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Elements of dialogue management

What the system says:

aCtions

What the user wants:

- OO0 ®0

What the system hears:

observations
>

dialogue turns




Dialogue as a control problem

Input the distribution over possible states — belief state, the
output of the belief tracker

Control actions that the system takes — what the system says
to the user

Feedback signal the estimate of dialogue quality
Aim automatically optimise system actions — dialogue
policy
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Dialogue as a partially observable Markov decision process

Predictions

. Noisy » Optimal

N . » Partially system actions

observations

observable in noisy

» Reward — a Markov environment

measure of decision

dialogue process

quality



Theory: Partially observable Markov decision process

s; dialogue states
o noisy observations Q
a; system actions
r: rewards
p(St+1|st, a¢) transition

probability a

p(0t41|st+1) observation
probability

b(s¢) distribution over

possible states
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Decision making in POMDPs

Policy m: B — A
Return Ry = ZZ:OI YKl i
Value function How good is it for the system to be in a particular
belief state?

Tt
V7 (s) = E; {Z ’ykrt+k]st = 5}
k=0
=r(s,a)+7 ) p(s'Is;a) > p(d|s)V7(s)
VT(b) =Y V7(s)b(s)



Optimising POMDP policy

» Finding value function associated with optimal policy, i.e. the
one that generates maximal return

» Tractable only for very simple cases [Kaelbling et al., 1998|

» Alternative view: discrete space POMDPs can be viewed as a
continuous space MDP with states as belief states by = b(s;)



Theory: Markov decision process

bs belief states from
tracker

a; system actions
r+ rewards

p(bes+1|bt, a¢) transition
probability
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Dialogue management as a continuous space Markov

decision process

> belief states
(from belief
tracker)

» Reward — a
measure of
dialogue
quality

Predictions

» Optimal
» Markov system actions
decision

process and
reinforcement
learning
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Problems

Size of the optimisation problem
> Belief state is large and continuous
> Set of system actions also large

Knowledge of the environment, in this case the user
» We do not have transition probabilities

» Where do rewards come from?
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Problem: large belief state and action space

Solution: perform optimisation in a reduced space — summary
space built according to the heuristics

Beliefspace | System Actions
(Master space) (Master actions)
A
Summary N Master
Function ~|  Function
A\

(Learned) Summary
Policy

Summary space > Summary actions
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Problem: Where do the transition probability and the

reward come from?

Solution: learn from real users.

Speech
recognition

—

waveform

distribution over
text hypotheses

Speech synthesis

Semantic Belief
decoding tracking
———_—
distribution over Ontology
dialogue acts
Natural language Policy
generation optimisation
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Problem: Where do the transition probability and the
reward come from?

Solution: learn from a simulated user.

distribution over

user dialogue acts
>
Ontology
system
dialogue act
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Elements of the simulated user

distribution over
user dialogue acts

Ontology

system
dialogue act

reward
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Theory: Reinforcement learning

Policy deterministic 7 : B — A or stochastic
m:BxA—|0,1]
Return Ry = ZZ—:_()I YKk
Value function How good is it for the system to be in a particular
belief state?

V™(b) = {27 Fek|be = b}

Q-function What is the value of taking action a in belief state b
under a policy 77

T—t
Qﬂ—(bv 3) =E; {Z ’kat+k|bt =b,a; = a}

k=0
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Theory: Reinforcement learning

Occupancy frequency
d"(b) = _~'Pr(b: = b|bo, )
t

Advantage function
A"(b,a) = Q"(b,a) — V™(b)
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Theory: Reinforcement learning [Sutton and Barto, 1998|

For discrete state spaces standard RL approaches can be used to
estimate optimal Value function, Q-function or policy 7

Dynamic programming is model-based learning and update of the
estimates are based on the previous estimates

Monte-Carlo methods is model-free learning and update of
estimates based is based on raw experience

Temporal-difference methods is model-free learning and update of
the estimates are based on the previous estimates
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Reinforcement learning for dialogue management

