hhu,

Reward Estimation in Reinforcement Learning

Christian Geishauser

Dialogue Systems and Machine Learning Group

Content

- Introduction to Reinforcement Learning (RL)
 - What is Reinforcement Learning?
- Inverse Reinforcement Learning (IRL)
 - Guided Dialogue Policy Learning (Takanobu et al. 2019)
- Intrinsic Reward Learning
 - What can learned intrinsic rewards capture? (Zheng et al. 2019)
- Learning in interaction with real users
 - On-line active reward learning (Su et al. 2016)

Christian Geishauser hhu.de

Introduction to Reinforcement Learning

- The introduction is partly inspired by David Silver's lectures at UCL
- https://www.davidsilver.uk/teaching/

Christian Geishauser hhu.de

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Agent's actions affect the subsequent data it receives
 - Agent creates its own data

■ An agent interacts with an environment in discrete time steps

hhu.de

- An agent interacts with an environment in discrete time steps
- At each time step t the agent:
 - \blacksquare Observes state s_t
 - Executes action a_t
 - Receives scalar reward r_t

- An agent interacts with an environment in discrete time steps
- At each time step t the agent:
 - \blacksquare Observes state s_t
 - **Executes** action a_t
 - Receives scalar reward r_t
- The environment
 - Receives action a_t
 - **Emits state** s_{t+1}
 - Emits scalar reward r_t

8 hhu.de

Rewards

- \blacksquare A **reward** r_t is a scalar feedback signal
- Indicates how well agent is doing at time step t
- The agent tries to maximise cumulative reward $R_t = \sum_{i=t}^{\infty} \gamma^{i-t} r_i$
- $\gamma \in [0,1]$ trades off immediate and future reward

Reward Hypothesis

Reinforcement Learning is based on the reward hypothesis

All goals can be described by the maximisation of expected cumulative reward

- Reward definition is central for the definition of the goal
- Reward design influences learning significantly

Sequential Decision Making

- Actions may have long term consequences
 - Get a pet
- Reward may be delayed
 - Grade of the exam
- It may be better to sacrifice immediate reward to gain more long-term reward
 - Write thesis instead of going to the rhein

Credit Assignment Problem

???

What actions in the trajectory contributed to the outcome?

What actions should be reinforced?

What actions should be avoided?

Reward for Dialog Policy Optimization

- Small constant negative reward in each turn to keep dialog short
- Huge reward at the end of the dialog, indicating whether goal of the user was completed
 - Was all information provided?
 - Was the correct entity booked?

Problems:

- Credit Assignment problem
- Agent may end the session too quickly, for instance booking a hotel without confirming with the user
- Agent gets stuck in local minimum by just keeping the dialog as short as possible

13 hhu.de

Inverse Reinforcement Learning

Inverse Reinforcement Learning

- Instead of learning an optimal behaviour by maximizing hand-crafted reward
- Try to extract a reward function from observed behaviour of an agent
 - Find reward function that expert is implicitly optimizing
 - Behaviour can come from a human for instance

Once a reward function is found, find an optimal policy to it by using RL

Possible Advantages of IRL

- Transfer learning
 - Even when observed agent is very different to target agent (different action sets for humans and robots) the reward function contains relevant information
 - Transferred reward function can be more robust than transferred policy
- Extends applicability of RL to problems where a reward function is difficult to define manually
 - Model animal behaviour
 - Autonomous driving
- Reward function might be dense, alleviating the credit assignment problem

16 hhu.de

Issues with IRL

- Policy can be optimal for many reward functions (e.g. all zeros)
 - -> Ambiguity in solution
- IRL algorithms assume that observed behaviour is optimal
 - Humans are not perfect
- Difficult to evaluate a learned reward

Maximum Entropy IRL (MEIRL)

- IRL is essentially an ill-posed problem as multiple reward functions can explain the expert's behaviour
- Ziebart et al., 2008 propose Maximum Entropy IRL to resolve that problem
- Maximum entropy IRL models distribution over trajectories
 - Models demonstrations using a Boltzmann distribution
 - $p_{\theta}(\tau) = \frac{1}{Z} \exp(-c_{\theta}(\tau)), \tau$ being a trajectory, $c_{\theta}(\tau) = \sum_{t} c_{\theta}(s_{t}, a_{t})$ being a cost function
 - Parameters are optimized to maximize the likelihood of demonstrations
 - Probability of trajectory is proportional to the exponential of its cost

Equivalence between GANs and MEIRL

- Finn et al., 2016 draw a strong connection between GANs and MEIRL
 - GANs applied to IRL problems optimize the same objective as MEIRL

