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¾ The introduction is partly inspired by David Silver‘s lectures at UCL

¾ https://www.davidsilver.uk/teaching/

https://www.davidsilver.uk/teaching/
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What makes reinforcement learning different from other machine learning paradigms? 

¾ There is no supervisor, only a reward signal

¾ Feedback is delayed, not instantaneous

¾ Agent‘s actions affect the subsequent data it receives
¾ Agent creates its own data
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¾ An agent interacts with an environment in discrete time steps
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¾ An agent interacts with an environment in discrete time steps

¾ At each time step t the agent:
¾ Observes state 𝑠!
¾ Executes action 𝑎!
¾ Receives scalar reward 𝑟!
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¾ An agent interacts with an environment in discrete time steps

¾ At each time step t the agent:
¾ Observes state 𝑠!
¾ Executes action 𝑎!
¾ Receives scalar reward 𝑟!

¾ The environment
¾ Receives action 𝑎!
¾ Emits state 𝑠!"#
¾ Emits scalar reward 𝑟!
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¾ A reward 𝑟! is a scalar feedback signal

¾ Indicates how well agent is doing at time step t

¾ The agent tries to maximise cumulative reward 𝑅! = ∑"#!$ 𝛾"%! 𝑟"

¾ 𝛾 ∈ [0, 1] trades off immediate and future reward
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¾ Reinforcement Learning is based on the reward hypothesis

¾ Reward definition is central for the definition of the goal

¾ Reward design influences learning significantly

All goals can be described by the maximisation of expected cumulative reward
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¾ Actions may have long term consequences
¾ Get a pet

¾ Reward may be delayed
¾ Grade of the exam

¾ It may be better to sacrifice immediate reward to gain more long-term reward
¾ Write thesis instead of going to the rhein
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¾ What actions in the trajectory contributed to the outcome?
¾ What actions should be reinforced?
¾ What actions should be avoided?

Goal

That was bad!

???
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¾ Small constant negative reward in each turn to keep dialog short
¾ Huge reward at the end of the dialog, indicating whether goal of the user was completed

¾ Was all information provided?
¾ Was the correct entity booked?

¾ Problems:
¾ Credit Assignment problem
¾ Agent may end the session too quickly, for instance booking a hotel without confirming with the

user
¾ Agent gets stuck in local minimum by just keeping the dialog as short as possible
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¾ Instead of learning an optimal behaviour by maximizing hand-crafted reward

¾ Try to extract a reward function from observed behaviour of an agent
¾ Find reward function that expert is implicitly optimizing
¾ Behaviour can come from a human for instance

¾ Once a reward function is found, find an optimal policy to it by using RL
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¾ Transfer learning
¾ Even when observed agent is very different to target agent (different action sets for humans and

robots) the reward function contains relevant information
¾ Transferred reward function can be more robust than transferred policy

¾ Extends applicability of RL to problems where a reward function is difficult to define
manually
¾ Model animal behaviour
¾ Autonomous driving

¾ Reward function might be dense, alleviating the credit assignment problem
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¾ Policy can be optimal for many reward functions (e.g. all zeros)
¾ -> Ambiguity in solution

¾ IRL algorithms assume that observed behaviour is optimal
¾ Humans are not perfect

¾ Difficult to evaluate a learned reward
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¾ IRL is essentially an ill-posed problem as multiple reward functions can explain the
expert‘s behaviour

¾ Ziebart et al., 2008 propose Maximum Entropy IRL to resolve that problem

¾ Maximum entropy IRL models distribution over trajectories
¾ Models demonstrations using a Boltzmann distribution

¾ 𝑝$ 𝜏 = #
%
exp(−𝑐$(𝜏)), 𝜏 being a trajectory, 𝑐$ 𝜏 = ∑! 𝑐$ 𝑠! , 𝑎! being a cost function

¾ Parameters are optimized to maximize the likelihood of demonstrations
¾ Probability of trajectory is proportional to the exponential of its cost
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¾ Finn et al., 2016 draw a strong connection between GANs and MEIRL
¾ GANs applied to IRL problems optimize the same objective as MEIRL
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¾ Guided Dialog Policy Learning (Takanobu et al., 2019)

¾ Applies adversarial inverse reinforcement learning for dialogue policy optimization
¾ Learns reward estimator and policy simulatenously
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¾ Reward estimator 𝑓&(𝜏) is optimized using Maximum Entropy IRL
¾ maximizes log likelihood of observed human behaviour
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¾ Reward estimator 𝑓&(𝜏) is optimized using Maximum Entropy IRL
¾ maximizes log likelihood of observed human behaviour