Options

1. Discretise the belief state/summary space into a grid and
apply standard RL algorithms to estimate Value function,
Q-function or policy 7 (for example Monte-Carlo Control in
practical)

2. Apply parametric function approximation to Value function,
Q-function or policy 7 and find optimal parameters using
gradient methods (this lecture)

3. Apply non-parametric function approximation to Value
function, Q-function or policy 7 (next lecture)
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Linear function approximation

Define summary space as features of belief space (¢ or ¢,) and
parameterise either:

» Value function
V(b,0) ~ 07 ¢(b)
» Q-function
Q(b,a,0) ~ 0" ¢,(b)
> policy
20" ¢a(b)

7'1'(.3|b7 0) = W
a’ a
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Policy gradient

» Find policy parameters that maximise return
J(0) = Ex9) {Ro}

» Update policy parameters in the direction of gradient
0 «+ 6 + aVJ(0) — vanilla gradient given by policy gradient
theorem [Sutton et al., 2000]

VJ(0) = /Bd”(b) > Q7(b,a)r(b,a)Viogm(b,a)db (1)
= Ex(o) { Vo log (b, 2)Q"(b,2) } 2
= Erp) {vg log (b, a)A™() (b, a)} (3)

» This is not always stable — (large) changes in the parameters
can result in unexpected policy moves.

» Convergence can be very slow.
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Natural Actor
Critic [Peters and Schaal, 2008, Thomson, 2009]

Actor-critic methods are Temporal-difference methods that
estimate

actor policy that takes actions parametrised with @

critic Advantage function that criticises/evaluates actor
actions parameterised with w

In Natural Actor Critic
» Critic reduces the variance — the learning is more stable

» A modified form of gradient — natural gradient is used to find
the optimal parameters to speed up the convergence.



Natural Policy Gradient
Compatible function approximation

» Advantage function is parametrised with parameters w such
that the direction of change is the same as for the policy
parameters 6

VwAu(b, a) = Vg logmg(b, a)
» Then by replacing
Aw(b7 a) = Vg log W@(ba a)Tw

in Eq 3
» It can be shown
w = G, 'VeJ(0)

where Gg is the Fisher information matrix

Go = E7r(0)(V log 7T9(b, a)v log 7I'9(b, a)T)
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Episodic Natural Actor Critic

Algorithm 1 Episodic Natural Actor Critic
1: for each batch of dialogues do
2:  for each dialogue n do

3: Execute the dialogue according to the current policy 7(0)
4: Obtain sequence of belief states, actions and corresponding
rewards

end for
Critic evaluation Choose w,J to minimise ", (A, +J— Ry)?
Actor update 0 + 0 + w

end for
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Summary features

» For each concept the probability of two most likely values
mapped into a grid

» Number of matching entities in the database (assuming most
likely concepts)

» A parameter is associated with each summary action, concept
and concept level feature

» Parameters can be tied to reduce computational complexity
and over-fitting
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Summary

» Dialogue policy optimisation can be viewed as a reinforcement
learning task

» POMDP can be viewed as a continuous space MDP

» Belief state space can be summarised to reduce computational
complexity

» Natural Actor Critic is a temporal-difference algorithm which
estimates both the policy (actor) and the Q-function (critic).

» Both policy and Q-function are parametrised and natural
gradient is used to find the direction of the steepest descent
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Natural gradient [Amari, 1998]

» Distance in Riemann space: |d6|? = d@T Gyd@, where Gg is a
metric tensor

» Direction of steepest descent in Riemann space for some loss
function L(6) is G, 'VeL(8)

» If @ is used to optimise the estimate of a probability
distribution p(x|@) then the optimal metric tensor is Fisher
information matrix as this give distances invariant to scaling
of the parameters.

Go = E(V log p(x|8)V log p(x|6)")

» It can be shown that KL(p(x|0)||p(x|0 + dB)) ~ dOT Gyd6
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