Guided Dialog Policy Learning (Takanobu et al., 2019)

- Applies adversarial inverse reinforcement learning for dialogue policy optimization
 - Learns reward estimator and policy simulatenously

- Reward estimator $f_{\omega}(\tau)$ is optimized using Maximum Entropy IRL
 - maximizes log likelihood of observed human behaviour

21 hhu.de

- Reward estimator $f_{\omega}(\tau)$ is optimized using Maximum Entropy IRL
 - maximizes log likelihood of observed human behaviour

$$\bullet \omega^* = argmax_{\omega} \mathbb{E}_{\tau \sim D}[f_{\omega}(\tau)]$$

Maximize log likelihood of expert demonstration

Log of Boltzmann distribution

$$R_{\omega}(\tau) = \sum_{t} \gamma^{t} r_{\omega}(s_{t}, a_{t})$$

Energy of sample τ

$$Z_{\omega} = \sum_{\tau} e^{R_{\omega}(\tau)}$$

Partition function, used for normalization

$$\bullet \omega^* = argmax_{\omega} \mathbb{E}_{\tau \sim D}[f_{\omega}(\tau)]$$

Maximize log likelihood of expert demonstration

Log of Boltzmann distribution

$$\blacksquare R_{\omega}(\tau) = \sum_{t} \gamma^{t} r_{\omega}(s_{t}, a_{t})$$

Energy of sample τ

$$Z_{\omega} = \sum_{\tau} e^{R_{\omega}(\tau)}$$

Partition function, used for normalization

High value $f_{\omega}(\tau)$ \longleftarrow High return $R_{\omega}(\tau)$

- Policy π_{θ} is encouraged to mimic human dialog behaviour

 - Policy should construct trajectories that resemble expert demonstrations

- Policy π_{θ} is encouraged to mimic human dialog behaviour

 - Policy should construct trajectories that resemble expert demonstrations
- Reward estimator should distinguish real human sessions from generated ones

 $\textbf{J}_f(\omega) = -KL[p_D(\tau)||p_\omega(\tau)] + KL[\pi_\theta(\tau)||p_\omega(\tau)]$ Be close to data Adversarial Learning distribution

25 hhu.de

- Reward estimation uses entire session τ
 - Can lead to reward sparsity
 - May be of high variance due to different trajectory lengths
- -> Estimate state-action pairs instead

- Big jump in performance compared to baseline methods
- Efficient dialogues, number of turns similar to human demonstrations
- Human-human performance computed on test set

Method	Agenda			
	Turns	Inform	Match	Success
GP-MBCM	2.99	19.04	44.29	28.9
ACER	10.49	77.98	62.83	50.8
PPO	9.83	83.34	69.09	59.1
ALDM	12.47	81.20	62.60	61.2
GDPL-sess	7.49	88.39	77.56	76.4
GDPL-discr	7.86	93.21	80.43	80.5
GDPL	7.64	94.97	83.90	86.5
Human	7.37	66.89	95.29	75.0

27 hhu.de

Summary

- Learns reward estimator and optimizes policy simulatenously
 - By using adversarial inverse reinforcement learning
- Reward estimator evaluates state-action pair in every turn
 - Provides dense reward signal -> alleviates credit assignment problem
 - Better "guides" the dialog policy learning
- Achieves state-of-the-art performance
- Requires pre-training

28 hhu.de

Intrinsic Reward Learning

Intrinsic reward and reward shaping

- Extrinsic reward: Defines the task and captures designer's preference of behaviour
 - Reward signal emitted by the environment

Intrinsic reward: Serves as helpful signal to improve learning dynamics of the agent

- Reward shaping: Modifies the original reward function to make RL methods converge faster
 - For instance "New reward = extrinsic reward + intrinsic reward"

■ What can learned intrinsic rewards capture? (Zheng et al., 2019)

■ There is a difference between knowledge in rewards and policies

Meta-learns an intrinsic reward function to help policies during learning

- Policies, value-functions, state representations, models of the environment
 - Are loci of knowledge as being structures where knowledge can be deposited and reused

- Policies, value-functions, state representations, models of the environment
 - Are loci of knowledge as being structures where knowledge can be deposited and reused

- Claim: Reward function is also a good locus of knowledge
 - Reward is usually treated as given and immutable

- Knowledge in rewards: "What" the agent should strive to do
 - More indirect, thus slower to make an impact on behaviour

- Knowledge in rewards: "What" the agent should strive to do
 - More indirect, thus slower to make an impact on behaviour
- Knowledge in policy: "How" an agent should behave
 - Can directly have an impact on behaviour

hhu.de

- Knowledge in rewards: "What" the agent should strive to do
 - More indirect, thus slower to make an impact on behaviour
- Knowledge in policy: "How" an agent should behave
 - Can directly have an impact on behaviour
- Measure of usefulness of the intrinsic reward: Lifetime return
 - Lifetime return: Cumulative extrinsic reward obtained by the agent over ist entire lifetime

What can learned intrinsic rewards capture?

