ − y|2 with
stochastic gradient descent in the regression case. In the
classification case, it minimises the cross entropy −

∑
i y
∗
i log yi .

5 / 25

Weight sharing

I Recurrent neural network shares weights between time-steps

hidden layer t0

Input feature vector t0

output t0

hidden layer t1

Input feature vector t1

output t1

hidden layer tn

Input feature vector tn

output tn

I Convolutional neural network shares weights between local
regions

input feature vector x hidden layer h1 hidden layer h2

6 / 25

Q-networks

I Q-networks approximate the Q-function as a neural network
I There are two architectures:

1. Q-network takes an input s, a and produces Q(s, a)
2. Q-network takes an input s and produces a vector

Q(s, a1), · · · ,Q(s, ak)

as

Q(s,a)

s

Q(s,a1) Q(s,a2) Q(s,ak)

7 / 25

Deep Q-network

Q(s, a,θ) is a neural network.

MSVE =

(
r + γmax

a′
Q(s ′, a′,θ)− Q(s, a,θ)

)2

I Q-learning algorithm where Q-function estimate is a neural
network

I This algorithm provides a biased estimate

This algorithm diverges because

I States are correlated

I Targets are non-stationary

8 / 25

DQN - Experience replay

I In order to deal with the correlated states, the agent builds a
dataset of experience and then makes random samples from
the dataset.

I In order to deal with non-stationary targets, the agent fixes the
parameters θ− and then with some frequency updates them

MSVE =

(
r + γmax

a′
Q(s ′, a′,θ−)− Q(s, a,θ)

)2

9 / 25

Atari

10 / 25

DQN for Atari [Mnih et al., 2015]

I End-to-end learning of values Q(s, a) from pixels s

I State s is stack of raw pixels from last 4 frames

I Action a is one of 18 joystick/button positions

I Reward r is change in score for that step

11 / 25

Results - Atari

12 / 25

Prioritised replay [Schaul et al., 2015]

I Related to prioritised sweeping in Dyna-Q framework

I Instead of randomly selecting experience order the experience
by some measure of priority

I The priority is typically proportional to the TD-error

δ = |r + γmax
a′

Q(s ′, a′,θ−)− Q(s, a,θ)|

13 / 25

Double DQN [van Hasselt et al., 2015]

I Remove upward bias caused by maxa′ Q(s ′, a′,θ−)
I The idea is to produce two Q-networks

1. Current Q-network θ is used to select actions
2. Older Q-network θ− is used to evaluate actions

MSVE =

(
r + γQ(s ′, arg max

a′
Q(s ′, a′,θ),θ−)− Q(s, a,θ)

)2

14 / 25

Dueling Q-network [Wang et al., 2015]

I Dueling Q-network combined two streams to produce
Q-function:

1. one for state values
2. another for advantage function

I The network learns state values for which actions have no
effect

I Dueling architecture can more quickly identify correct action
in the case of redundancy

15 / 25

Dueling Q-network

I Traditional DQN and
dueling DQN architecture I The value stream learns to

pay attention to the road.

I The advantage stream learns
to pay attention only when
there are cars immediately in
front

16 / 25

Asynchronous deep reinforcement learning

I Exploits multithreading of standard CPU

I Execute many instances of agent in parallel

I Network parameters shared between threads

I Parallelism decorrelates data

I Viable alternative to experience replay

17 / 25

Policy approximation

I Policy π is a neural network parametrised with ω ∈ Rn,
π(a, s,ω)

I Performance measure J(ω) is the value of the initial state
Vπ(ω)(s0) = Eπ(ω)[r0 + γr1 + γ2r2,+ · · ·]

I The update of the parameters is

ωt+1 = ωt + α∇J(ωt)

I And the gradient is given by the policy gradient theorem

∇J(ω) = Eπ

[
γtRt∇ω log π(a|st ,ω)

]
I This gives REINFORCE algorithm for a neural network policy

18 / 25

Natural actor-critic with neural network approximations

I Approximate the advantage function as a neural network
γtA(s, a,θ)

I Approximate the policy as a neural network π(a, s,ω)

Critic evaluation Choose θ and J to minimise
(
∑

t γ
tA(st , at ,θ) + J − R)2

Actor update ω ← ω + αθ using compatible function
approximation, where θ is natural gradient of
J(ω)

19 / 25

Advantage actor-critic [Mnih et al., 2016]

Approximate the policy as a neural network π(a, s,ω)

I Define the objective
J(ω) = Vπ(ω)(s0) = Eπ(ω)[r0 + γr1 + γ2r2,+ · · ·]

I Update ω with ∇J(ω)
∇J(ω) = Eπ [γt(Rt − V (st ,θ))∇ω log π(at , st ,ω)]

Approximate the value function as a neural network V (s,θ)

I Define the loss L(θ) = γt(Rt − V (st ,θ))2

I Update θ with ∇L(θ)

Compatible function approximation: ∇J(ω) depends on the
current estimate of V (s,θ)

20 / 25

Advantage actor-critic

Algorithm 1 Advantage actor-critic

1: Input: neural network parametrisation of π(ω)
2: Input: neural network parametrisation of V (θ)
3: repeat
4: Initialise θ,ω,V (terminal ,θ) = 0
5: Initialise s0
6: Obtain an episode s0, a0, r1, · · · , rT , sT according to π(ω)
7: RT = 0
8: for t = T downto 0 do
9: Rt−1 = rt + γV (st ,θ)

10: ∇J = ∇J + γt(Rt − V (st ,θ))∇ω log π(at , st ,ω)
11: ∇L = ∇L + γt∇θ(Rt − V (st ,θ))2

12: end for
13: ω = ω + α∇J
14: θ = θ + β∇L
15: until convergence

21 / 25

Model-based Deep RL

I Dyna-Q framework can be used where transitions
probabilities, rewards and the Q-function are all approximated
by a neural network.

I Challenging to plan due to compounding errors

I Errors in the transition model compound over the trajectory

I Planning trajectories differ from executed trajectories

I At end of long, unusual trajectory, rewards are totally wrong

22 / 25

Summary

I Neural networks can be used to approximate the value
function, the policy or the model in reinforcement learning.

I Any algorithms that assumes a parametric approximation can
be applied with neural networks

I However, vanilla versions might not always converge due to
biased estimates and correlated samples

I With methods such as prioritised replay, double Q-network or
duelling networks the stability can be achieved

I Neural networks can also be applied to actor-critic methods

I Using them for model-based method does not always work
well due to compounding errors

23 / 25

References I

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P.,
Harley, T., Silver, D., and Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learning.
CoRR, abs/1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. (2015).
Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015).
Prioritized experience replay.
CoRR, abs/1511.05952.

24 / 25

References II

van Hasselt, H., Guez, A., and Silver, D. (2015).
Deep reinforcement learning with double q-learning.
CoRR, abs/1509.06461.

Wang, Z., de Freitas, N., and Lanctot, M. (2015).
Dueling network architectures for deep reinforcement learning.
CoRR, abs/1511.06581.

25 / 25

	Introduction to deep reinforcement learning
	Value-based Deep RL
	Deep Q-network
	Policy-based Deep RL
	Advantage actor-critic
	Model-based Deep RL

