
Dialogue management: Parametric approaches to
policy optimisation

Pei-Hao Su and Milica Gašić

Dialogue Systems Group, Cambridge University Engineering Department

February 11, 2016

1 / 29

Dialogue optimisation as a reinforcement learning task

Dialogue management as a continuous space Markov decision
process

Summary space

Simulated user

RL algorithms for dialogue management

Natural Actor Critic

2 / 29

Elements of dialogue management

a1actions

states

observations

a2 a3 aT-1

s1 s2 s3 sT-1 sT

o1 o2 o3 oT-1 oT

dialogue turns

What the system says:

What the user wants:

What the system hears:

3 / 29

Dialogue as a control problem

Input the distribution over possible states – belief state, the
output of the belief tracker

Control actions that the system takes – what the system says
to the user

Feedback signal the estimate of dialogue quality

Aim automatically optimise system actions – dialogue
policy

4 / 29

Dialogue as a partially observable Markov decision process

Data

I Noisy
observations

I Reward – a
measure of
dialogue
quality

Model

I Partially
observable
Markov
decision
process

Predictions

I Optimal
system actions
in noisy
environment

5 / 29

Theory: Partially observable Markov decision process

st dialogue states

ot noisy observations

at system actions

rt rewards

p(st+1|st , at) transition
probability

p(ot+1|st+1) observation
probability

b(st) distribution over
possible states

st

ot

st+1

ot+1

at

rt

6 / 29

Decision making in POMDPs

Policy π : B → A
Return Rt =

∑T−l
k=0 γ

k rt+k

Value function How good is it for the system to be in a particular
belief state?

V π(s) = Eπ

{
T−t∑
k=0

γk rt+k |st = s

}
= r(s, a) + γ

∑
s′

p(s ′|s, a)
∑
o′

p(o ′|s ′)V π(s ′)

V π(b) =
∑
s

V π(s)b(s)

7 / 29

Optimising POMDP policy

I Finding value function associated with optimal policy, i.e. the
one that generates maximal return

I Tractable only for very simple cases [Kaelbling et al., 1998]

I Alternative view: discrete space POMDPs can be viewed as a
continuous space MDP with states as belief states bt = b(st)

8 / 29

Theory: Markov decision process

bt belief states from
tracker

at system actions

rt rewards

p(bt+1|bt , at) transition
probability bt bt+1

at

rt

9 / 29

Dialogue management as a continuous space Markov
decision process

Data

I belief states
(from belief
tracker)

I Reward – a
measure of
dialogue
quality

Model

I Markov
decision
process and
reinforcement
learning

Predictions

I Optimal
system actions

10 / 29

Problems

Size of the optimisation problem

I Belief state is large and continuous

I Set of system actions also large

Knowledge of the environment, in this case the user

I We do not have transition probabilities

I Where do rewards come from?

11 / 29

Problem: large belief state and action space

Solution: perform optimisation in a reduced space – summary
space built according to the heuristics

Belief space
(Master space)

Summary space

System Actions
(Master actions)

Summary actions

Summary
Function

Master
Function

(Learned) Summary
Policy

12 / 29

Problem: Where do the transition probability and the
reward come from?

Solution: learn from real users.

Speech
recognition

Semantic
decoding

Natural language
generationSpeech synthesis

Ontologywaveform distribution over
text hypotheses

distribution over
dialogue acts

Belief
tracking

Policy
optimisation

13 / 29

Problem: Where do the transition probability and the
reward come from?

Solution: learn from a simulated user.

Ontology

distribution over
user dialogue acts

Belief
tracking

Policy
optimisation

Simulated user

system
 dialogue act

14 / 29

Elements of the simulated user

Ontology

distribution over
user dialogue acts

Belief
tracking

Policy
optimisation

Error model

User model

Reward
model

reward

system
 dialogue act

15 / 29

Theory: Reinforcement learning

Policy deterministic π : B → A or stochastic
π : B ×A → [0, 1]

Return Rt =
∑T−l

k=0 γ
k rt+k

Value function How good is it for the system to be in a particular
belief state?

V π(b) = Eπ

{
T−t∑
k=0

γk rt+k |bt = b

}

Q-function What is the value of taking action a in belief state b
under a policy π?

Qπ(b, a) = Eπ

{
T−t∑
k=0

γk rt+k |bt = b, at = a

}

16 / 29

Theory: Reinforcement learning

Occupancy frequency

dπ(b) =
∑
t

γtPr(bt = b|b0, π)

Advantage function
Aπ(b, a) = Qπ(b, a)− V π(b)

17 / 29

Theory: Reinforcement learning [Sutton and Barto, 1998]

For discrete state spaces standard RL approaches can be used to
estimate optimal Value function, Q-function or policy π

Dynamic programming is model-based learning and update of the
estimates are based on the previous estimates

Monte-Carlo methods is model-free learning and update of
estimates based is based on raw experience

Temporal-difference methods is model-free learning and update of
the estimates are based on the previous estimates

18 / 29

Reinforcement learning for dialogue management

Options

1. Discretise the belief state/summary space into a grid and
apply standard RL algorithms to estimate Value function,
Q-function or policy π (for example Monte-Carlo Control in
practical)

