Statistical Natural Language Generation

Tsung-Hsien Wen, Milica Gasic

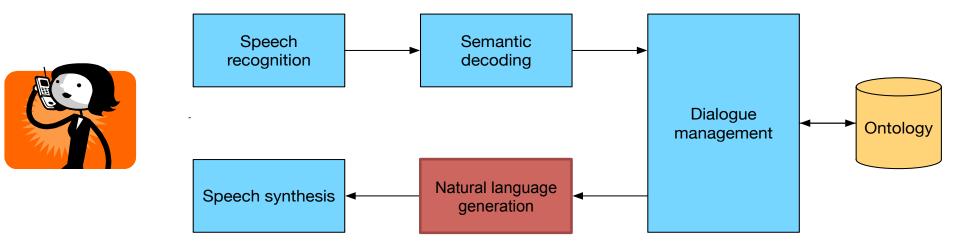
Dialogue Systems Group, Cambridge University Engineering Department

February 25, 2016

Outline

- Evaluation Metrics
- Traditional Approaches
 - Template-based
 - Tree-based
- Language Modeling for NLG
 - Class-based language model
 - Phrased-based Dynamic Bayesian Network
- Long Short-term Memory for NLG
 - Vanishing gradient problem and LSTM
 - Semantically conditioned LSTM for NLG

System Architecture



Evaluating NLG

- What makes a generator a good generator?
- Aspects: [Stent et al, 2005]
 - Adequacy : Correct meaning
 - Fluency : Linguistic fluency
 - Readability : Fluency in the dialogue context
 - Variation : Multiple realisations for the same concept
- However, none of the above is trivial!

BLEU score [Papineni et al, 2002]

- Evaluating **similarity** between paired sentences (n-gram match).
- The gap between human perception and automatic metrics.

Correlation	Adequacy	Fluency	
BLEU	0.388	-0.492	[Stent et al, 2005]

• Real user trial is always the best way to evaluate NLG.

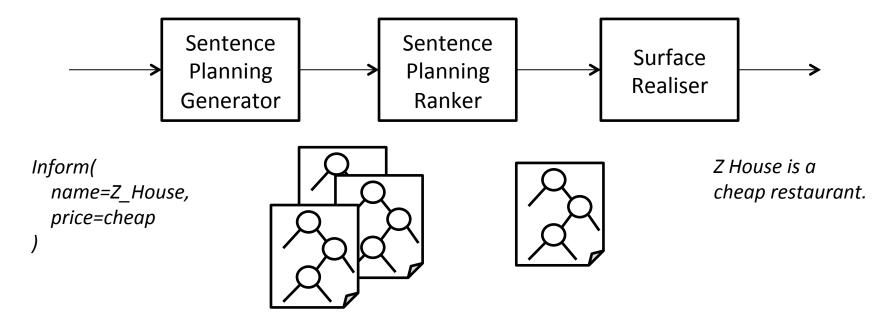
Template-based NLG

- Define a set of rules to map semantics to utterances.
- Pros :
 - simple, error-free(usually), easy-control
- Cons:
 - time-consuming, rigid, not scalable

confirm() "Please tell me more about the product your are looking for." confirm(area=\$V) "Do you want somewhere in the \$V?" confirm(food=\$V) "Do you want a \$V restaurant?" confirm(food=\$V,area=\$W) "Do you want a \$V restaurant in the \$W."

Trainable generator [Walker et al, 2002]

• Divide the problem into a pipeline,

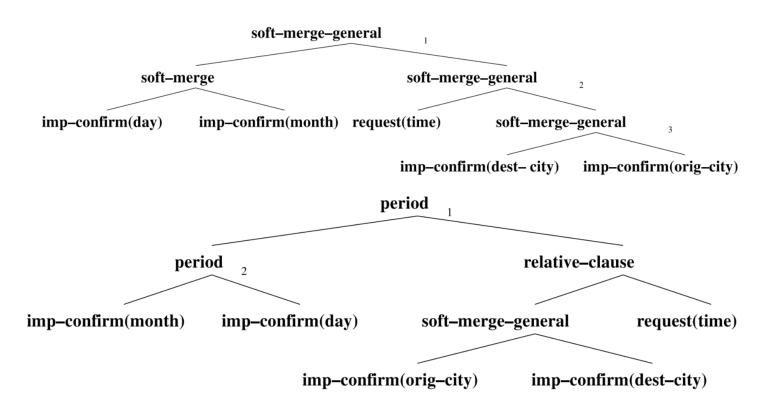


• Apply machine learning to sentence plan ranker.