¾ 𝜔∗ = 𝑎𝑟𝑔𝑚𝑎𝑥&𝔼(∼*[𝑓&(𝜏)] Maximize log likelihood of expert demonstration

¾ 𝑓& 𝜏 = log 𝑝& 𝜏 = log +
&' (

,'
Log of Boltzmann distribution

¾ 𝑅& 𝜏 = ∑! 𝛾!𝑟&(𝑠!, 𝑎!) Energy of sample 𝜏

¾ 𝑍& = ∑( 𝑒-'(() Partition function, used for normalization
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¾ 𝜔∗ = 𝑎𝑟𝑔𝑚𝑎𝑥&𝔼(∼*[𝑓&(𝜏)] Maximize log likelihood of expert demonstration

¾ 𝑓& 𝜏 = log 𝑝& 𝜏 = log +
&' (

,'
Log of Boltzmann distribution

¾ 𝑅& 𝜏 = ∑! 𝛾!𝑟&(𝑠!, 𝑎!) Energy of sample 𝜏

¾ 𝑍& = ∑( 𝑒-'(() Partition function, used for normalization

High value 𝑓&(𝜏) High return 𝑅&(𝜏)
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¾ Policy 𝜋0 is encouraged to mimic human dialog behaviour
¾ 𝐽) 𝜃 = −𝐾𝐿[𝜋$ 𝜏 | 𝑝* 𝜏 = 𝔼+∼)[𝑓* 𝜏 − log 𝜋$ 𝜏 ]
¾ Policy should construct trajectories that resemble expert demonstrations
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¾ Policy 𝜋0 is encouraged to mimic human dialog behaviour
¾ 𝐽) 𝜃 = −𝐾𝐿[𝜋$ 𝜏 | 𝑝* 𝜏 = 𝔼+∼)[𝑓* 𝜏 − log 𝜋$ 𝜏 ]
¾ Policy should construct trajectories that resemble expert demonstrations

¾ Reward estimator should distinguish real human sessions from generated ones
¾ 𝐽- 𝜔 = −𝐾𝐿[𝑝.(𝜏)| 𝑝* 𝜏 + 𝐾𝐿[𝜋$ 𝜏 | 𝑝* 𝜏

Be close to data
distribution

Adversarial Learning
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¾ Reward estimation uses entire session 𝜏
¾ Can lead to reward sparsity
¾ May be of high variance due to different trajectory lengths

¾ -> Estimate state-action pairs instead
¾ 𝐽) 𝜃 = 𝔼/,1∼)[𝑓* 𝑠, 𝑎 − log 𝜋$ 𝑠, 𝑎 ]
¾ 𝐽- 𝜔 = 𝔼/,1∼. 𝑓* 𝑠, 𝑎 − 𝔼/,1∼) 𝑓* 𝑠, 𝑎
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¾ Big jump in performance compared
to baseline methods

¾ Efficient dialogues, number of turns
similar to human demonstrations

¾ Human-human performance computed
on test set
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¾ Learns reward estimator and optimizes policy simulatenously
¾ By using adversarial inverse reinforcement learning

¾ Reward estimator evaluates state-action pair in every turn
¾ Provides dense reward signal -> alleviates credit assignment problem
¾ Better „guides“ the dialog policy learning

¾ Achieves state-of-the-art performance

¾ Requires pre-training
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¾ Extrinsic reward: Defines the task and captures designer‘s preference of behaviour
¾ Reward signal emitted by the environment

¾ Intrinsic reward: Serves as helpful signal to improve learning dynamics of the agent

¾ Reward shaping: Modifies the original reward function to make RL methods
converge faster
¾ For instance „New reward = extrinsic reward + intrinsic reward“



hhu.de

What can learned intrinsic rewards capture?

31

¾ What can learned intrinsic rewards capture? (Zheng et al., 2019)

¾ There is a difference between knowledge in rewards and policies

¾ Meta-learns an intrinsic reward function to help policies during learning
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¾ Policies, value-functions, state representations, models of the environment
¾ Are loci of knowledge as being structures where knowledge can be deposited and reused



hhu.de

What can learned intrinsic rewards capture?