2. Apply parametric function approximation to Value function,
Q-function or policy π and find optimal parameters using
gradient methods (this lecture)

3. Apply non-parametric function approximation to Value
function, Q-function or policy π (next lecture)

19 / 29

Linear function approximation

Define summary space as features of belief space (φ or φa) and
parameterise either:

I Value function
V (b,θ) ≈ θTφ(b)

I Q-function
Q(b, a,θ) ≈ θTφa(b)

I policy

π(a|b,θ) =
eθ

Tφa(b)∑
a′ e

θTφa′ (b)

20 / 29

Policy gradient

I Find policy parameters that maximise return
J(θ) = Eπ(θ) {R0}

I Update policy parameters in the direction of gradient
θ ← θ + α∇J(θ) – vanilla gradient given by policy gradient
theorem [Sutton et al., 2000]

∇J(θ) =

∫
B
dπ(b)

∑
a

Qπ(b, a)π(b, a)∇logπ(b, a)db (1)

= Eπ(θ)

{
∇θ log π(b, a)Qπ(θ)(b, a)

}
(2)

= Eπ(θ)

{
∇θ log π(b, a)Aπ(θ)(b, a)

}
(3)

I This is not always stable – (large) changes in the parameters
can result in unexpected policy moves.

I Convergence can be very slow.

21 / 29

Natural Actor
Critic [Peters and Schaal, 2008, Thomson, 2009]

Actor-critic methods are Temporal-difference methods that
estimate

actor policy that takes actions parametrised with θ

critic Advantage function that criticises/evaluates actor
actions parameterised with ω

In Natural Actor Critic

I Critic reduces the variance – the learning is more stable

I A modified form of gradient – natural gradient is used to find
the optimal parameters to speed up the convergence.

22 / 29

Natural Policy Gradient
Compatible function approximation

I Advantage function is parametrised with parameters ω such
that the direction of change is the same as for the policy
parameters θ

∇ωAω(b, a) = ∇θ log πθ(b, a)

I Then by replacing

Aω(b, a) = ∇θ log πθ(b, a)Tω

in Eq 3

I It can be shown
ω = G−1θ ∇θJ(θ)

where Gθ is the Fisher information matrix

Gθ = Eπ(θ)(∇ log πθ(b, a)∇ log πθ(b, a)T)

23 / 29

Episodic Natural Actor Critic

Algorithm 1 Episodic Natural Actor Critic

1: for each batch of dialogues do
2: for each dialogue n do
3: Execute the dialogue according to the current policy π(θ)
4: Obtain sequence of belief states, actions and corresponding

rewards
5: end for
6: Critic evaluation Choose ω,J to minimise

∑
n(Aω+J−Rn)2

7: Actor update θ ← θ + ω
8: end for

24 / 29

Summary features

I For each concept the probability of two most likely values
mapped into a grid

I Number of matching entities in the database (assuming most
likely concepts)

I A parameter is associated with each summary action, concept
and concept level feature

I Parameters can be tied to reduce computational complexity
and over-fitting

25 / 29

Summary

I Dialogue policy optimisation can be viewed as a reinforcement
learning task

I POMDP can be viewed as a continuous space MDP

I Belief state space can be summarised to reduce computational
complexity

I Natural Actor Critic is a temporal-difference algorithm which
estimates both the policy (actor) and the Q-function (critic).

I Both policy and Q-function are parametrised and natural
gradient is used to find the direction of the steepest descent

26 / 29

Natural gradient [Amari, 1998]

I Distance in Riemann space: |dθ|2 = dθTGθdθ, where Gθ is a
metric tensor

I Direction of steepest descent in Riemann space for some loss
function L(θ) is G−1θ ∇θL(θ)

I If θ is used to optimise the estimate of a probability
distribution p(x |θ) then the optimal metric tensor is Fisher
information matrix as this give distances invariant to scaling
of the parameters.

Gθ = E (∇ log p(x |θ)∇ log p(x |θ)T)

I It can be shown that KL(p(x |θ)||p(x |θ + dθ)) ≈ dθTGθdθ

27 / 29

References I

Amari, S.-I. (1998).
Natural gradient works efficiently in learning.
Neural Comput., 10(2):251–276.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998).
Planning and acting in partially observable stochastic domains.

Artif. Intell., 101(1-2):99–134.

Peters, J. and Schaal, S. (2008).
Natural actor-critic.
Neurocomputing, 71(7):1180–1190.

Sutton, R. S. and Barto, A. G. (1998).
Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition.

28 / 29

References II

Sutton, R. S., Mcallester, D., Singh, S., and Mansour, Y.
(2000).
Policy gradient methods for reinforcement learning with
function approximation.
In In Advances in Neural Information Processing Systems 12,
pages 1057–1063. MIT Press.

Thomson, B. (2009).
Statistical methods for spoken dialogue management.
PhD thesis, University of Cambridge.

29 / 29

	Dialogue optimisation as a reinforcement learning task
	Dialogue management as a continuous space Markov decision process
	Summary space
	Simulated user
	RL algorithms for dialogue management
	Natural Actor Critic