Sentence Plan Generator [Walker et al,2002]

- Text plan (Dialogue Act):
- Example sentence plan:

implicit-confirm(orig-city:NEWARK)
implicit-confirm(dest-city:DALLAS)
implicit-confirm(month:9)
implicit-confirm(day-number:1)
request(depart-time)



Sentence Plan Ranker [Walker et al,2002]

- Frame it as an ML problem using RankBoost [Freund et al, 1998]
- Extracting features from trees using indicator function fi,
 - Traversal features, ancestor features, leaf features, ... etc. size 3291.

$$F(x) = \sum_i lpha_i f_i(x)$$
 $loss = \sum_{x,y \in D} e^{-(F(x) - F(y))}$

assume **x** is preferred than **y**

- α_i are parameters to learn.
- x,y are sp-trees labeled with user preference.
- D is the set of sp-trees regarding to that text plan (DA).

Other similar approaches

- Learning sentence planning generation rules. [Stent et al, 2009]
- Statistical surface realisers. [Dethlefs et al, 2013]
- Pros:
 - Can generate sentences with complex linguistic structures.
- Cons:
 - Many rules, heavily engineered.

Class-based LM for NLG [Oh&Rudnicky, 2000]

Language Modeling

$$P(W) = \prod_{t} P(w_t | w_0, w_1, \dots w_{t-1})$$

Class-based LM

$$P(W|\mathbf{u}) = \prod_{t} P(w_t|w_0, w_1, \dots, w_{t-1}, \mathbf{u})$$

Decoding

 $W^* = \operatorname*{argmax}_W P(W|\mathbf{u})$

Classes:

inform_area inform_address inform_phone

••••

request_area request_postcode

•••

Class-based LM for NLG [Oh&Rudnicky, 2000]

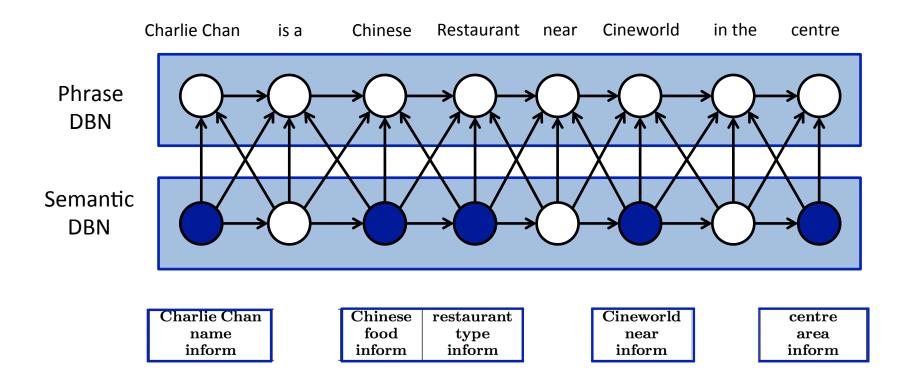
- Generation process
 - Generate utterances by sampling words from a particular class language model

in which the dialogue act belongs to.

- Re-rank utterances according to scores.
- Pros: no complicated rules, easy to implement, easy to understand.
- Cons: inefficient, error-prone

Phrase-based NLG [Mairesse et al, 2010]

• Phrase-based generation using Dynamic Bayesian Network (DBN)



Inform(type= restaurant, name=Charlie Chan, food=chinese, near=Cineworld, area=centre)

Phrase-based NLG [Mairesse et al, 2010]

- Pros:
 - Computationally more efficient.
 - Better performance
- Cons:

r_t	s_t	h_t	l_t
<s></s>	START	START	START
The Rice Boat	<pre>inform(name(X))</pre>	X	inform(name)
is a	inform	inform	EMPTY
restaurant	<pre>inform(type(restaurant))</pre>	restaurant	inform(type)
in the	inform(area)	area	inform
riverside	<pre>inform(area(riverside))</pre>	riverside	inform(area)
area	inform(area)	area	inform
that	inform	inform	EMPTY
serves	inform(food)	food	inform
French	<pre>inform(food(French))</pre>	French	inform(food)
food	inform(food)	food	inform
	END	END	END

- A lot of effort involved in data collection : semantic alignments

Can we do better ?

- RNN as language generator
 - Natural model for modeling sequences
 - Long-term dependencies
 - Flexible to conditioned on auxiliary inputs
- Long-term dependencies in NLG?
 - Example: The restaurant (in the north) is a nice Chinese place.

