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Dialogue optimisation as a reinforcement learning task

Dialogue management as a continuous space Markov decision
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Elements of dialogue management

a1actions

states

observations

a2 a3 aT-1

s1 s2 s3 sT-1 sT

o1 o2 o3 oT-1 oT

dialogue turns

What the system says:

What the user wants:

What the system hears:
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Dialogue as a control problem

Input the distribution over possible states – belief state, the
output of the belief tracker

Control actions that the system takes – what the system says
to the user

Feedback signal the estimate of dialogue quality

Aim automatically optimise system actions – dialogue
policy
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Dialogue as a partially observable Markov decision process

Data

I Noisy
observations

I Reward – a
measure of
dialogue
quality

Model

I Partially
observable
Markov
decision
process

Predictions

I Optimal
system actions
in noisy
environment
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Theory: Partially observable Markov decision process

st dialogue states

ot noisy observations

at system actions

rt rewards

p(st+1|st , at) transition
probability

p(ot+1|st+1) observation
probability

b(st) distribution over
possible states

st

ot

st+1

ot+1

at

rt
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Decision making in POMDPs

Policy π : B → A
Return Rt =

∑T−l
k=0 γ

k rt+k

Value function How good is it for the system to be in a particular
belief state?

V π(s) = Eπ

{
T−t∑
k=0

γk rt+k |st = s

}
= r(s, a) + γ

∑
s′

p(s ′|s, a)
∑
o′

p(o ′|s ′)V π(s ′)

V π(b) =
∑
s

V π(s)b(s)
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Optimising POMDP policy

I Finding value function associated with optimal policy, i.e. the
one that generates maximal return

I Tractable only for very simple cases [Kaelbling et al., 1998]

I Alternative view: discrete space POMDPs can be viewed as a
continuous space MDP with states as belief states bt = b(st)
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Theory: Markov decision process

bt belief states from
tracker

at system actions

rt rewards

p(bt+1|bt , at) transition
probability bt bt+1

at

rt
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Dialogue management as a continuous space Markov
decision process

Data

I belief states
(from belief
tracker)

I Reward – a
measure of
dialogue
quality

Model

I Markov
decision
process and
reinforcement
learning

Predictions

I Optimal
system actions
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Problems

Size of the optimisation problem

I Belief state is large and continuous

I Set of system actions also large

Knowledge of the environment, in this case the user

I We do not have transition probabilities

I Where do rewards come from?
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Problem: large belief state and action space

Solution: perform optimisation in a reduced space – summary
space built according to the heuristics

Belief space
(Master space)

Summary space

System Actions
(Master actions)

Summary actions

Summary
Function 

Master
Function 

(Learned) Summary
Policy
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Problem: Where do the transition probability and the
reward come from?

Solution: learn from real users.

Speech 
recognition

Semantic 
decoding

Natural language 
generationSpeech synthesis

Ontologywaveform distribution over
text hypotheses

distribution over 
dialogue acts

Belief 
tracking

Policy 
optimisation
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Problem: Where do the transition probability and the
reward come from?

Solution: learn from a simulated user.

Ontology

distribution over 
user dialogue acts

Belief 
tracking

Policy 
optimisation

Simulated user

system
 dialogue act
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Elements of the simulated user

Ontology

distribution over 
user dialogue acts

Belief 
tracking

Policy 
optimisation

Error model

User model

Reward 
model

reward

system
 dialogue act
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Theory: Reinforcement learning

Policy deterministic π : B → A or stochastic
π : B ×A → [0, 1]

Return Rt =
∑T−l

k=0 γ
k rt+k

Value function How good is it for the system to be in a particular
belief state?

V π(b) = Eπ

{
T−t∑
k=0

γk rt+k |bt = b

}

Q-function What is the value of taking action a in belief state b
under a policy π?