- Knowledge in rewards: "What" the agent should strive to do
 - More indirect, thus slower to make an impact on behaviour
- Knowledge in policy: "How" an agent should behave
 - Can directly have an impact on behaviour
- Measure of usefulness of the intrinsic reward: Lifetime return.
 - Lifetime return: Cumulative extrinsic reward obtained by the agent over ist entire lifetime
 - Lifetime return: $G^{life} = \sum_{t=0}^{T-1} \gamma^t r_{t+1}$
 - T is the number of steps in the lifetime
 - r_t denotes extrinsic reward

Optimal Reward Problem (Singh et al. 2010)

- Intrinsic reward: A reward function $r_n(\tau_{t+1})$ parameterised by η
 - $\tau_t = (s_0, a_0, r_1, d_1, s_1, ..., r_t, d_t, s_t)$ is a lifetime history

- The reward function is non-stationary
 - Reward function can adapt to learning progress of agent
 - Useful as agent goes through different learning phases

- Goal: Learn parameters η that optimises lifetime return
 - Using lifetime return instead of episodic return allows exploration across multiple episodes

Learning intrinsic reward

- Intrinsic reward function $r_{\eta}(s)$ modelled by an RNN which obtains whole history as input
 - History as input crucial: Balance exploration and exploitation
 - For instance by capturing how frequently a state is visited -> exploration bonus

- $\mathbf{r}_{\eta}(s)$ is meta-learned with objective function
 - $I(\eta) = \mathbb{E}_{\theta_0 \sim \Theta, \mathcal{T} \sim p(\mathcal{T})} [\mathbb{E}_{\tau \sim p_n(\tau|\theta_0)} [G^{life}]]$
- Policy parameters updated using solely intrinsic rewards
 - By policy gradient

Experiment: Explore uncertain states

- Empty rooms environment
 - Agent starts in the centre of top-left room
 - Only one cell is rewarding, the "goal cell"
 - Goal cell is invisible to the agent
 - Goal sampled uniformly at the beginning of the lifetime
 - Episode terminates when goal has been reached

Blue and yellow squares represent agent and goal, respectively

Explore uncertain states

- Empty rooms environment
 - Agent needs to explore all cells until goal is found, then exploit knowledge

Explore uncertain states

- Empty rooms environment
 - Agent needs to explore all cells until goal is found, then exploit knowledge

Top: Agent is encouraged to explore

Bottom: Agent should exploit knowledge of goal location

42

Explore uncertain states

- Exploration-focused models (d) and (e) do not adjust after the goal has been found
 - They are stationary and do not incorporate the lifetime history

Explore uncertain, avoid harmful objects

- Random ABC environment
 - Rewards for objects A, B and C uniformly sampled
 - From [-1, 1], [-0.5, 0] and [0, 0.5] respectively
 - Then held fixed within the lifetime
- Should learn that
 - B should be avoided.
 - A and C have uncertain rewards -> visit them
 - Once determined whether A or C is better -> exploit

Explore uncertain, avoid harmful objects

Random ABC environment

Dealing with non-stationarity

- Non-stationary ABC environment
 - Reward for A either 1 or -1
 - Reward for B is -0.5
 - Reward for C is the negative value of the reward for A
 - Reward of A and C swapped after 250 episodes
 - Lifetime lasts 1000 episodes

46

Dealing with non-stationarity

- Task changes at 500th episode
- Intrinsic reward gives a negative reward even before the task changes
- Makes policy less deterministic (entropy increases)
- Higher entropy -> agent can quickly adapt to changes

Generalisation via Rewards

- Generalisation to unseen action spaces:
 - Permute actions left/right and up/down
 - Intrinsic reward still useful because it only assigns reward to agent's state changes
 - Reward captures "what to do", making it possible to generalize to new actions
- Meta-learning algorithms were not able to generalise to the permuted environment
 - Transferred policies are highly biased towards the original action space
 - Highlights the difference between "what to do" and "how to do" knowledge captured by policies

Summary

- Proposes a method for learning intrinsic rewards to tackle optimal reward problem
- Learned reward function is non-stationary
 - Encourages explorative and exploitative behaviour across multiple episodes
- Experiments highlight difference between "what do do" and "how to do" knowledge
- Computationally very expansive since you need to run a lot of lifetimes