RNN & Vanishing gradient [Pascanu et al,2013]

$$h_{j} = \sigma(W_{r}h_{j-1} + W_{i}w_{j} + b_{h})$$

$$y_{j} = softmax(W_{o}h_{j} + b_{o})$$

$$\frac{\partial E_{3}}{\partial W_{r}} = \sum_{k=0}^{3} \frac{\partial E_{3}}{\partial y_{3}} \frac{\partial y_{3}}{\partial h_{3}} \frac{\partial h_{3}}{\partial h_{k}} \frac{\partial h_{k}}{\partial W_{r}}$$

$$= \sum_{k=0}^{3} \frac{\partial E_{3}}{\partial y_{3}} \frac{\partial y_{3}}{\partial h_{3}} \left(\prod_{j=k+1}^{3} \frac{\partial h_{j}}{\partial h_{j-1}}\right) \frac{\partial h_{k}}{\partial W_{r}}$$

$$\frac{\partial h_{j}}{\partial W_{r}} = \frac{\partial h_{j}}{\partial y_{3}} \frac{\partial F_{3}}{\partial h_{3}} \frac{\partial F_{3}}{\partial h_{3}} \left(\prod_{j=k+1}^{3} \frac{\partial h_{j}}{\partial h_{j-1}}\right) \frac{\partial h_{k}}{\partial W_{r}}$$

$$\frac{\partial h_j}{\partial h_{j-1}} = W_r^T diag(\sigma'(x_j))$$
 Jacobian
Matrix
$$x_j = W_r h_{j-1} + W_i w_j + b_h$$

Cost E₀ E₁ E₂ E₃
Output
layer
Hidden
layer
Input
layer
Input
layer
Ignore proof here.

$$||W_r|| \cdot ||diag(\sigma'(x_j))|| < 1$$

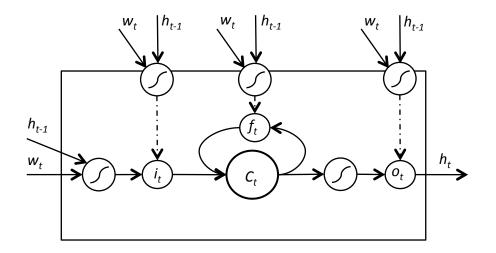
Vanishing gradient !

Long Short-term Memory [Hochreiter and Schmidhuber, 1997]

Sigmoid gates

 $\begin{aligned} \mathbf{i}_t &= g(\mathbf{W}_{wi}\mathbf{w}_t + \mathbf{W}_{hi}\mathbf{h}_{t-1}) \\ \mathbf{f}_t &= g(\mathbf{W}_{wf}\mathbf{w}_t + \mathbf{W}_{hf}\mathbf{h}_{t-1}) \\ \mathbf{o}_t &= g(\mathbf{W}_{wo}\mathbf{w}_t + \mathbf{W}_{ho}\mathbf{h}_{t-1}) \end{aligned}$

- Proposed cell value $\hat{\mathbf{C}}_t = tanh(\mathbf{W}_{wc}\mathbf{w}_t + \mathbf{W}_{hc}\mathbf{h}_{t-1})$
- Update cell and hidden layer $\mathbf{C}_t = \mathbf{i}_t \odot \hat{\mathbf{C}}_t + \mathbf{f}_t \odot \mathbf{C}_{t-1}$ $\mathbf{h}_t = \mathbf{o}_t \odot tanh(\mathbf{C}_t)$



Long Short-term Memory [Hochreiter and Schmidhuber, 1997]

- How it prevents vanishing gradient problem?
 - Consider memory cell, where recurrence actually happens

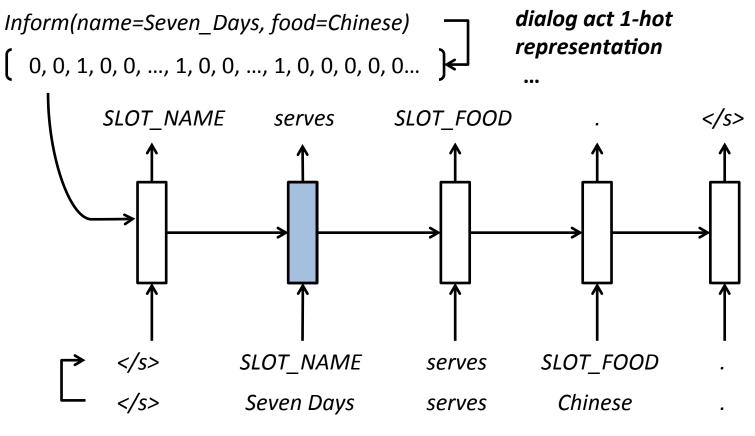
 $\mathbf{C}_t = \mathbf{i}_t \odot \mathbf{\hat{C}}_t + \mathbf{f}_t \odot \mathbf{C}_{t-1}$

- We can back-propagate the gradient by chain rule.

$$\frac{\partial E_t}{\partial C_{t-1}} = \frac{\partial E_t}{\partial C_t} \frac{\partial C_t}{\partial C_{t-1}} = \frac{\partial E_t}{\partial C_t} f_t$$