33

¾ Policies, value-functions, state representations, models of the environment
¾ Are loci of knowledge as being structures where knowledge can be deposited and reused

¾ Claim: Reward function is also a good locus of knowledge
¾ Reward is usually treated as given and immutable
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¾ Knowledge in rewards: „What“ the agent should strive to do
¾ More indirect, thus slower to make an impact on behaviour
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¾ Knowledge in rewards: „What“ the agent should strive to do
¾ More indirect, thus slower to make an impact on behaviour

¾ Knowledge in policy: „How“ an agent should behave
¾ Can directly have an impact on behaviour
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¾ Knowledge in rewards: „What“ the agent should strive to do
¾ More indirect, thus slower to make an impact on behaviour

¾ Knowledge in policy: „How“ an agent should behave
¾ Can directly have an impact on behaviour

¾ Measure of usefulness of the intrinsic reward: Lifetime return
¾ Lifetime return: Cumulative extrinsic reward obtained by the agent over ist entire lifetime
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¾ Knowledge in rewards: „What“ the agent should strive to do
¾ More indirect, thus slower to make an impact on behaviour

¾ Knowledge in policy: „How“ an agent should behave
¾ Can directly have an impact on behaviour

¾ Measure of usefulness of the intrinsic reward: Lifetime return
¾ Lifetime return: Cumulative extrinsic reward obtained by the agent over ist entire lifetime
¾ Lifetime return: 𝐺23-4 = ∑!5678#𝛾! 𝑟!"#
¾ T is the number of steps in the lifetime
¾ 𝑟! denotes extrinsic reward
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¾ Intrinsic reward: A reward function 𝑟1(𝜏!23) parameterised by 𝜂
¾ 𝜏! = (𝑠9 , 𝑎6, 𝑟#, 𝑑#, 𝑠#, … , 𝑟! , 𝑑! , 𝑠!) is a lifetime history

¾ The reward function is non-stationary
¾ Reward function can adapt to learning progress of agent
¾ Useful as agent goes through different learning phases

¾ Goal: Learn parameters 𝜂 that optimises lifetime return
¾ Using lifetime return instead of episodic return allows exploration across multiple episodes
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¾ Intrinsic reward function 𝑟1(𝑠) modelled by an RNN which obtains whole history as input
¾ History as input crucial: Balance exploration and exploitation
¾ For instance by capturing how frequently a state is visited -> exploration bonus

¾ 𝑟1(𝑠) is meta-learned with objective function
¾ 𝐽 𝜂 = 𝔼$!∼:, 𝒯∼<(𝒯)[𝔼+∼<" 𝜏 𝜃6 [𝐺

23-4]]

¾ Policy parameters updated using solely intrinsic rewards
¾ By policy gradient
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¾ Empty rooms environment
¾ Agent starts in the centre of top-left room
¾ Only one cell is rewarding, the „goal cell“
¾ Goal cell is invisible to the agent
¾ Goal sampled uniformly at the beginning of the lifetime
¾ Episode terminates when goal has been reached

¾ Blue and yellow squares represent agent and goal, respectively
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¾ Empty rooms environment
¾ Agent needs to explore all cells until goal is found, then exploit knowledge
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¾ Empty rooms environment
¾ Agent needs to explore all cells until goal is found, then exploit knowledge

Top: Agent is encouraged to explore Bottom: Agent should exploit knowledge of goal location
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¾ Exploration-focused models (d) and (e) do not adjust after the goal has been found
¾ They are stationary and do not incorporate the lifetime history
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¾ Random ABC environment
¾ Rewards for objects A, B and C uniformly sampled
¾ From [-1, 1], [-0.5, 0] and [0, 0.5] respectively
¾ Then held fixed within the lifetime

¾ Should learn that
¾ B should be avoided
¾ A and C have uncertain rewards -> visit them
¾ Once determined whether A or C is better -> exploit
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¾ Random ABC environment
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¾ Non-stationary ABC environment
¾ Reward for A either 1 or -1
¾ Reward for B is -0.5
¾ Reward for C is the negative value of the reward for A
¾ Reward of A and C swapped after 250 episodes
¾ Lifetime lasts 1000 episodes
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¾ Task changes at 500th episode
¾ Intrinsic reward gives a negative reward even before the task changes
¾ Makes policy less deterministic (entropy increases)
¾ Higher entropy -> agent can quickly adapt to changes
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¾ Generalisation to unseen action spaces:
¾ Permute actions left/right and up/down
¾ Intrinsic reward still useful because it only assigns reward to agent‘s state changes
¾ Reward captures „what to do“, making it possible to generalize to new actions

