Dialogue management: Non-parametric
approaches to policy optimisation

Milica Gasi¢
Dialogue Systems Group, Cambridge University Engineering Department

February 11, 2016

/29



Problems in applying RL to dialogue

Gaussian process model for Q-function

GP-Sarsa algorithm

2/29



Applying reinforcement learning to dialogue

Problems in solving dialogue as an RL task
1. Size of the optimisation problem

> Belief state is large and continuous
» Set of system actions also large

2. Knowledge of the environment, in this case the user

» We do not have transition probabilities
» Where do rewards come from?

3. RL algorithms take a long time to converge
Solutions

» Learn in reduced summary space (1)

» Learn in interaction with a simulated user (2&3)

Are these good solutions?
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Theory: Reinforcement learning

Policy deterministic 7 : B — A or stochastic
m:BxA—[0,1]
Return R = ZkT:_ol Yol i
Q-function What is the value of taking action a in belief state b
under a policy 77

k=0

Tt
Q™ (b,a) = E; {Z fykrt+k|bt =b,a; = a}

Can we find optimal Q-function with fewer data
points so that we can learn from real users?
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Non-parametric model for Q-function

> Belief states
(from belief
tracker)

» Reward — a
measure of
dialogue
quality

» Gaussian
process model
of the
Q-function

Predictions

» Optimal
Q-function
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Theory: Gaussian processes prior

f(x) ~ GP(m(x), k(x,x))
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Theory: Gaussian processes kernel

f(x0) ~ N(m(x0), k(x0, x0))
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Theory: Gaussian processes kernel

] 7 [ k(x0,x0), k(x0,x1) D

m(x1) k(x1,x0), k(x1,x1)

[ ?(Xo) ] N ([ m(xo)

(x1)

f(x)
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Theory: Gaussian processes kernel

Any number of function values is Gaussian distributed.

29



Theory: Gaussian processes posterior

» Observations y in x and f(x) are jointly Gaussian distributed

» Conditional is then also a Gaussian process
fF(x)|x,y ~ GP(f(x), cov(x, x))

0.5[
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Toy dialogue problem

Voicemail

> States: The user wants the message saved, deleted or the
dialogue is finished

» System actions: save the message, delete the message or
confirm what the user wants
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Q-function estimate without uncertainty
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Q-function estimate with uncertainty
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Role of the kernel function
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Gaussian process model for Q-function [Engel et al., 2005]
» Expected return can be expressed iteratively

T
R{ = E Y reqiv1 = rev1 + YR
i=0

» Q-function is the expectation of the return
Q™(b,a) = E (R¢|b(s:) = b, a; = a)
» Return can be modelled as the Q-value and residual AQ™
R (b,a) = Q™(b,a) + AQ™(b, a).
» Relationship between immediate reward and Q-value is then:

rf+1(b7 3) = Qﬂ-(b7 a)_nyﬂ(bla al)—i_AQﬂ-(ba a)_’yAQﬂ(blv a/)

15/29



Relationship between immediate rewards and Q-values

rl _ Qﬂ'(bo 0) 'yQ”(bl,al)
—{—AQW(bO 0) vAQ”(bl,al)

P = QT(bl,ah) —7Q7(b?, )
—{—AQW(bl 1) 7AQ71’(b2’a2)

o — Qﬂ(btfl, atfl) _ ,yQﬂ(bt’ at)
—{—AQW(bt_l, at—l) o ’)/AQTF(bt7 at),
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Relationship between immediate rewards and Q-values

r: = Hyqf + H:Aq7,

where

re=[rt,...,rf]"
a7 = [Q"(6%,a%),..., Q"(b", )",
AqT = [AQT(b°,2°),...,AQ7 (b, a)]T,
1 —y .-~ 0 0

o 1 -~ 0 O
Ht:

17 /29



Gaussian process model for Q-function

Prior Q™(b, a) ~ GP (0, k((b, a), (b, a))),
AQ™(b,a) ~ N(0,0?)
Observations Belief-action pairs B; = [(b°, a%),.. ., (bf, a?)]"
immediate rewards r, = [r!, ..., r?]
Posterior Q™ (b, a)|r¢, Bt
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Posterior of the Q-function

Q™ (b, a)|r:, B; ~ GP(Q(b, a), cov((b, a), (b, a))),
Q(b,a) = ke(b,a)"H] (H:K:H] + o?HH] )" r,,
cov((b, a), (b, a)) = k((b, a), (b, a))

— k¢(b,a) THT (H.KH] + ¢?HH]) " Hk:(b, a)

ke(b, a) = [k((b%, %), (b, ), ... k((b%, a"), (b, a))]"
k((b07ao)7(b07ao)) k((bO’QO)’(bt7at))

K: = : . :
k((boaao)v(bt7at)) e k((btaat)’(btvat))
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Applying this to an on-line setting

Computational complexity — need to invert Gram matrix K;
Sequential nature of data — need to perform updates sequentially

Kernel function — need to define correlations
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GP-Sarsa algorithm

» Gram matrix is approximated with a dictionary of
representative points

> Updates take place every time a reward is observed

» Kernel function is decomposed into separate kernels over
belief states and actions

k((b, a), (b, a)) = kg(b,b)k4(a, a)
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Sparcification

» Kernel function is a dot product of potentially infinite set of
feature functions ¢(b, a) = [¢1(b, a), ¢2(b, a),...]"

k((b7 a)? (bv a)) = <¢(b> a)a ¢(b’ a)>

» Gram matrix K; is approximated with Gram matrix over
dictionary points K; and coefficients G; = [g1, . . ., 8¢]

Kt = (D—trq)t ~ GtktG;r

» Dimensionality of K; is m << t



Policy

v

For given b, ﬂl each action a, there is a Gaussian distribution
Q@(b, a) ~ N(Q(b, a), cov((b, a), (b, 2))))
Sampling from these Gaussian distributions gives Q-values

{@(b, a):ae A}
The highest sampled Q-value can then be selected:

v

v

m(b) = arg max {Q(b, a):ac A}

v

This balances exploration and exploitation during learning
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Kernel function

Action kernel Action space is reduced to summary space and then
kernel is simple § function: k(a,a’) = d,(a’)
Belief state kernel Options:

» Reduce to summary space and then calculate
kernel on summary space

» Calculate the kernel directly on the full belief
space

» For continuous variables use linear or Gaussian
kernel
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GP-Sarsa algorithm

Algorithm 1 GP-Sarsa algorithm
1: Define prior for Q-function
2: for each dialogue do
3 Initialise b and choose a according to current @ estimate
4:  if (b, a) is representative add to dictionary
5 for each turn do
6: Take action a observe r and next belief state b’
.
8
9

Choose a’ according to current @ estimate
if (b’,a") is representative add to dictionary
Update posterior mean and variance of @

10: b —=b a—d
11:  end for
12: end for
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Comparison with NAC in a dialogue
system [Gasic and Young, 2014]
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Learning from real users [Gasic and Young, 2014]
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Summary

» Q-function is modelled as a Gaussian process allowing
posterior mean and variance to be calculated every time a
reward is observed

» GP-Sarsa is a model-free, on-line algorithm which allows
tractable approximation to the Gaussian process model for
Q-function

» With adequate choice of the kernel function learning speed
can be significantly improved

» Kernel function can be defined directly on belief state space
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