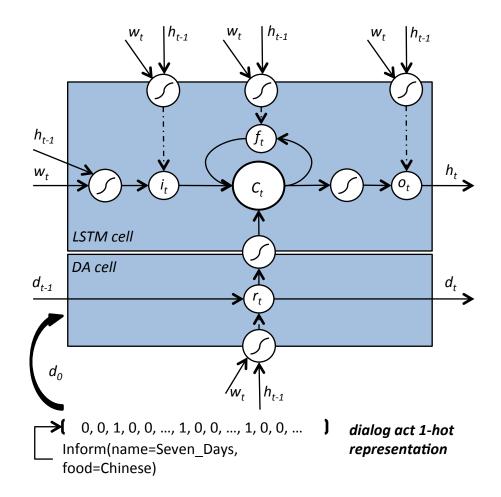
– If ft maintains a value of 1, gradient is perfectly propagated.

RNN Language Model for NLG [Wen et al,2015a]

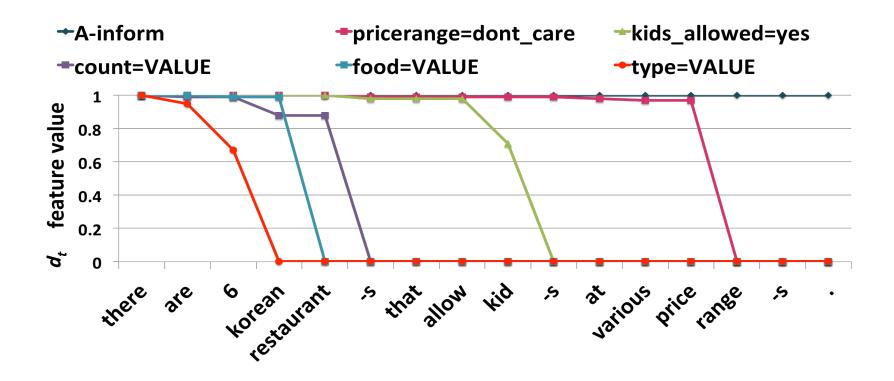


delexicalisation

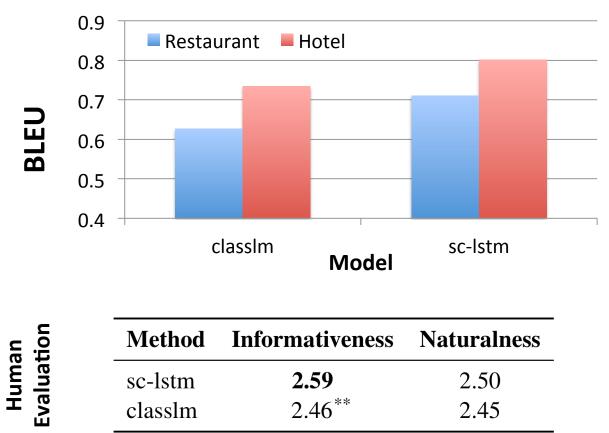
Semantic Conditioned LSTM [Wen et al, 2015b]



Learned alignments



Results



Method	Informativeness	Naturalness		
sc-lstm	2.59	2.50		
classlm	2.46^{**}	2.45		
$p^* > 0.05 p < 0.005$				

More Examples

inform_no_match(area=tenderloin)

there are no restaurants in the tenderloin area . there are 0 restaurants in the tenderloin area . unfortunately there are 0 restaurants in the tenderloin area . i could not find any restaurants in tenderloin .

Conclusion

- Evaluating NLG is hard. The best way is human evaluation.
- Tree-based NLG is a highly linguistically motivated approach. By introducing machine learning in the pipeline enables the model to learn from data.
- Language Modeling casts NLG as a sequential prediction problem. Both word-based and phrase-based approaches were introduced.
- RNN is a sequential model that can theoretically model very long-term dependencies, but in practice it suffers from the vanishing gradient problem.
- LSTM overcomes vanishing gradient by sophisticated gating mechanism. The same idea was applied to NLG resulting in semantically conditioned-LSTM, a generator that can learn realisation and semantic alignments jointly.

References

- Alice H. Oh and Alexander I. Rudnicky. Stochastic language generation for spoken dialogue systems. NAACL Workship on Conversational Systems 2000.
- F. Mairesse, M. Gasic, F. Jurcicek, S. Keizer, J. Prombonas, B. Thomson, K. Yu and S. Young. Phrase-based Statistical Language Generation using Graphical Models and Active Learning. ACL 2010
- Razvan Pascanu, Tomas Mikolov, Yoshua Bengio. On the difficulty of training recurrent neural networks. ICML 2013.
- Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke, and Steve Young. Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems. In *Proceedings of EMNLP 2015*.