¾ Meta-learning algorithms were not able to generalise to the permuted environment
¾ Transferred policies are highly biased towards the original action space
¾ Highlights the difference between „what to do“ and „how to do“ knowledge captured by policies
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¾ Proposes a method for learning intrinsic rewards to tackle optimal reward problem

¾ Learned reward function is non-stationary
¾ Encourages explorative and exploitative behaviour across multiple episodes

¾ Experiments highlight difference between „what do do“ and “how to do“ knowledge

¾ Computationally very expansive since you need to run a lot of lifetimes
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¾ Reinforcement Learning algorithms are usually trained in simulation

¾ Gap between simulation and real-world determines how good algorithm perform in the
real world

¾ Necessary to adapt policy to real-world environment

¾ In dialogs: Learn on-line in interaction with real users
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¾ On-line active reward learning for policy optimisation (Su et al., 2016)

¾ Learns policy from scratch in interaction with real users

¾ Using Gaussian processes
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¾ Task success can be determined from
¾ Subjective user ratings (Subj)
¾ Objective measure (Obj)

¾ Obj: Often impractical as user‘s goal normally not available
¾ Inflexible and often fail if user does not strictly follow the task
¾ Results in mismatch between Obj and Subj rating

¾ Subj: Frequently inaccurate responses
¾ Results in unstable learning
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¾ Use Gaussian process prediction model for inferring task success
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¾ Use Gaussian process prediction model for inferring task success

¾ Goal: Compute probability 𝑝(𝑦|𝑑, 𝒟) that task was successful
¾ Given current dialog representation 𝒅 and previously classified dialogues 𝓓
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¾ Use Gaussian process prediction model for inferring task success

¾ Goal: Compute probability 𝑝(𝑦|𝑑, 𝒟) that task was successful
¾ Given current dialog representation 𝒅 and previously classified dialogues 𝓓

¾ Model 𝑝 𝑦 𝑑,𝒟 = 𝜙(𝑓(𝑑|𝐷)), where
¾ 𝑓: ℝ?# → ℝ is a latent function, modelled by a Gaussian process
¾ 𝜙 denotes the cumulative density function of the standard Gaussian (sigmoid also possible)
¾ Use expectation propagation algorithm to make posterior tractable
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¾ Why Gaussian process?

¾ Neural networks require large amounts of training data
¾ Not suitable for training from scratch with real users

¾ Gaussian processes learn really quick
¾ By incorporating prior knowlege in form of the kernel function

¾ Gaussian processes come naturally equipped with a measure of uncertainty
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¾ Use threshold intervall 1 − 𝜆, 𝜆 , 𝜆 ∈ 0.5, 1
¾ To decide whether the dialogue should be labelled

¾ 𝑚∗, 𝜎∗4 denote the posterior mean and variance
of 𝑓(𝑑∗), respecitvely
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¾ Dialogue representation d computed using a bidirectional LSTM autoencoder
¾ Trained with a dialogue corpus comprising user dialogues in the cambridge restaurant domain

¾ Policy is modelled by a Q-network 
¾ Q-values estimated by a Gaussian process (GP-SARSA)
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¾ Compare on-line GP to
¾ Obj=Subj: dialogue is only used if subjective and objective success rating coincide
¾ Sub: Use subjective rating of the user
¾ Off-line RNN: Train an RNN on 1K simulated dialogues off-line as success estimator
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¾ Compare on-line GP to
¾ Obj=Subj: dialogue is only used if subjective and objective success rating coincide
¾ Sub: Use subjective rating of the user
¾ Off-line RNN: Train an RNN on 1K simulated dialogues off-line as success estimator

¾ Success is calculated using
the moving average
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¾ Compare on-line GP to
¾ Obj=Subj: dialogue is only used if subjective and objective success rating coincide
¾ Sub: Use subjective rating of the user
¾ Off-line RNN: Train an RNN on 1K simulated dialogues off-line as success estimator

¾ Only requires ~150 user queries
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¾ Goal: Learn policy from scratch in interaction with real users

¾ Approach:
¾ Use Gaussian process prediction model to infer task success
¾ Only query user feedback if uncertainty is within a given threshold
¾ Learn dialgoue representation using an RNN autoencoder

¾ Results:
¾ GP reward leads to best performance
¾ Only requires a fraction of queries compared to all training dialogues
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