Dialogue management: generative approaches to belief tracking

Milica Gašić

Dialogue Systems Group, Cambridge University Engineering Department

January 28, 2016

In this lecture...

Dialogue management architecture

Need for belief tracking

Generative approaches to belief tracking

Hidden Information State (HIS) dialogue model

Bayesian Update of Dialogue State (BUDS) model

Example dialogue

Spoken dialogue systems architecture

Dialogue management

Example: 1-best input and no belief tracking

Example: N-best input and no belief tracking

Example: N-best input with belief tracking

Elements of dialogue management

Challenges in dialogue modelling

- ► How to define the state space?
- How to tractably maintain the dialogue state?
- Which actions to take?

Solution: Define dialogue as a **control problem** where the behaviour can be automatically learned.

Dialogue management as Markov decision process

- Dialogue states
- ▶ Reward a measure of dialogue quality

Markov decision process

Optimal system actions

Theory: Bayesian networks

- Bayesian network is a directed acyclic graph where nodes represent random variables and the arrows represent conditional independence assumption.
- Dynamic Bayesian network is a Bayesian network which repeats its structure at each point in time.

Theory: Markov decision process

- st dialogue states
- at system actions
- rt rewards
- $p(s_{t+1}|s_t, a_t)$ transition probability

Dialogue as a Markov decision process?

Dialogue management as partially observable Markov decision process

- Noisy observations of dialogue state
- ► Reward a measure of dialogue quality

Partially observable Markov decision process

- Distribution over possible dialogue states
 - belief state
- Optimal system actions

Generative vs discriminative models in belief tracking

Discriminative models: the state depends on the observation

$$b(s_t) = p(s_t|o_t)$$

Generative models: the state generates the observation

$$b(s_t) = \frac{p(s_t, o_t)}{\sum_{s_t} p(s_t, o_t)} \propto p(o_t|s_t)p(s_t)$$

Partially observable Markov decision process

State generates

 a noisy
 observation
 p(o_t|s_t) - the

 observation
 probability

► State is unobservable and depends on the previous state and the action: $p(s_{t+1}|s_t, a_t)$ - the **transition probability**

Probabilities conditional on the observations

Interested in marginal probabilities p(x|O), $O = O_a \cup O_b$

$$p(x|O_b, O_a) \propto p(x, O_b|O_a) = p(O_b|x, O_a)p(x|O_a) = p(O_b|x)p(x|O_a)$$

Split O_b further into O_c and O_d

$$p(x|O_a, O_c, O_d) \propto p(O_c, O_d|x)p(x|O_a) = p(O_c|x)p(O_d|x)p(x|O_a)$$

$$p(c|O_a, O_b) = \sum_{a,b} p(a|O_a)p(b|O_b)p(c|a,b)$$
$$p(O_c, O_b|a) \propto \sum_{b,c} p(O_c|c)p(b|O_b)p(c|a,b)$$

$$p(b|O_a) = \sum_a p(a|O_a)p(b|a)$$
 $p(O_b|a) = \sum_b p(O_b|b)p(b|a)$

Belief state tracking

$$b(s_{t+1}) \propto p(o_{t+1}|s_{t+1}) \sum_{s_t} p(s_{t+1}|a_t, s_t) b(s_t)$$

Requires summation over all possible states at every dialogue turn – **intractable!**

Practical examples of POMDP systems

- ► POMDPs are normally intractable for everything but very simple cases
- However there are approximations which enable their use for real-world dialogue domains

```
Hidden Information State (HIS) system [Young et al., 2010]
Bayesian Update of Dialogue State (BUDS) system
[Thomson and Young, 2010]
```

Requirements for belief tracking

Dialogue history The system needs to keep track of what happened so far in the dialogue. This is normally done via the **Markov property**.

Task-orientated dialogue The system needs to know what the user wants. This is modelled via the **user goal**.

Robustness to errors The system needs to know what the user says. This is modelled via the **user act**.

Dialogue state factorisation

Decompose dialogue state into conditionally independent elements user goal g_t user action u_t

dialogue history d_t

Belief update

- Requires summation over all possible goals intractable!
- Requires summation over all possible histories and user actions – intractable!

Hidden Information State (HIS) dialogue state

Belief state: Distribution over most likely hypotheses

HIS partitions

Pruning

Pruning

entity=venue 0.9

area=centre 0.5

Bayesian update of dialogue state model

- ► Further decomposes the dialogue state
- ▶ Produces tractable belief state update
- Transition and observation probability distributions can be parametrised and their shape learned

Bayesian network in the BUDS model

Belief tracking in the BUDS model

For each node x

- ▶ Start on one side and keep getting $p(x|O_a)$
- ▶ Then start on the other side and keep getting $p(O_b|x)$
- ► To get a marginal simply multiply these

Simple example

p(o g)	o :Thai	o :Turk.	0.8*0.9+0.2*0.1=0.74		
g :Thai	0.8	0.2	0.8*0.1+	0.2*0.9=0.26	0.69 b(g')
g :Turk.	0.2	0.8	(gt)	→ (gt+	\ 0.31
		,	0.8	g'lg)	0.8*0.4+0.2*0.6=0.44
			0.2 p(o g)	p(o' g')	0.2*0.4+0.8*0.6=0.56
p(g' g)	g':Thai	g' :Turk.	Thai 1	_	0.4
g :Thai	0.9	0.1	Turk. 0 Ot	Ot+	0.6
g :Turk.	0.1	0.9			

Learning of the shape of distributions

Expectation propagation

- Allows parameter tying
- Handles factorised hidden variables
- Handles large state spaces
- Does not require annotations but uses the output of the semantic decoder

Summary

- Properties of belief tracking for dialogue management include Markov assumption, being able to model the user goal and being robust to speech recognition errors
- Generative models for belief tracking are based on partially observable Markov decision processes
- Hidden Information State (HIS) model decomposes the dialogue state into the user goal, the user action and the dialogue history. Transitions are hand-crafted and the goals are grouped together to allow tractable belief tracking
- Bayesian Update of Dialogue State (BUDS) model further factorises the state which allows tractable belief tracking but also learning of the shapers of distributions via Expectation propagation

References

Thomson, B. and Young, S. (2010).

Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems.

Computer Speech and Language, 24(4):562–588.

Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., and Yu, K. (2010).

The Hidden Information State model: A practical framework for POMDP-based spoken dialogue management.

Computer Speech and Language, 24(2):150–174.