
16.07.2021

Non-structured data construction

Renato Vukovic

Dialog Systems and Machine Learning
Institut für Informatik
Heinrich-Heine-Universität Düsseldorf



Contents

• Introduction
• Ontology construction
• Using a known ontology to develop an approach
• Apply this approach to unstructured data
• Conclusion

2 hhu.de



Introduction

User: Hello, I am trying to find a place to stay that has free wifi and 3 stars. Do you have
anything like that?
System: I have 5 results that match your criteria, do you have a certain area of town you’d
like to stay in or a price range you’re looking for?
User: Are any of them a hotel? I don’t want a guesthouse.
System: Yes there are two hotels. One in the centre and one in the south. Any preference?
User: No preference, I need it for 2 nights starting from Monday for 3 people, and I need a
reference number please.
System: OK, you are booked into the Gonville Hotel, located in the center of town on
Gonville Place. The reference number is G6FAO56J.
User: That is great, I’m so excited. Thanks for you help. Bye.
System: Thank you for contacting the help desk, and have a great day.

3 hhu.de

Eric et al., 2019



Introduction

“Ontologies define the terms used to describe and represent an area of Knowledge.”
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Motivation

• Most data is not readable for dialogue models.
• Structured data as used in ontologies is very limited, as they are mostly constructed by

hand.
• Reducing human intervention in data structuring expands the amount of data which can

be used.

⇒ Including non-structured data in dialogue systems would make them richer in terms of
what they could talk about.
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Introduction

• Ärguably, the most challenging and time-consuming part of any dialogue data collection is
the process of annotating dialogue acts."

• Multi-WOZ dataset has a size of around 10K dialogues.
• 8 domains, 61 slots
• 190 restaurants, 89 hotels with slots like "free internet", "food type", etc.

• Yelp review data contains more than 8M reviews for 160K businesses.
• Likely has many more concepts than Multi-WOZ
• Manual annotation most likely not feasible.
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Ontology construction

• Manual construction
• Cooperative construction: Most tasks of the ontology construction supervised by human

experts.
• (Semi-) Automatic construction: Reducing human intervention to a minimum.
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Al-Aswadi et al., 2020



Yelp review example

"Great place to hang out after work: the prices are decent, and the ambience is fun. It’s a bit
loud, but very lively. The staff is friendly, and the food is good. They have a good selection of
drinks."
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Procedure

• Goal: Develop a process for unsupervised ontology building or knowledge extraction for
use in dialogue models without additional training.

1 Rebuild the Multi-WOZ ontology as automatically as possible.
2 Use this process to build a Multi-WOZ like ontology from unlabeled Yelp review data.
3 Add new slots, e.g. politeness of staff, ambience, etc.
4 Find new Concepts possibly in an unsupervised manner.
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Ontology construction

1 Extraction
2 Concept discovery
3 Concept refining
4 Finding relations between concepts
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Term extraction

• Assumption: Correlation between word frequency and importance

⇒ Extract keyphrases based on frequency.

• Cover all the important slots, values in this step.
• Filter unnecessary words which do not refer to concepts later.
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Term extraction

• Extract the highest scoring keyphrases from the data using the scoring function:
s(k) = (

∏n
i=1 freq(wi))

1/nα for words (w1,w2, ...,wn) from keyphrase k
• Add entities, which are recognised by a named entity recogniser(NER).
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Term extraction examples

• ’What is the address, phone number, and price range of the grafton hotel restaurant?’
• ’I want to get there by 19:45 at the latest.’
• ’I am departing from birmingham new street.’
• "No, I just need to make sure it’s cheap. oh, and I need parking."
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Keyphrase tuning

s(k) = (
∏n

i=1 freq(wi))
1/nα

• Change α
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Changing α
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Keyphrase tuning

s(k) = (
∏n

i=1 freq(wi))
1/nα

• Change α
• Number of keyphrases taken per turn
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Number of keyphrases per turn + NER

Percentage of values covered wrt. the number of keyphrases per turn
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Keyphrase tuning

s(k) = (
∏n

i=1 freq(wi))
1/nα

• Change α
• Number of keyphrases taken per turn
• Keyphraselength
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Keyphrase length
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Ontology construction

1 Extraction
2 Concept discovery
3 Concept refining
4 Finding relations between concepts
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Concept discovery

• Train the model on predicting whether the extracted keyphrases are present.

⇒ Similar concepts are close in the embedding space.

• Model tags the queried keyphrase, if it is present.
• Attends to "NONE"token if the query is not present in the input sequence.
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Pretraining
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Heck, experimental TripPy version



Concept discovery
examples after keyphrase training

• Model tags "No, I just need to make sure it’s cheap. oh, and I need parking."with query
"price"

• With query "free": "No, I just need to make sure it’s cheap. oh, and I need parking."
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Concept discovery

• Query slot-values from the Multi-WOZ dataset with the pretrained model.
• Model able to classify a queried slot-value as present in input sequence with 82.4%

accuracy Multi-WOZ 2.2 test set.
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Ontology construction

1 Extraction
2 Concept discovery
3 Concept refining
4 Finding relations between concepts
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Concept refining

• Train the model on the slot-value pairs from the Multi-WOZ dataset, so that it is able to get
these concepts and tag them.

• Filter the unnecessary parts of the keyphrases this way, i.e. increase the precision.
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Ontology construction

1 Extraction
2 Concept discovery refining
3 Concept refining
4 Finding relations between concepts
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Extract concepts from unlabeled data

• Apply the model trained on tagging slot-value pairs in Multi-WOZ on Yelp data.

• Query the known slots and tag their corresponding values in the reviews (e.g.
price-decent).

• Introduce new slots found in the new dataset (e.g. staff-friendly).
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Conclusion

• Structuring huge amounts of data is a difficult challenge of current research.
• Automatic processes to build knowledge bases could make models more versatile, if they

can be used sufficiently.
• It is unclear whether building a knowledge base in a fully automatic way is possible.
• Using known ontologies to develop a process seems promising.
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Thanks for your attention!
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