
Dialogue management: Non-parametric
approaches to policy optimisation

Milica Gašić

Dialogue Systems Group, Cambridge University Engineering Department

February 11, 2016

1 / 29



Problems in applying RL to dialogue

Gaussian process model for Q-function

GP-Sarsa algorithm

2 / 29



Applying reinforcement learning to dialogue

Problems in solving dialogue as an RL task

1. Size of the optimisation problem
I Belief state is large and continuous
I Set of system actions also large

2. Knowledge of the environment, in this case the user
I We do not have transition probabilities
I Where do rewards come from?

3. RL algorithms take a long time to converge

Solutions

I Learn in reduced summary space (1)

I Learn in interaction with a simulated user (2&3)

Are these good solutions?

3 / 29



Theory: Reinforcement learning

Policy deterministic π : B → A or stochastic
π : B ×A → [0, 1]

Return Rπ
t =

∑T−l
k=0 γ

k rt+k

Q-function What is the value of taking action a in belief state b
under a policy π?

Qπ(b, a) = Eπ

{
T−t∑
k=0

γk rt+k |bt = b, at = a

}

Can we find optimal Q-function with fewer data
points so that we can learn from real users?

4 / 29



Non-parametric model for Q-function

Data

I Belief states
(from belief
tracker)

I Reward – a
measure of
dialogue
quality

Model

I Gaussian
process model
of the
Q-function

Predictions

I Optimal
Q-function

5 / 29



Theory: Gaussian processes prior

f (x) ∼ GP(m(x), k(x , x))

6 / 29



Theory: Gaussian processes kernel

f (x0) ∼ N (m(x0), k(x0, x0))

7 / 29



Theory: Gaussian processes kernel

[
f (x0)
f (x1)

]
∼ N

([
m(x0)
m(x1)

]
,

[
k(x0, x0), k(x0, x1)
k(x1, x0), k(x1, x1)

])

8 / 29



Theory: Gaussian processes kernel

Any number of function values is Gaussian distributed.

9 / 29



Theory: Gaussian processes posterior

I Observations y in x and f (x) are jointly Gaussian distributed

I Conditional is then also a Gaussian process
f (x)|x, y ∼ GP(f (x), cov(x , x))

10 / 29



Toy dialogue problem

Voicemail

I States: The user wants the message saved, deleted or the
dialogue is finished

I System actions: save the message, delete the message or
confirm what the user wants

11 / 29



Q-function estimate without uncertainty

Belief state b

12 / 29



Q-function estimate with uncertainty

Belief state b

13 / 29



Role of the kernel function

Belief state Action

Confirm

Confirm

Q-value

3

14 / 29



Gaussian process model for Q-function [Engel et al., 2005]

I Expected return can be expressed iteratively

Rπ
t =

T∑
i=0

γ i rt+i+1 = rt+1 + γRπ
t+1

I Q-function is the expectation of the return

Qπ(b, a) = Eπ (Rt |b(st) = b, at = a)

I Return can be modelled as the Q-value and residual ∆Qπ

Rπ
t (b, a) = Qπ(b, a) + ∆Qπ(b, a).

I Relationship between immediate reward and Q-value is then:

rt+1(b, a) = Qπ(b, a)−γQπ(b′, a′)+∆Qπ(b, a)−γ∆Qπ(b′, a′)

15 / 29



Relationship between immediate rewards and Q-values

r1 = Qπ(b0, a0)− γQπ(b1, a1)
+∆Qπ(b0, a0)− γ∆Qπ(b1, a1)

r2 = Qπ(b1, a1)− γQπ(b2, a2)
+∆Qπ(b1, a1)− γ∆Qπ(b2, a2)

...
r t = Qπ(bt−1, at−1)− γQπ(bt , at)

+∆Qπ(bt−1, at−1)− γ∆Qπ(bt , at),

16 / 29



Relationship between immediate rewards and Q-values

rt = Htq
π
t + Ht∆qπ

t ,

where

rt = [r1, . . . , r t ]T

qπ
t = [Qπ(b0, a0), . . . ,Qπ(bt , at)]T,

∆qπ
t = [∆Qπ(b0, a0), . . . ,∆Qπ(bt , at)]T,

Ht =


1 −γ · · · 0 0
0 1 · · · 0 0
...

. . .
. . .

...
...

0 · · · 0 1 −γ

 .

