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Generative vs discriminative models in belief tracking

Discriminative models: the state depends on the observation

b(st) = p(st |ot)

Generative models: the state generates the observation

b(st) =
p(st , ot)∑
st
p(st , ot)

∝ p(ot |st)p(st)
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Advantage of discriminative belief
tracking [Metallinou et al., 2013]
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Problems in generative belief tracking

I Generative models make assumption that observations at each
turn are independent

I Discriminative models directly model the dialogue state given
arbitrary and possibly correlated input features.
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Dialogue state tracking challenge (DSTC) problem
formulation

Common dataset with tools to evaluate the performance of the
tracker. The dialogue state consists of three components:

goal for each informable slot, e.g. pricerange=cheap.

requested slots by the user, e.g. phone-number.

method of search for the entities, e.g. by constraints, by
alternatives, by name.

The belief state is then the distribution over possible slot-value
pairs for goals, the distribution over possible requested slots and
the distribution over possible methods.
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Evaluate the quality of the belief state tracker

Accuracy the fraction of turns where the top dialogue state
hypothesis is correct

L2 norm is squared L2-norm of the hypothesised distribution p
and the true label

L2 = (1− pi )
2 +

∑
j 6=i

p2j

where pi is the probability assigned to the true label.

8 / 32



Focus tracker

The focus tracker accumulates the evidence and changes the focus
of attention according to the current observation.

b(st = s) = o(s) + (1−
∑
s′∈S

o(s ′))b(st−1 = s)
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Class-based approaches to dialogue state tracking

Model the conditional probability distribution of dialogue state
given all observations upto that turn in dialogue.

b(st) = p(st |o0, · · · , ot)

Features are extracted from o0, · · · , ot and include information
about

I latest turn

I dialogue history

I ASR errors

This allows a number of models to be used: maximum entropy
linear classifiers, neural networks and ranking models.
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Class-based approaches to dialogue state tracking
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Dialogue management with multiple semantic decoders
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Ranking approach to dialogue state tracking

Dialogue state tracking of the user goal consists of the following
three steps

I Enumerate possible dialogue states

I Extract features

I Scoring

Using multiple semantic decoders trained on different datasets can
produce a richer set of possible dialogue states.
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Theory: Decision trees

I For a set of input data points x1, · · · , xN and target values
t1, · · · , tN find partitioning of the input space and the set of
questions so that the sum-of-squares (in the regression case)
or the cross entropy (in the classification case) is minimal.

I Random forests are a way of averaging multiple decision trees
trained on different parts of the same training set.
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Example decision tree for belief tracking [Williams, 2014]
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Web-style ranking [Williams, 2014]
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Theory: Deep neural networks

h0 = g0(W0x
T + b0)

hi = gi (Wih
T
i−1 + bi ), 0 < i < m

y = softmax(Wmh
T
m−1 + bm)

softmax(h)i = exp (hi )/(
∑
j

exp (hj))

where

gi (differentiable) activation functions hyperbolic
tangent tanh or sigmoid σ

Wi , bi parameters to be estimated
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Deep neural networks for belief
tracking [Henderson et al., 2013]

I Outputs a sequence of probability distributions over an
arbitrary number of possible values

I Learns tied weights using a single neural network

I Uses a form of sliding window for feature extraction
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Sequence-to-sequence approaches to dialogue state
tracking
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Theory: Recurrent neural networks
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Recurrent neural network based belief
tracking [Henderson, 2015]

I Contains internal memory which represents dialogue context

I Structurally a combination of Elman and Jordan types

I Takes the most recent dialogue turn and last machine
dialogue act as input, updates its internal memory and
calculates distribution over slot values.
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RNN structure

I f slot independent features,
fs are slot dependent
features and fv are value
dependent features

I m is the internal memory
from the previous time step
and m′ is the memory in the
next step

I p is the distribution over
slot value pairs from the
previous time step and p′ is
the estimated distribution

I h and gv are estimated with
Neural network with one
hidden layer and sigmoid
activation function
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Feature engineering
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Results from dialogue state tracking challenge

Taking into account only semantic decoding features:

Goals Method Requested
Acc. L2 Acc. L2 Acc. L2

Focus 0.719 0.464 0.867 0.210 0.879 0.206
RNN 0.742 0.387 0.922 0.124 0.957 0.069

Web-style ranking 0.775 0.758 0.944 0.092 0.954 0.073
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Alternative dialogue system architecture
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Integrated approaches to semantic decoding and belief
tracking [Henderson et al., 2014]

I Instead of extracting features from semantic decoding
hypotheses extract features from ASR hypotheses

I Apply the same neural network structure

I Avoids information loss resulting from compact semantic
representation of traditional approach

I Output: distribution over slot-value pairs
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Feature extraction from ASR hypotheses
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I For limited vocabulary
dialogue system possible to
extract N-gram features
from ASR

I In order to deal with data
sparsity need to delexicalise
input

I Unlike for semantic decoding
output, here it is not obvious
which word corresponds to
which slot and value

I Semantic dictionary is
therefore needed to define
possible values
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Example input features
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Results from dialogue state tracking challenge

Taking into account only semantic decoding features:

Goals Method Requested
Acc. L2 Acc. L2 Acc. L2

Focus 0.719 0.464 0.867 0.210 0.879 0.206
RNN 0.742 0.387 0.922 0.124 0.957 0.069

Web-style ranking 0.775 0.758 0.944 0.092 0.954 0.073

Taking into account only ASR features:

Goals Method Requested
Acc. L2 Acc. L2 Acc. L2

RNN 0.768 0.346 0.940 0.095 0.978 0.035
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Delexicalisation - elephant in the room

I Most of the performance gain comes from delexicalised
features

I This requires a separate semantic dictionary which for all
values from ontology defines their possible realisations, for
example expensive → luxurious, upmarket, pricey

I In real systems this poses a major problem
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