Qπ(b, a) = Eπ

{
T−t∑
k=0

γk rt+k |bt = b, at = a

}
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Theory: Reinforcement learning

Occupancy frequency

dπ(b) =
∑
t

γtPr(bt = b|b0, π)

Advantage function
Aπ(b, a) = Qπ(b, a)− V π(b)
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Theory: Reinforcement learning [Sutton and Barto, 1998]

For discrete state spaces standard RL approaches can be used to
estimate optimal Value function, Q-function or policy π

Dynamic programming is model-based learning and update of the
estimates are based on the previous estimates

Monte-Carlo methods is model-free learning and update of
estimates based is based on raw experience

Temporal-difference methods is model-free learning and update of
the estimates are based on the previous estimates
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Reinforcement learning for dialogue management

Options

1. Discretise the belief state/summary space into a grid and
apply standard RL algorithms to estimate Value function,
Q-function or policy π (for example Monte-Carlo Control in
practical)

2. Apply parametric function approximation to Value function,
Q-function or policy π and find optimal parameters using
gradient methods (this lecture)

3. Apply non-parametric function approximation to Value
function, Q-function or policy π (next lecture)
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Linear function approximation

Define summary space as features of belief space (φ or φa) and
parameterise either:

I Value function
V (b,θ) ≈ θTφ(b)

I Q-function
Q(b, a,θ) ≈ θTφa(b)

I policy

π(a|b,θ) =
eθ

Tφa(b)∑
a′ e

θTφa′ (b)
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Policy gradient

I Find policy parameters that maximise return
J(θ) = Eπ(θ) {R0}

I Update policy parameters in the direction of gradient
θ ← θ + α∇J(θ) – vanilla gradient given by policy gradient
theorem [Sutton et al., 2000]

∇J(θ) =

∫
B
dπ(b)

∑
a

Qπ(b, a)π(b, a)∇logπ(b, a)db (1)

= Eπ(θ)

{
∇θ log π(b, a)Qπ(θ)(b, a)

}
(2)

= Eπ(θ)

{
∇θ log π(b, a)Aπ(θ)(b, a)

}
(3)

I This is not always stable – (large) changes in the parameters
can result in unexpected policy moves.

I Convergence can be very slow.
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Natural Actor
Critic [Peters and Schaal, 2008, Thomson, 2009]

Actor-critic methods are Temporal-difference methods that
estimate

actor policy that takes actions parametrised with θ

critic Advantage function that criticises/evaluates actor
actions parameterised with ω

In Natural Actor Critic

I Critic reduces the variance – the learning is more stable

I A modified form of gradient – natural gradient is used to find
the optimal parameters to speed up the convergence.
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Natural Policy Gradient
Compatible function approximation

I Advantage function is parametrised with parameters ω such
that the direction of change is the same as for the policy
parameters θ

∇ωAω(b, a) = ∇θ log πθ(b, a)

I Then by replacing

Aω(b, a) = ∇θ log πθ(b, a)Tω

in Eq 3

I It can be shown
ω = G−1θ ∇θJ(θ)

where Gθ is the Fisher information matrix

Gθ = Eπ(θ)(∇ log πθ(b, a)∇ log πθ(b, a)T)
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Episodic Natural Actor Critic

Algorithm 1 Episodic Natural Actor Critic

1: for each batch of dialogues do
2: for each dialogue n do
3: Execute the dialogue according to the current policy π(θ)
4: Obtain sequence of belief states, actions and corresponding

rewards
5: end for
6: Critic evaluation Choose ω,J to minimise

∑
n(Aω+J−Rn)2

7: Actor update θ ← θ + ω
8: end for
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Summary features

I For each concept the probability of two most likely values
mapped into a grid

I Number of matching entities in the database (assuming most
likely concepts)

I A parameter is associated with each summary action, concept
and concept level feature

I Parameters can be tied to reduce computational complexity
and over-fitting
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Summary

I Dialogue policy optimisation can be viewed as a reinforcement
learning task

I POMDP can be viewed as a continuous space MDP

I Belief state space can be summarised to reduce computational
complexity

I Natural Actor Critic is a temporal-difference algorithm which
estimates both the policy (actor) and the Q-function (critic).

I Both policy and Q-function are parametrised and natural
gradient is used to find the direction of the steepest descent

26 / 29



Natural gradient [Amari, 1998]

I Distance in Riemann space: |dθ|2 = dθTGθdθ, where Gθ is a
metric tensor

I Direction of steepest descent in Riemann space for some loss
function L(θ) is G−1θ ∇θL(θ)

I If θ is used to optimise the estimate of a probability
distribution p(x |θ) then the optimal metric tensor is Fisher
information matrix as this give distances invariant to scaling
of the parameters.

Gθ = E (∇ log p(x |θ)∇ log p(x |θ)T)

I It can be shown that KL(p(x |θ)||p(x |θ + dθ)) ≈ dθTGθdθ
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