17 / 29



Gaussian process model for Q-function

Prior Qπ(b, a) ∼ GP (0, k((b, a), (b, a))),
∆Qπ(b, a) ∼ N (0, σ2)

Observations Belief-action pairs Bt = [(b0, a0), . . . , (bt , at)]T

immediate rewards rt = [r1, . . . , r t ]

Posterior Qπ(b, a)|rt ,Bt

18 / 29



Posterior of the Q-function

Qπ(b, a)|rt ,Bt ∼ GP(Q(b, a), cov((b, a), (b, a))),

Q(b, a) = kt(b, a)THT
t (HtKtH

T
t + σ2HtH

T
t )−1rt ,

cov((b, a), (b, a)) = k((b, a), (b, a))

− kt(b, a)THT
t (HtKtH

T
t + σ2HtH

T
t )−1Htkt(b, a)

kt(b, a) = [k((b0, a0), (b, a)), . . . , k((bt , at), (b, a))]T

Kt =

 k((b0, a0), (b0, a0)) · · · k((b0, a0), (bt , at))
...

. . .
...

k((b0, a0), (bt , at)) · · · k((bt , at), (bt , at))


19 / 29



Applying this to an on-line setting

Computational complexity – need to invert Gram matrix Kt

Sequential nature of data – need to perform updates sequentially

Kernel function – need to define correlations

20 / 29



GP-Sarsa algorithm

I Gram matrix is approximated with a dictionary of
representative points

I Updates take place every time a reward is observed

I Kernel function is decomposed into separate kernels over
belief states and actions

k((b, a), (b, a)) = kB(b,b)kA(a, a)

21 / 29



Sparcification

I Kernel function is a dot product of potentially infinite set of
feature functions φ(b, a) = [φ1(b, a), φ2(b, a), . . .]T

k((b, a), (b, a)) = 〈φ(b, a),φ(b, a)〉

I Gram matrix Kt is approximated with Gram matrix over
dictionary points K̃t and coefficients Gt = [g1, . . . , gt ]

Kt = ΦT
t Φt ≈ GtK̃tG

T
t

I Dimensionality of K̃t is m << t

22 / 29



Policy

I For given b, for each action a, there is a Gaussian distribution
Q̂(b, a) ∼ N (Q(b, a), cov((b, a), (b, a))))

I Sampling from these Gaussian distributions gives Q-values{
Q̂(b, a) : a ∈ A

}
I The highest sampled Q-value can then be selected:

π(b) = arg max
a

{
Q̂(b, a) : a ∈ A

}
I This balances exploration and exploitation during learning

23 / 29



Kernel function

Action kernel Action space is reduced to summary space and then
kernel is simple δ function: k(a, a′) = δa(a′)

Belief state kernel Options:

I Reduce to summary space and then calculate
kernel on summary space

I Calculate the kernel directly on the full belief
space

I For continuous variables use linear or Gaussian
kernel

24 / 29



GP-Sarsa algorithm

Algorithm 1 GP-Sarsa algorithm

1: Define prior for Q-function
2: for each dialogue do
3: Initialise b and choose a according to current Q estimate
4: if (b, a) is representative add to dictionary
5: for each turn do
6: Take action a observe r and next belief state b′

7: Choose a′ according to current Q estimate
8: if (b′, a′) is representative add to dictionary
9: Update posterior mean and variance of Q

10: b′ → b, a→ a′

11: end for
12: end for

25 / 29



Comparison with NAC in a dialogue
system [Gasic and Young, 2014]

0 20000 40000 60000 80000 100000
Training dialogues

10

5

0

5

10

15

Re
w

ar
d

NAC
GP

26 / 29



Learning from real users [Gasic and Young, 2014]

0 200 400 600 800 1000 1200
Dialogues

0

20

40

60

80

100
M

ov
in

g 
av

er
ag

e 
su

cc
es

s

On-lineLearning
SimulatorTrained

27 / 29



Summary

I Q-function is modelled as a Gaussian process allowing
posterior mean and variance to be calculated every time a
reward is observed

I GP-Sarsa is a model-free, on-line algorithm which allows
tractable approximation to the Gaussian process model for
Q-function

I With adequate choice of the kernel function learning speed
can be significantly improved

I Kernel function can be defined directly on belief state space

28 / 29



References I

Engel, Y., Mannor, S., and Meir, R. (2005).
Reinforcement learning with Gaussian processes.
In Proceedings of ICML.

Gasic, M. and Young, S. (2014).
Gaussian processes for pomdp-based dialogue manager
optimization.
Audio, Speech, and Language Processing, IEEE/ACM
Transactions on, 22(1):28–40.

29 / 29


	Problems in applying RL to dialogue
	Gaussian process model for Q-function
	GP-Sarsa algorithm