Learning in interaction with real users

Gap between simulation and real-world

- Reinforcement Learning algorithms are usually trained in simulation
- Gap between simulation and real-world determines how good algorithm perform in the real world
- Necessary to adapt policy to real-world environment
- In dialogs: Learn on-line in interaction with real users

51

Learning in interaction with real users

On-line active reward learning for policy optimisation (Su et al., 2016)

Learns policy from scratch in interaction with real users

Using Gaussian processes

- Task success can be determined from
 - Subjective user ratings (Subj)
 - Objective measure (Obj)
- Obj: Often impractical as user's goal normally not available
 - Inflexible and often fail if user does not strictly follow the task
 - Results in mismatch between Obj and Subj rating
- Subj: Frequently inaccurate responses
 - Results in unstable learning

Use Gaussian process prediction model for inferring task success

- Use Gaussian process prediction model for inferring task success
- Goal: Compute probability $p(y|d,\mathcal{D})$ that task was successful
 - Given current dialog representation d and previously classified dialogues \mathcal{D}

- Use Gaussian process prediction model for inferring task success
- Goal: Compute probability $p(y|d,\mathcal{D})$ that task was successful
 - \blacksquare Given current dialog representation d and previously classified dialogues \mathcal{D}
- Model $p(y|d,\mathcal{D}) = \phi(f(d|D))$, where
 - $f: \mathbb{R}^{n_d} \to \mathbb{R}$ is a latent function, modelled by a Gaussian process
 - lacktriangledown denotes the cumulative density function of the standard Gaussian (sigmoid also possible)
 - Use expectation propagation algorithm to make posterior tractable

- Why Gaussian process?
- Neural networks require large amounts of training data
 - Not suitable for training from scratch with real users
- Gaussian processes learn really quick
 - By incorporating prior knowlege in form of the kernel function
- Gaussian processes come naturally equipped with a measure of uncertainty

57

- Use threshold intervall $[1 \lambda, \lambda], \lambda \in (0.5, 1]$
 - To decide whether the dialogue should be labelled
- m^* , σ_*^2 denote the posterior mean and variance of $f(d_*)$, respectively

- Dialogue representation *d* computed using a bidirectional LSTM autoencoder
 - Trained with a dialogue corpus comprising user dialogues in the cambridge restaurant domain

- Policy is modelled by a Q-network
 - Q-values estimated by a Gaussian process (GP-SARSA)

59

System framework

Experimental Results

- Compare on-line GP to
 - Obj=Subj: dialogue is only used if subjective and objective success rating coincide
 - Sub: Use subjective rating of the user
 - Off-line RNN: Train an RNN on 1K simulated dialogues off-line as success estimator

Experimental Results

- Compare on-line GP to
 - Obj=Subj: dialogue is only used if subjective and objective success rating coincide
 - Sub: Use subjective rating of the user
 - Off-line RNN: Train an RNN on 1K simulated dialogues off-line as success estimator
- Success is calculated using the moving average

Experimental Results

- Compare on-line GP to
 - Obj=Subj: dialogue is only used if subjective and objective success rating coincide
 - Sub: Use subjective rating of the user
 - Off-line RNN: Train an RNN on 1K simulated dialogues off-line as success estimator
- Only requires ~150 user queries

Summary

- Goal: Learn policy from scratch in interaction with real users
- Approach:
 - Use Gaussian process prediction model to infer task success
 - Only query user feedback if uncertainty is within a given threshold
 - Learn dialgoue representation using an RNN autoencoder
- Results:
 - GP reward leads to best performance
 - Only requires a fraction of queries compared to all training dialogues

Thank you

References

- Ziebart, Brian D., et al. "Maximum entropy inverse reinforcement learning." Aaai. Vol. 8. 2008.
- Finn, Chelsea, et al. "A connection between generative adversarial networks, inverse reinforcement learning, and energy-based models." *arXiv preprint arXiv:1611.03852* (2016).
- Takanobu, Ryuichi, Hanlin Zhu, and Minlie Huang. "Guided Dialog Policy Learning: Reward Estimation for Multi-Domain Task-Oriented Dialog." arXiv preprint arXiv:1908.10719 (2019).
- Zheng, Zeyu, et al. "What Can Learned Intrinsic Rewards Capture?." arXiv preprint arXiv:1912.05500 (2019).
- Su, Pei-Hao, et al. "On-line active reward learning for policy optimisation in spoken dialogue systems." arXiv preprint arXiv:1605.07669 (2016).
- Singh, Satinder, et al. "Intrinsically motivated reinforcement learning: An evolutionary perspective." IEEE Transactions on Autonomous Mental Development 2.2 (2010): 70-82.